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On Accelerating the Convergence
of Infinite Double Series and Integrals

By David Levin

Abstract. The generalization of Shanks’ e-transformation to double series is discussed
and a class of nonlinear transformations, the [A4/S]g transformations, for accelerating
the convergence of infinite double series is presented. It is constructed so as to sum
exactly infinite double series whose terms satisfy certain finite linear double difference
equations; in that sense it is a generalization of Shanks’ e-transformation or its equiv-
alent Wynn’s e-algorithm. A generalization of the [A/S]1k transformation to N-
dimensional series is also presented and their application to power series is discussed
and exemplified. Some transformations for accelerating the convergence of infinite
double integrals are also obtained, generalizing the confluent e-algorithm of Wynn and
the G-transformation of Gray, Atchison, and McWilliams for infinite 1-D integrals.

1. Introduction. One of the important properties of Shanks’ e-transformation or
its equivalent Wynn’s e-algorithm is that it sums exactly converging series whose terms
satisfy linear difference equations with constant coefficients (Shanks [8], Wynn [9]),
ie., if

n
(1.1) a;= ) oprfae, i=0,1,2,...,
k=1
then
(1.2) end) =2 g=S, i=0,1,2,...,
j=0

= i
where 4; = Zizo 4

The above property can be proved as follows: From the relation (1.1) it can be
shown that

oo n
1.3) 2a=-2 aqn e, i=0,1,2,...,
j=i k=1
and, therefore,
n
(1.4) A,.=s+kz A e, i=0,1,2,.. ..
=1

Regarding S and the constants o as unknowns, we can find the sum S of a series whose
terms satisfy any difference equation of the form (1.1) by solving the (n + 1)th order
linear system of equations

n
1.5) A; =5+ ) A e , i=mm+1,...,m+n
k=1
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The solution of this system for S is

Am Am+l e Am+n

A +1 A +2 T @min+n
Aa,, JAY S SR A VS

n—1 n—1 L. An—1
A"y, AV a4, A",

(1.6) S =
1 1 1

Am+1 Am+2 T mtnt
Aay, 4y Dy, y 0 Blyipi

n—1 n—1 ... An—1
A"y AT Ay A @y nta

which is identical to €, ,(4,,) (Shanks [8]).
The relations (1.4) can also be written as

1.7) A,-=S~an:1 Brlirr> 1=0,1,2,...,

and these relations can be viewed as obtained by truncating the simple identity
(1.8) Ai=S—k;l Grik

and compensating for it by inserting some co;stant factors B, k=1,2,...,n. A

generalization of this last idea for double series is presented in the following section.
It is shown that the general order Padé-type approximants for double power series
[A/S]y, of Levin [6] can be obtained by this method. Using some structural analysis
of the method, it is then suggested that certain choices of the set 4 are preferable. In
Section 3 it is shown that the same particular choices of A4 also follow from a direct
generalization of the procedure (1.3)—(1.5) to double series. With these choices of 4,

oo

an [A/S] approximant is obtained which sums exactly double series 2 =0

coefficients satisfy any linear double difference relation of the form

1.9 2 o AfAba; =0,  ap #0,
(k,DES

where Aja;; =a;, j~ayand Dya; j=a; ;4 ~a

05 whose

ij*

The generalization of [4/S] to N-dimensional (V-D) series and its application to
power series is discussed in Section 4, and a numerical example with comparison to
Chisholm approximants [2] is presented in Section 5. In the last section we study the

generalization of Wynn’s confluent e-algorithm and the G-transformation of Gray,
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Atchison, and McWilliams [4] to infinite double integrals. For both 2-D series and 2-D
integrals we have found it necessary to assume that the 1-D case is satisfactorily solved.

2. General Order Approximations to 2-D Sums. We consider approximations to
the sum of a converging double series Z;,oi= 0 @; by usinga finite number of its terms.
Let Q denote the set of all ordered pairs of integers (i, j), referred to below as the
lattice plane. Given a subset M of 2, we define the complement M of M as

M=Q-M,
the “nonnegative part of M as
M = {i,DIGHEM,i=>0,j>0},
and the “(Z, j) translation of M as
My = {(k,m)|(k—i,m~j)EM}.
We also use M to denote the partial sum of order M of the series,

M= s,

(nem+
hence 2 also denotes the sum of the double series
@.1) Q= 3 a;
ij=0
For a chosen subset A of § we have, in analogy to (1.8), the relations
2 Ay =90~ > @y joms (M, 1) E Q.
(i,)EQ-4

To obtain finite order relations of the form (1.7), we assume that the remainder sums
in (2.2) can be approximated by a linear combination of a finite number of their terms
(2-3) A—m -~ Q- Z ﬁiiai—m J—n> (m’ n) €Q,

(i,J)ER
where R is a finite set of r elements, R C £ — A. We now choose another finite set
S C Q% having s = r + 1 elements to obtain a system of s linear equations
(2.4) Ay n=9 = 2 Bftimjn (mn)ES,

(i,)ER
for the unknowns {ﬁi].}(i,DER and the approximation ' to Q. The sets 4, R, and S
must be chosen so that the system (2.4) has a unique solution. For instance, at most
one of the sets R'_*m —n> (m, n) €S can be empty; otherwise the matrix of equations
(2.4) will have two dependent rows of the form (0,0, ..., 0, 1).

For the case of a double power series, a;; = ciixiyf , systems of the type (2.4)
generate the general order Padé-type approximants [4/S],,— 4 g presented in [6]. We
note that the notation used here is identical to that used in [6] apart from a slight
change in the definition of the “translation” of a set in the lattice plane. An approxi-
mant [4/S],, is shown there to be a rational function with a numerator of rank A4 and
a denominator of rank S such that its power series expansion agrees with the original
power series on M, i.e.,

oo

(25) Z cijxiyi - [A/S]M = O(Xiyf, (la ]) e]‘}'-)

i,j=0
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It is also shown there that the Chisholm approximants [2] can be obtained from rela-
tions of the form (2.4) where identical factors, B;j = By are taken for some selected
pairs (i, /), (i, /') €R.

Let us examine the structure of the system (2.4) in terms of geometrical patterns
in the lattice plane Q. 2 —A4 _ m, —m —n> and the sum
Z(ij)eR Biji-m j—n consists of series terms with indices in R_,, ~nCQ-A_, _,.
The geometrical structures of  — A_,, —n and of R_,, —n are unchanged for different
(m, n) € S apart from a translation. This however is not always true for Q+ — A,
and RY, —n>» the sets which are actually active in (2.4) since a; =0 for (i,)) ¢ Qr.
These sets might have different geometrical patterns in the lattice plane for different
(m, n) € S. For example, Chisholm fn v approximants can be obtained from (2.4)
with 4 = {({,j) ,j<N},S={({,)|10<i,j<N}and R =M—- A where M =
{G,NHIi+j<2N+ 1} and with 32N+1—j,j =B an+1—forj=1,2,...,N (see
[6]). The set Q+ — A_,, _, is thus the quarter plane Q% taking away an (N — m) x
(N — n) rectangle from its corner, and RY, —n is mainly composed of two isosceles
right triangles with legs of length N — m and N — n. Obviously, the structures of these
sets are geometrically different for different (m, n) € S. In such a case the functional
form assumed in (2.3) for the remainder sums § — A_m, _n differs for different
(m, n) €S, and the system (2.4) is hence termed as a system with an irregular structure.

We claim that the irregularity in the structure pattern of the equations in the

_p is the remainder of the sum 4

system (2.4) affects the accuracy and the efficiency of the approximation. To give an
example we consider the 1-D Padé approximants [m/n] to ;= c;x’. These can be
obtained from the system of equations

n
(26) A =[mn]+ X Beci Xk, i=m-nm-n+1,...,m.
k=1

Here it is assumed that the remainder Il cjxf can be approximated by a linear

combination of the first n terms in it, ¢, ;x**, ¢, , %2, ..., ¢;, X", The
structure of the system (2.6) is irregular whenever m — n < 0, and the worst case is

m =0 where in each equation in (2.6) the same remainder is represented by a dif-
ferent algebraic form. The resulting approximation for m = 0 is the [0/n] Padé€ ap-
proximant which is usually not better than the [#/0] approximant which is simply the
partial sum 4,,(x). On the other hand, the [n/n] approximant which is usually the
most efficient one is derived from a system of equations with a regular structure. This
system, i.e. (2.6) with m = n, is actually the higher order system with a regular structure
pattern which can be obtained using only 2n + 1 terms of the power series.

In the 2-D case it is obvious that any choice of 4 such that A* is finite yields a
system of equations in which each equation is of a different geometrical structure. Yet
Chisholm approximants are known to be quite efficient and they possess some impor-
tant properties; see [2]. In terms of the above discussion we can argue that in the sys-
tems of equations (2.4), which generate Chisholm approximants, there are still subsets
of equations in which the structure is fully or partially preserved in certain directions
in the lattice plane. However, more efficient approximants are expected to be obtained

by choosing the sets 4, R, and S so that the structure of the sets QT — 4 and

-—m,—n
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of R_,, _, in the lattice plane is unchanged for all (m, n) € S. This is equivalent to
demanding that —A_m,_n C Q" V(m, n) €S since R_m'_n CA_m'_n. For a given
S C Q' the smaller set A satisfying the above property is the three-quarter lattice plane

2.7 A={GDli<lorj<J},
where J = max; heg iand J = max;; jegs J-

In the following section we present another motivation for choosing A of the
form (2.7) which also clarifies the significance of the classes R and S.

3. Series With Coefficients Satisfying Linear Double Difference Equations. In
analogy with the 1-D series with terms satisfying (1.1), let us consider 2-D series whose
terms satisfy linear relations of the form
(3.1) a;= 2 ogMAa i, i>1j>,

(k,DET
where T is a finite set, T C Q%, (0,0) ¢ T, Aya; =0,y ;— a4y, and Ayay; =
4; j+1 ~ a;. To avoid the occurrence of negative indices in (3.1) we must take I >
max; ner i and J > max;; nepj. Yet all the following results can be carried out for
any I, J > 0 provided that terms with a negative index are defined as zeros. This ad-
ditional assumption is, however, “unnatural” and usually inconstructive, and the [0/n]
Padé approximant may serve as an example for the outcome of such an assumption.

If Q = X7";—¢ a;; < oo then, in analogy to (1.3), it can be shown that for M > 1
and N > J,

Q= X gyt 2 a0 gy vy
G.)eat (k,)ET
K 1£0

(2)

- 2 0 2 Alay i 2 ay, 2 AS'g N,

(k,0)ET =N (0,DET i=M

where
(3.3) A= {G,j)i<Morj<N}.

Equation (3.2) is an explicit expression for the double infinite sum £ of a series whose
terms satisfy the given linear relation (3.1). In order to use this expression one has to
find the coefficients a;; in (3.1) and that can, in general, be done by matching a rela-
tion of the form (3.1) to a given finite number of series’ terms. However, one also has
to evaluate the infinite 1-D sums appearing in the expression (3.2), the same infinite
sums as those resulting from the discussion in the previous section. In the following
theorem we present the definition of the suggested approximations to double infinite
sums and link together both motivations to it, the one just described and the one pre-
sented in Section 2.

THEOREM 3.1. Let S be a subset of Q+ having s elements and being “‘full-
ranked”,ie., if (k, ) €S, then {(, N |0<i<k O<j<I CS LetT=S~-
{(0, 0)} and let R be another subset of Q™ having s — 1 elements. Then the two
following definitions of approximations to the double sum Q = Z7";_, a;; are equiv-
alent:
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Definition 3.1. ForM=>ITand N > J,

Qrap=4+ ) AT AT Ay N1
(k,DET
k10
(34)

- 2 Ok .0 2 A’f—laM—k,j 2 Qg ; Z Az 4 N-15
(k,0)ET j=N (0,DET i=M

where 4 is the partial sum of order 4 of the series where 4 is given by (3 .3), and the
s = 1 ay’s satisfy the linear (s — 1)th order system of equations
(3.5) & (k I)ZET bttt jp (1) ER.

Definition 3.2. The approximation [4/S] is defined as the value Q' in the
solution vector (', {B,.]-} G.)e g) of the linear system of equations

(3.6) Q- X Bgxj=Ar_p (KDES,
(i,j))ER
where A_, _, is the partial sum of order A_y _, the (=k, —I) translation of the

above A.
Proof. let [A/S]g and (B} iy)er satisty (3.6), ie.,

(3.7 A =[ASlR - 2 By, ki-v (KDES.
(i,/)ER
Since S is “full-ranked”, we can operate with A¥Al on (3.7) to get
(38) A AZA—k —1=" Z BUA A2a;—k J-1 (k3 I) E€T.
(./)ER

Let {ak,}(k’l)ET satisfy (3.6), then, multiplying (3.8) by @;; and summing over all
(k, ) € T, we obtain

(39) 2 agakaba, s X 4y 2 By A 0 -l
(k,eT (k,DET (iL,))ER
Interchanging the order of summation, using (3.5) in the right-hand side of (3.9), and

using the equalities

AV A ey v k10,

oo

AfAY A, = X A ey, I=0,

j=N
Z A2 az,N—l’ k=0’
=M

we obtain

2 aklAf—lA;_laM—kN—l— > Q0 Z AY- laM—k,]
(k,DET (k,0)ET j=N
(3.10) k1#0

- X O‘OIZ:A2 Gn1= 2 By

.,npeT i=M (iJ)ER
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Combining the (0, 0)th equation of (3.7),
[A/S]R =4+ Z 51,‘1,']"
(i,/)ER
with (3.10), we thus obtain
[A/S]R = QT,A,R' Q.E.D.

From the motivation of [4/S]g via recursion relation, it is clear that the choice
of the set R has no conceptual significance. Also the restriction R C Q1 — A, stated
in Section 2, can be reduced; R should only be chosen so that the matrix of the
system (3.5) is full and nonsingular. It is of course preferred to use an R with which
the number of series terms taking part in (3.5) is the minimal.

The two motivations, the structural considerations in the lattice plane, and the
recursion relation assumption led us to the inevitable conclusion that, in order to
obtain efficient approximations to the sum of 2-D series, the 1-D series which con-
stitute the above partial sum 4 should be computed, or well approximated. In the
generalization of these approximations to N-D series, as presented below, we assume
that the (V — 1)-D case is satisfactorily solved, i.e., that (N — 1)-D series can be well
approximated.

4. Generalization to N-D Series and Application to Power Series. The generaliza-
tion of the above approximations to N-dimensional series is direct; let £ be the set of

all the ordered vectors of integers (i, i,, . . . , i) and let also
Q=2 X X Gy iy
i;=0 i=0 iny=0

The previous lattice plane terminology will also be used for subsets in the N-D lattice
space, its adaptation being evident. To simplify the notation, we introduce the vector
notation i = (z:l, Iy, ..., iy),a;=a;
and x! = x]1x72 - - xj{)’.
Definition 4.1. Let S be a “full-ranked” subset of Q1 having s elements and
R C Q" having s — 1 elements. The approximation [A/S]g to Q is defined by the s

order system of linear equations

,and also q;_y = a

l’iz""’iN il—kl’iz_k2""’iN_kN

4.1) A =[AS)g - 2 Bay, KES,
iER
where ]
42) A={m|my <M ormy<M,...ormy<My}.

THEOREM 4.1. The approximation [A[S]g is exact for all the convergent series
whose terms satisfy linear recursion relations of the form

43) G= 3 Ay fori;>I,j=1,2,... N,
kES—1{(0,0)}
where A is the vector of the difference operators A = (A, A,, . . ., Ay), provided

that in (4.2) M; > I forj=1,2,...,N, and that the system (4.1) has a unique
solution.
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Proof. The result follows by a direct adaptation of the equivalence theorem
3.1 to the N-D case.

We now consider the application of the [4/S] g approximation to N-D power
series

Ux) = X1,

(4.4) (x) ie‘zu, G

THEOREM 4.2. The approximation [A[S]g to N-D power series can be written
as the ratio of a “polynomial” of rank A and a polynomial of rank S (the quotation
marks are used since A is not a finite set). Also

4.5) Qx) — [4/S]; = O(xX,k €4 UR).

Proof. The [A/S], approximation to power series is defined by (4.1) with
a; = ¢;x'. Multiplying (4.1) by x! and denoting 8;x' by B, we obtain a more convenient
defining system of equations for [4/S],,

(4.6) xkA_ = xX[4/S1g + 2 Bieiy, KkES.
i€ER

The s x s matrix of coefficients of the system (4.6) has the x*, k € S, in one column
and the constant ¢;_, in all the other columns. Also the left-hand side of (4.6) is a
“polynomial” of rank 4. Therefore, in solving (4.6) for [4/S]; by Cramer’s rule, we
obtain a “polynomial” of rank 4 over a polynomial of rank S. The determinant repre-
sentation of [4/S]z which follows from solving (4.6) by Cramer’s rule is also needed
for proving the second part of the theorem. Using this representation, the proof of
the theorem in [6] can be easily adapted to prove (4.5).

THEOREM 4.3. [A[Sy is exact for any function of the form

M:—1
?_’__1 Zj=10 X} gy Gy Xy o Xy Xy s+ -5 X))
4. X1, X0, oo, Xy)=
(7)f(1, 2> aN) Z k1k2”'kN
kES dkl,kz,...,kle Xs xN

in the domain of convergence D of its power series expansion at X = 0, f(x) =

Ziea+ cixi, provided that the subset R is chosen such that the system (4.6) has a
unique solution. In (4.7) we assume that the numerator and the denominator have no
common factor and we denote them by P(x) and Q(X) respectively. The functions

{g,-j}f.\;l ,'Aiio_ ! can be any functions of N — 1 variables analytic at the origin.

Proof. Multiplying (4.7) by Q(x) and comparing the coefficients of the mono-
mials x! in both sides, we get

(4.8) > diciy =0, i€A
kES
Multiplying (4.8) by x!, we obtain for i € 4
49) 2 digiy =0,
kES

where dj = dkxk and g; = cixi. Equation (4.9) can be rewritten as
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(4.10) kgs ai(Akai__k =0,

where
ay = 2 dpx* = 0(x).
kesS

For x € D it is clear that Q(x) # 0, and the terms g; satisfy (4.3) with oy, = — 04, /O(x)
and I] = M] All the conditions stated in Theorem 4.1 are thus satisfied for x € D,
therefore [4/S]; = f(x). QED.

So far we have assumed that the infinite (N — 1)-D partial sums A_,kES, are
known. In order to make the [4/S], approximants practical, we must replace those
(N — 1)-D series by some appropriate approximations, e.g., by some (N — 1)-D [4/S]x
approximants. Of course, the above exactness theorem will no longer hold. However,
it can still be shown that for a function of the form (4.7) the resulting approximation
can be written as P(x)/Q(x), where the approximation P(x) = P(x) is controlled by
those (V — 1)-D approximations used to approximate the partial sums 4_j.

For the 2-D case we can use ordinary Padé approximants, [m/n], to replace the
infinite 1-D series appearing in [4/S]. The resulting approximation is denoted as
[[m/n]A/S]. However, the assumption of a linear 2-D relation (3.2) (with constant
coefficients) between the terms {aij} of a 2-D series does not necessarily imply that a
similar 1-D relation (1.1) holds between row or column elements of {a,.i}. Therefore,
the ordinary Padé approximants might be unsatisfactory for our purpose, and some
other summation methods, e.g., the recent d-transformation of Levin and Sidi [7] might
be more suitable.

5. Numerical Example. We now apply the [4/S]; approximants to the Beta
function
(1 + x)r(1 + y)
re +x+y .

G Blp,q9)=B(1 +x,1+y)=

This case has been considered by Graves-Morris, Hughes-Jones, and Makinson [3] using
Canterbury approximants. Following their work, we consider approximations to

(5.2) f&, ) =3 2 ey,
i=0 j=0
defined by '
1 ,
.3) B+ x, 1+ y) = %))

A+x(1+y
The coefficients {c;;}, required for computing the [4/S]; approximants, were
calculated using the first procedure suggested by Graves-Morris, Hughes-Jones, and
Makinson. We considered symmetric subsets 4, S, and R,
A={Gpli<smorj<m} =4,

S={0N10<i,j<k} =S,

R={GNIr<i,j<r+k,i+j+#2r+2k} =R,.
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TABLE 5.1

Comparison between f, N and [A/S)g approximants of various

degrees to B(p, q) at various points (p, q).

P,q 1.75,-.25 | =.5.-.5 | -.75,-.75
B(p,q) -6.77770 0. . 88810
f3/§31’16) -6.787 T .0
f7/§79’16) -6.77774 | -.0010 .82
[3;3/2139%) | g 79y -.026 .9
|
[554/21$8%297 | _6.77775 | -.00021 | 9.8877
psq -1.25,-1.25 | -1.5,-1.5 | =1.75,-1.75
B(p,q) -16.266 0. 28.253
f3/§3l’16) -2.6 -3.7 -2.8
f7/§79’15) -15.7 -3.8 4.0
[3;3/213%%) | 15,3 -.19 27.18
[5;4/2]@85’9) -16.271 -.023 28.259
P,q 1.75,-.25 1.75,-.5 1.75,-.75
B(p,q) -5.08327851 | -3.594L42070 | -4.44288294
f7/g72’9) -5.083274 -3.59438 -4.u421
[5;2/2]&61’9) -5.083272 -3.59440 —4.L44Y27
Pyq 1.75,-1.25 | 1.75,-1.5 1.75,-1.75
B(p,q) 2.03331140 | 0.599070 0.
f7/§72’9) 2.05 0.62 0.10
[552/2188%59) | 2.0329 0.59901 0.010
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For the infinite 1-D power series appearing in the definition of [4/S]g, we have used
diagonal ordinary Padé approximants [n/n]. The resulting approximation is thus de-
noted as [[n/n}4,, /Sk]Rr, or shortly as [n; m/k],. [[n/n}A4,, /Sk]Rr is an approximation
of the form

n i n i
mo Do %Y m Yo P
=" 4 ="

(54 /=0 Lo B! =0 Lo 4

. B —
2ico Lito G
Its computation involves the terms {¢;} with
G)E G )I0<i<2m,0<j<m}U {(,j)|0<i<m,0<j<2n} UR,
ie.,2Qn+ 1)m+ 1)— (m+ 1)* + (k+r—m)? — 1 terms, and the solution of a linear
system of order (k + 1)2.

We compare our results with those of Graves-Morris, Hughes-Jones, and Makinson
[3] who have used symmetric-off-diagonal approximation (S.0.D.) of the form

M M ij
i=0 L« j=0 UV

N N i
i=0 Zi=0 byx'y

The computation of f3,  involves the terms

(5.5 funG, ) =

{ejl0<i+j<M+N+1VO0<ij<max@XM,N)},

ie., M+ 1)? + (N + 1)2 — 1 terms, and the solution of a linear system of order
(N + 1)%. The special block structure of the system of equations can be used to re-
duce the computational effort; Hughes-Jones and Makinson [5].

Recently, a recursive procedure for computing 2-D Padé approximants was pre-
sented by Bose and Basu [1], and this procedure can be applied for our case as well.
However, we have used direct computation by LU decomposition, which is accurate
and fast enough for the low order approximations that we tested and of course is much
simpler to program.

In Table 5.1, we compare the numerical values of the [[n/n]A,,/S;] R, 2P-
proximants with those obtained by the f;, /N approximants and with the exact values
of the Beta function at various points. We add double upper subscripts to the notation
of the different approximants, in which the first index stands for the number of series
terms used and the second for the order of the system solved to obtain the approxi-
mant, e.g., [4; 4/21$54+%) is the [[4/4]4,/S, Iz, approximant; it uses 54 series terms
and is obtained by solving a 9th order system.

It is clear from the table above that the [4/S]; approximant can in some cases
produce better approximations with less computational effort.

6. Infinite Double Integrals. In this section we consider the problem of accelerat-
ing the convergence of infinite double integrals. To the best of our knowledge, no
direct method has been proposed for this problem yet. Of course it can be approached
by considering a sequence of finite double integrals or by a consequential use of
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methods for 1-D infinite integrals. In what follows we present a direct method which,
unlike the indirect methods, makes use of 2-D properties of the integrand.

As in the case of 2-D series, we assume here that the 1-D case is satisfactorily
solved. This assumption holds for a wide and important class of integrals for which the
confluent e-algorithm of Wynn [10], the G-transformation of Gray, Atchison, and
McWilliams [4], or the D-transformation of Levin and Sidi [7] can be applied. The con-
fluent e-algorithm and the G-transformation serve us also as a model for building the
2-D approximations. Both these methods give the exact value of [ f(¢) dt for func-
tions satisfying linear differential equations with constant coefficients,

m
(6.1) =% pfO@, t€[0,).
k=1
The confluent e-algorithm of Wynn can be written as
t m
(62) en(® = [ fdr— X pf 1),
0 k=1

where the coefficients p, satisfy

(63) fO@) = 3 pofEHDE,  j=0,1,.. . m-1.
k=1

The derivation of approximations to infinite double integrals is based upon the
assumption that the integrand satisfies a linear partial differential equation with con-
stant coefficients of the form
(6.4) fo.y) = 2 o0kelf(x,y), TCQ*, (0,0€&T.

(k,DET
Here Q stands for the lattice plane.

THEOREM 6.1. Let f satisfy (6.4) for x = a and y = b, and let

lim 8%3%'f(x,») =0, (k,DET,1+0,

and e
lim 810! f(x,y) =0, (k,DET, k+0.
X—>o0
Then
- °of(x,y)dxdy= > o 3k 13117 (g, b)
f” f“ kper X7
k10
— Z @ = ok—1 2, y)d
(6.5) weder O J , 9% @ y)dy

-z ao’,f: 351 f(x, b)dx.

(0,neT
Proof. The result follows by using representation (6.4) for the integrand and
performing integration by parts.
Defining A = {(x, ) | x<a or y < b, x,y > 0}, we can write the double inte-
gral in (6.5) as
6o [, [, feyaxdy = [ fe yaxdy = | [ fGx,y)axdy.

A
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The 2-D analogue of the confluent e-algorithm is thus defined as follows:

Definition 6.1. Let T and R be two r-element subsets of Q*, (0, 0) T, then
fora, b>0

e, b) = fff(x,y)dxdy + > ak,a’;‘la;"lf(a, b)
A

(k. DET
k-1#0
(6.7) - .
= T g [, E@dy - T e, [ 05, Bdx,
(k,0)ET b onper ‘@

where the coefficients o, are determined by the system of linear equations

(6.8) AV f@b)= X o, dktf@ ), G j)ER,

(k,DET
(assuming that all the necessary partial derivatives of f exist) provided that this system
has a unique solution.

COROLLARY. Necessary and sufficient conditions that
(2) — 00 00
€M@ b= [ jo f(x,y)dxdy Va,b>0

are that f satisfies the conditions of Theorem 6.1 and that the system (6.8) has a unique
solution.

Proof. Sufficiency is proved by Theorem 6.1, and necessity follows by differen-
tiating (6.5) with respect to a and b.

For a = b = 0 Eq. (6.5) provides an expression for [g fg f(x, y) dx dy in terms
of the derivatives of f at (0, 0), integrals of the normal derivatives of f along the bound-
aries, and of course the a;,; of (6.4). As in the 1-D case, 6(7.2) has the disadvantage of
the need to provide high order derivatives of the integrand. However, in the 1-D case
this difficulty can be avoided by using the G-transformation of Gray, Atchison, and
McWilliams [4] which can be written as

©9) Gla; 80 = [ 1@t~ 3 0% 1(@),

where the g, ’s satisfy =

(6.10) f”‘” ! rpydr = kfjl wb¥ @+, j=0,1,...,m—1.

The relations (6.10) can be viewed as originating from the assumption that f satisfies
(6.11) [ = ki_n:l A 1D, t=o0.

The class of functions satisfying (6.11) is the same as the class of functions satisfying
(6.1). Hence, although the G-transformation uses only function values and no deriva-
tives, it still has the same class of exactness as that of the confluent e-algorithm.

The 2-D analogue of the G-transformation is defined as follows:

Definition 6.2. Let T and R be two r-element subsets of Q%, (0, 0) & T, and let
A={xy)Ix<aory<b, x,y=0}, then fora, b =0
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G, b ax, Ay) = [[ G, paxdy + X B 8k AL £(a, b)
A (k,DET

(6.12) k140
- Z Bk’ofb A’;"lf(a, y)dy

(k,0)eT

- X Bou [, S, b,

(0,HDeT

where the g, ; are determined by the linear system of r equations

b+(j+1)Ay ra+(i+1)Ax
, y)dxd
fb+iAy J‘a+iAx f(x y) Y
= 2 B, ARALf(a + iax, b + jay)
(k,DET
(6.13) k-1#0

b+(G+1)Ay
- B A*fa + iAx, y)d
(kger .0 fb+iAy = Ny

a+(i+1)Ax
- ALf(x, b + jAy)dx, (i,j) ER.
(O,I)ZET fou J.a+iAx J’f(x b+ jhAy)ax G)ER

provided that this system has a unique solution. Here A_ f(x, y) = f(x + Ax, y) —
flx y)and A, f(x, y) = f(x, y + Ap) = f(x, »).

THEOREM 6.2. Necessary and sufficient conditions that
)(q. b: =("( >
CPa, b5 bx, 8y) = [ [ fGx, y)dxdy  Va, b >0,
are that f satisfies a relation of the form

fx, p) = Z Bsz’;—lA;-I xy(x3 »+ Z ﬁk,oA,;—lfx(x, »)
(k)ET (k,0)ET
(6.14) k10
+ Z: ﬁO,lA_I;lfy(xa y)
(0,)ET
Vx,y >0, that lim,_,, ,, yoroo f@x, y) =0, and that R is chosen so that the system
(6.13) has a unique solution.

Proof. Integrating (6.14) from a to infinity with respect to x and from b to in-
finity with respect to y and using integration by parts, we obtain

[, [ fyaxdy = 3 6,01 AL1 £, b)
(k,DET
k-1#0

- Z ﬁk,o f: A’;"lf(a, y)dy

(k,0)eT

(6.15)

- 3 Bo,zf: As-lf(x,b)dx.

(0.DET
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The equations (6.13) can be obtained for any 7, j = 0 by integration of (6.14). Com-
paring (6.12) and (6.15) and using (6.6) we obtain

@)(a, b; =" ("
Gy )(a, b; Ax, Ay) fo fo f(x, y)dxdy

and thus sufficiency is proved. The necessity follows by differentiating (6.12) with
respect to @ and b.

Unlike the 1-D case, 6(7.2) and G(T?) do not, in general, share the same exactness
class. That is due to the fact that a function satisfying a relation of the form (6.4)
does not necessarily satisfy also a relation of the form (6.14) and vice versa. It is of
course more natural to assume a relation of the form (6.4). However, the relations
(6.14) are not less general than (6.4), and for many cases they can provide good
approximations to the relations (6.4). Therefore, for cases in which the computation
of the integrand’s derivatives is expensive, G(Tz) is recommended.

Department of Mathematical Sciences
Tel-Aviv University
Ramat-Aviv, Israel

1. N. K. BOSE & S. BASU, “2-D matrix Padé approximants: existence, non-uniqueness and
recursive computation,” IEEE Trans. Automat. Control. (To appear.)

2. J. S. R. CHISHOLM, “Rational approximants defined from double power series,”” Math.
Comp., v. 27, 1973, pp. 841—-848.

3. P. R. GRAVES-MORRIS, R. HUGHES-JONES & G. J. MAKINSON, “The calculation of
some rational approximants in two variables,”” J. Inst. Math. Appl., v. 13, 1974, pp. 311-320.

4, H. L. GRAY, T. A. ATCHISON & G. V. McWILLIAMS, “Higher order G-transformations,”
SIAM J. Numer. Anal., v. 8, 1971, pp. 365—381.

5. R. HUGHES-JONES & G. J. MAKINSON, “The generation of Chisholm rational poly-
nomial approximants to power series in two variables,”” J. Inst. Math. Appl., v. 13, 1974, pp. 299—
310.

6. D. LEVIN, “General order Padé-type rational approximants defined from double power
series,” J. Inst. Math. Appl., v. 18, 1976, pp. 1-8.

7. D.LEVIN & A. SIDI, “Two new classes of non-linear transformations for accelerating
the convergence of infinite integrals and series,” Appl Math. and Comp. (To appear.)

8. D. SHANKS, ‘“Non-linear transformations of divergent and slowly convergent sequences,”
J. Math. Phys., v. 34, 1955, pp. 1—-42.

9. P. WYNN, “On a device for computing the e,,(S,) transformation,” MTAC, v. 10, 1956,
pp. 91-96.

10. P. WYNN, “Upon a second confluent form of the e-algorithm,” Proc. Glasgow Math.
Soc., v. 5, 1962, pp. 160—165.



