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Reciprocal Polynomials Having Small Measure

By David W. Boyd*

Abstract. The measure of a monic polynomial is the product of the absolute value of
the roots which lie outside and on the unit circle. We describe an algorithm, based on
the root-squaring method of Graeffe, for finding all polynomials with integer coeffi-
cients whose measures and degrees are smaller than some previously given bounds. Using
the algorithm, we find all such polynomials of degree at most 16 whose measures are
at most 1.3. We also find all polynomials of height 1" and degree at most 26 whose
measures satisfy this bound. Our results lend some support to Lehmer’s conjecture.
In particular, we find no noncyclotomic polynomial whose measure is less than the
degree 10 example given by Lehmer in 1933.

L. Introduction. The measure M(P) of a polynomial P(x) = agx™ + - - - + a,
with @, # 0 with zeros a,, . . . , a, is defined by [8, p. 5]

MP) = layl In] max(loyl, 1) = exp {f; 1og|P(e2""’)|dt}.
i=1

If P has integer coefficients, as we assume unless otherwise stated, Kronecker’s
theorem tells us that if M(P) = 1 and a,, # 0, then P is cyclotomic. Lehmer [7] raised
the question of whether there might be a constant €y > 0 independent of » so that,
if P is not cyclotomic, then M(P) > 1 + ¢,,.

Smyth [12] has proved that if P is nonreciprocal, then M(P) > 6o, where 6, =
1.3247 . . . is the smallest Pisot-Vijayaraghavan number. For reciprocal P, the ques-
tion is still open, although Dobrowolski [5] has recently proved that

1 [loglogn\ 3
M) > 1+ s (REEER)
unless P is cyclotomic. Surveys of related results have been given by Stewart [13] and
the author [3]. In [3], we used Lehmer’s notation Q(P) for M(P) and (unfortunately)
M(P) for max|e;l. The notation adopted here is due to Mahler [8].

In [7, p. 477], Lehmer states that, “we have not made an examination of all
10th degree symmetric polynomials, but a rather intensive search has failed to reveal
a better polynomial than

X104+ x% —x7 —x8 - x5 —x* —x3 + x + 1, Q = 1.176280821.

All efforts to find a better equation of degree 12 and 14 have been unsuccessful”.
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In view of the current interest in Lehmer’s conjecture and urged on by C. L.
Stewart, we recently carried out an exhaustive search of polynomials of small degree
(n < 16) for those of small measure (generally M < 1.3), and in addition a search of
all polynomials of height 1 up to n = 26. (In this paper, the height H(P) is defined
by H(P) = max|a,|.) We also investigated a number of families of polynomials as de-
scribed in Section 5. In spite of this extensive investigation, we found no better poly-
nomial than Lehmer’s 1933 example.

Because of Smyth’s result, we were able to restrict consideration to reciprocal
polynomials, although it should be pointed out that the structure of the set {M(P):

P nonreciprocal } is far from being well understood. With M(P) < 2, we have |gy| = 1
and hence we may assume that a, = a, = 1. Using the symmetry x — —Xx, we may
also assume that @, = 0. If P(x) = Q(x°), then M(P) = M(Q), so we can omit P of
this form with s > 1.

For any fixed M and n, the set of P with degree n and M(P) < M is clearly finite.
For example [8, p. 7],

@ a1 < (i) M

However, the number of reciprocal P satisfying (2) with,say,n=10,M = 1.3,a, =1,
and a; > 0 is about 1.5 x 10'! so a direct calculation of M(P) for all such P is out

of the question. Using Newton’s identities, a smaller set results, as described in Section
3(c), but even for relatively small » a more elaborate algorithm is needed.

Our approach is based on the root-squaring method of Graeffe, described in most
numerical analysis texts and in complete detail by Bareiss [1]. The efficiency of our
algorithm depends to a considerable extent on certain improvements of (2) given in
Section 2. However, the basic idea can be illustrated using (2), and the following con-
sequence of (1) and (2), [8, pp. 7-8]: Let L(P) = Z}_,la,| be the length of P, then

3) M(P) < L(P) < 2"M(P).
Let P, (x) = a(0, m)x™ + - - - + a(n, m) be the monic polynomial whose roots
are the 2" th powers of the roots of P. As is well known,
atk, m) = (—D¥a(k, m — 1)*

@ min (k,n—k) .
+2 Y (D%t —j, m — Dak +j, m — 1),
j=1
so Py, P,, ... are easily generated recursively. Since evidently M(P,,) = M(P)*",
the requirement M(P) <M and (2) imply that

©) la(k, m)l < ( Z) ",

Thus, if one begins with an initial set R, of polynomials (all those satisfying (2), say),
one obtains in succession sets Ry D R; DR, D - - -, where R, consists of those
polynomials in R, _, satisfying (5). Now (3) implies that

©6) MP) =M@, " <LE,)2 " <2n2" M),
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so that R, contains only polynomials with measures < 2%/2"M ThusR_ =) R m
is exactly the set Ry N {M(P) <M}.

In fact one stops the process for a moderately small value of m = m* and simply
computes M (P) for all P in R, from (1). Although (6) shows that lim L(P, )
= M(P), we have found that the direct computation of M(P) by finding the zeros of P
and using (1) is a more effective way of calculating an accurate value of M(P). The
advantage of (6) is that it gives reasonably good bounds on M(P) by a small amount
of computation.

An additional feature of this approach is that if P is cyclotomic, then P, =
P, ., assoon as 2™~ ! > n (see Section 3(b)). Thus the cyclotomic polynomials may
be detected in a small number of steps.

Timings are given in Section 4. Initially we hoped to extend our exhaustive
search to n = 20 but eventually settled for n < 16. The case n = 18 is feasible, but
potentially expensive, so this has been deferred in the hope of future theoretical
progress or else an improved algorithm.

The search among polynomials with H(P) = max|a,| = 1 is considerably less ex-
pensive. It is known that, for any P with M(P) < 2, there is a Q with integer coeffi-
cients with H(PQ) = 1. It has been our experience that Q can be taken to be cyclo-
tomic and of fairly small degree relative to n. The proof of a quantitative result of
this nature would greatly enhance the value of the lists in Section 6 for 18 < n < 26.

2. The Basic Inequalities. In this section, P is any polynomial with complex
coefficients. We shall derive a number of inequalities for la; | which depend on M(P).
We begin by recalling the notion of Schur convexity [10, pp. 167—168]. Sup-
pose that x = (x,, ..., xn) is a vector with real components and that x*, . .., x*
denote x, . . ., x, arranged in decreasing order. If y = ( Vis -+ s Vy), We write
x < y provided that

k k
in*<Zy,-*, k=1,~~~,n’
i=1 i=1

with equality holding if k = n. A function F(x) is said to be Schur convex if x < y
implies F'(x) < F(y).

LEMMA 1 (ScHUR, OsTROWSKI [10, p. 168]). If F is differentiable, then it is
Schur convex if and only if (x; — x].) (F; - F]-) =0, for all i and j, where F; denotes
the partial derivative with respect to x;.

LEMMA 2. Let oy (ey, . . . , a,) be the kth elementary symmetric function of
Qp,...,a, Then F(x)= ok(exl, ..., €M) is a Schur convex function of x.

Proof. F;—-F ;= ("1 —- e )A, where 4 is a nonnegative function of the re-
maining variables.

LEMMA 3. Let P(x) = agx™ + - -+ + a, satisfy M(P) <M. Then

-2 -2 — -
7))  la,l < <Z - 1> M+ <Z - 2) la,| + <” . 2> lagl + (Z ~ f) laga, |M 1.
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Proof. Assume for the moment that @, # 0. Number the roots of P so that
logl =+ > le, | > 1> e, 41>+ - >la,| > 0. Define x; = logle,|. Then
®) Xyt tx, = log(MP)layl) < log(M/lay),
©) Xmar T+ x, =log(la,|/MP)) > log(la,|/M).
If we define y, = log(M/layl), y,, = log(la,|/M), and y, = O otherwise, then it is easy
to check that x < y. Hence, by Lemma 2,
(10) opllayl, o .oyl ) <o (M/lagl, 1, . .., 1, la,I/M),

from which (7) is immediate.

Using continuity, the assumption a,, # 0 can now be dropped.

Remarks. 1. The inequality (7) is uninformative if Xk = 0 or #, but in these
cases |agl <M and |a,| <M. For our purposes @, = a, = 1, so (7) improves (2) con-
siderably, especially for large M. Note that (2) is sharp only if M = 1, while (7) is
sharp for all M, with equality for P(x) = (x + M) (x + 1) 2(x + M~ 1).

2. It is often possible to obtain information concerning max |a;| and min |,
(see e.g. Lemma 6 or [9, Chapter 7]). Lemma 2 allows us to use this information
very easily, as the next result illustrates:

LEMMA 4. Let P satisfy M(P) <M. Suppose in addition that |a,| = maxla;| <
a <Mllayl, and that la,| = minleyl = ¢ > a, /M. Define integers s, t and real num-
bers b, d with 1 <b <a,1<d <c by

a’b = M/lag| and c'd = ia,|/M.
Then
an la | <laglog@, ...,a b, 1,...,1,d,¢c,...,0),
Where a, ¢, and 1 are repeated respectively s, t, and n — s — t — 2 times.

Proof. Analogous to Lemma 3 except that y is defined by y, = -+ - =y =
loga,y,,, =logh,y,_,=logd,y, ., = "=y, =logc,and ¥; = 0 otherwise.
Obvious modifications are of course made if n —s — ¢ —2 < 0.

LEMMA 5. If P is a reciprocal polynomial with a, = a, = 1, for which M(P) <
M and maxlail <M1/2,then

3 k-1
n—4 n—4
+(k_4>+< . »

Proof. A special case of Lemma 4.

(12)

LEMMA 6. Let P be a reciprocal polynomial with real coefficients and a, =
a, = 1. Suppose in addition that all real roots of P are positive. If a, = n — 4, then
la; | = max|a;l <MP)'/2.
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Proof. If a; is not real, then @, is also a root of P so |a,|> <M. Thus we may
assume «a, is real, hence positive, and that a, >M 12 et Bys - - - s Byg be the complex
roots of P. Then

2s
max (18], 1) < Mfa, < M1/2,
1

i=
so that |l <MY for all i. Hence, by Lemma 4,
< Igl <2MM* +M Uy +p -6

Since P is reciprocal, al’l is also a root of P, so

o=y oyl >MU2 4 g2

a; real

Combining these inequalities,

n
(13)  —a, =Y ;>MVE MV oM E - 2M A — (n - 6).

i=1
The right member of (13) is an increasing function of M for M > 1, hence (13) implies
a; <n—4. Thusa, >n—4 implies |a,| < M*/2.
Remarks. 3. The assumption that the real roots are positive is valid for P, if
m = 1.
4. A corresponding result is true for nonreciprocal P, with n — 4 replaced by
n-—2.

LEMMA 7. Letay, ..., a, be a set of complex numbers closed under complex
conjugation. Then
n

£ ) <Y a o 2.
(14) " <k= 1 k> = Z, 1

k=1
Proof. Leta, = B,e*, 8, >0. Then
2op + X ol = 20 BR(cos(26,) + 1) = 22 B2 cos?d,.
Thus (14) follows from the Cauchy-Schwarz inequality.

LEMMA 8. Let L3(P) = lagl*> + - - - + |a,|%. Then
2n 1/2
(15) mey <@ <(3)" me),

(16) M(P)? + laga,|*MP)~% <Li(P).

Proof. The left inequality of (15) is due to Specht. Using the second definition
in (1), it is easily seen to be just the arithmetic-geometric inequality for integrals, to-
gether with Parseval’s relation [9, p. 129]. The right-hand inequality of (15) follows
from (2), as observed by Duncan [6]. The inequality (16) is due to Gongalves, a
more direct proof being given by Ostrowski [11].
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3. The Algorithm. We have outlined our basic approach in Section 1. However,
there are a number of details to be considered before a workable algorithm is obtained.
We shall deal in turn with (a) the root-squaring process, (b) cyclotomic factors, and
(c) selection of the initial set R, for exhaustive search.

For the remainder of the paper, P will denote a monic reciprocal polynomial of
even degree n = 2k with integer coefficients. Given a set of such polynomials R, we
are seeking those which have M(P) < M, where M is a parameter to be specified.

According to Lemma 6, if a(1, m) = n — 4 for any m > 1, then |o, | <
M(P)!/?, in which case (12) provides improved estimates over (7). We thus find it use-
ful to associate with P a parameter s = s(P) taking on one of the values 1 or 2 to indi-
cate that |a;| < M(P)!/S. Initially s = 1, but if at some point in the processing of P
we determine that o, | < M(P)!/?, then we set s = 2.

3(a) Root-Squaring. We regard n and M as fixed and R, as given. Given PinR,),
we wish to reject P from consideration if M(P) > M.

If M(P) <M and |a,| < M(P)'/*, the coefficients a(k, m) of P, satisfy
17) la(k, m)| < bk, m, s),
where the quantities b(k, m, s) are given by (7) and (12) as

(18) b(k,m,1)=<Z:f>(M2'" M2’”)+( ) (”k—z),

n—4 m m n—4 n—2
b(k,m,2)=<k_2>(M2 +4+M2 )+2<<k_3>+<k_1>>
B T
o * ) k-4 k)

These can be computed and tabulated once n and M have been specified.
We can then successively compute a(1, m), . . . ,a(k, m),form=1,2,...,m*,
using (4). If (17) is violated for any (k, m), we reject P.- If a(1,m) =>n— 4 for any
=1, we set s = 2. The advantage of this is fairly evident when one considers the
behavior of b(k, m, 2) versus b(k, m, 1) as m — oo.

(19)

In addition to this “rejection criterion”, we include, for m = m,, an “acceptance
criterion” based on (15). Thus, if L,(P,,) <M?™ | then M(P) <M, so we need no
further root-squarings. The cost of calculating L%(Pm) is the same as that of computing
a(m + 1, h). The choice of m, is discussed in 3(b).

We also accept P if it survives (17) for all m < m*, even though there is the
possibility that M(P) > M. The best choice of m* depends on the relative sizes of the
sets R, , which are initially unknown, and on the time needed to compute P,, from
P, _, relative to the time needed to calculate M(P). To see this, consider the relative
advantages of computing M(P) for all P in R, _, versus computing P, for all P in
R,,_, and then computing M(P) for all P in R,

The choice of m* affects the size of the a(k, m), so we settled on a choice which
would allow the a(k, m) to be represented exactly as double-precision reals. This re-
stricted m* <7 in most cases, but fortunately this proved to be close to the optimal
choice for n < 16.
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This is an appropriate point to discuss whether it is really necessary to compute
a(k, m) exactly, or whether one could not simply increase the b(k, m, s) by a certain
amount to compensate for errors in the a(k, m). The answer hinges on how sensitive M(P)
is to small perturbations in the coefficients of P, so the following example is perhaps
instructive:

Example. Let P(x) = (x + 1)2#,and Q(x) = (x + 1)*# —=x". Then M(P) = 1 and
P has large coefficients, indeed as large as possible according to (2). Q thus represents a
small perturbation of P. If & = 30, for example, the middle coefficient of P is (gg =
1.18 x 10'7 > 256 50 P and Q would be identically represented in double precision on
the machine used.

On the other hand, it is easy to see that

log M(Q) = 2 follz loglz + 1)*# =z dt  (z = exp(2nit))

=2 f:’z loglz!/? + 2= 12" — 1| dz, writing n = 2h,
SO
log M(Q) ~ 2 fE logl(2 cos nt)"*| dt = n log B,
where E = {0<¢t<1/2: 2 cosmt>1}= [0, 1/3), and
B = exp {2 f :/ *1og(2 cos f) dt} = 1.381356444.

Thus M(Q) ~ 8". Coincidentally § = lim,,_, ., M(z" +z + 1) [3], and so § was calculated
in [4]. Using estimates given in [4], it is easy to obtain the more precise result that
M(Q) =B"e” °n, where 0 < €, < 4/n.

For example, if n = 64, then M(Q) ~ 9.54 x 10%, contrasting markedly with
M(P) = 1. Of course P is very “ill-conditioned” because of the multiple root at —1.
However, observe that if P, = x%% + 1, which is a reasonably well-conditioned poly-
nomial, then P = (x + 1)6%. Even if we were in a situation where 0 = Q for some
initial 0, we would still have M(Q,) ~ 8= 1.38 . . . which is still not very satisfactory.

3(b) Cyclotomic Factors. 1t is obvious that many of the polynomials P of degree
n with M(P) < M will be reducible since if S, T have M(S) <M, M(T) = 1, and deg S
+ deg T = n, then P = ST has M(P) <M. Assuming that we have already computed
M(S), it would be inefficient to again compute M(P). Similar remarks apply if P is
cyclotomic.

The method of recognizing those P with cyclotomic factors depends to a certain
extent on R,,. Let us begin by observing the effect of root-squaring on cyclotomic
polynomials. Suppose that Q = F 2kg is the irreducible cyclotomic polynomial whose
roots are the primitive 2¥gth roots of unity, with ¢ odd, so deg Q = 2k~ 1¢(g), if
k> 1,and = ¢(q), if k = 0. Clearly Q,, = F5, where r = 2¥~™g and s = 2™ if
m<k—1,whiler =q and s = 2~ ! if m > k. Hence, after m >k root-squarings, a
cyclotomic factor F 2kq of P stabilizes as a factor F’ q of P, with multiplicity 2k-1,

Since deg sz < deg P = n, we have 2¥~1 < n, s0 after at most m, = [log,n] +1
q
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root-squarings, all cyclotomic factors are of the form F q with g odd.

As a consequence, if P is cyclotomic, then P,, = P, ., for some m < m,, and
hence P is detectable by at most m, + 1 root-squarings.

If R, is chosen for exhaustive search, then we can afford to ignore any reducible
polynomials in R, since we naturally intend to search in order of increasing n. Cyclo-
tomic factors can be detected simply by testing P, for factors F, q with g odd. Since
cyclotomic P are detected by the method of the previous paragraph, we can assume
that P is not cyclotomic and hence that deg F q < n - ny, where n; is the smallest
degree for which there is a polynomial Q having M(Q) <M. For example, if M =
1.3, then ny = 8, and this fact is known before we attempt n = 10.

In our implementation, we decided to check only for the factors F; and F p
where p is prime, since in this case there is a very easy criterion for F p to divide P.
We begin by computing Pp (1) =t If £ =0, then F, divides P for some k, so P is
discarded. Since F p(l) = p, a necessary condition for F, kp to divide P is that p|¢. If
this holds, then we test whether F p divides P,,, | using the following:

LEMMA 9. Let P =ayx" + - - - +a, and let p be prime. Then F, divides P if

and only ifcg =c; =+ = Cp_1> where
(20) Ci = Z dk.
k=i(mod p)

Proof. F, divides P if and only if xP — 1 divides (x — 1)P.

Since a; = a,,_,, it follows that ¢; = ¢,_;»>s0 only about half of the c; need be
calculated. For example, if n =16 and p = 5, then ¢, = ¢;, = ¢, and ¢, = ¢y, s0
one need only check that ¢, = ¢, = c;.

This approach is not appropriate when R, consists of all P of degree n and H(P)
= 1, since it would reject those P with a factor P, having H(P,) > 1. Instead, we
adopted the following method. Note that if P has exactly » = v(P) roots outside the
unit circle, then |a(v, m)|2~"™ — M(P). In fact, a(v, m) is the trace of the polynomial
of degree (;;) whose roots are (;; * - * @; )™, s0

| la@w, m)l = M(P)2™| < «:’) - 1) M2, | 72",

If Pisin R, , then |a(v, m)[2~™ provides an approximation to M(P). Of course
we do not usually know v(P). Suppose, however, that for some M, > M, we maintain
a list of all previously discovered P, with M(P,) <M, and deg P, < n, arranged in
order of v(P,), then M(P,). Then, for m = m*, we need only search the list (by binary
search) for a P, with v(Py) = k and M(Py) = lak, m)|I2~™ ,fork=s,..., h. Ifa
suitable P, is found, with Py(x) = Q(x"), then we need only test whether Q(+x")
divides P.

If this is successful, we avoid solving P(x) = 0. If »(P) =1 or »(P) = 2 and the
roots outside the unit circle are complex conjugates, then the approximation to M(P)
is sufficiently accurate that P, is usually located. In other cases, the search may fail
and then P(x) = 0 is solved needlessly, but on balance this test has proved to be worthwhile.
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3(c) Selection of R, for Exhaustive Search. Recall Newton’s identities:

@1 St aySe_y + - +ay 1S, +ka =0,

where S, = a¥ + -+ of. By Lemmas 3 and 5, we have

@2) S < etk 91,

where

23) ck, ) =M*+n-2+MF,

24 c(k,2) =2M*I2 +n — 4 + 2M 12

Thus, if @y, . . . , a; _, are specified, then (21) shows that @, is restricted to an inter-

val of length 2[c(k, s)] /k. For example, if n = 10, M = 1.3, we find from (22) and
(21) that we need only examine at most 32560 polynomials, a considerable improve-
ment over the number 1.5 x 10! suggested before.

Applying Lemma 6 to the polynomial with roots a{‘, ce aﬁ, which is valid if
k is even, shows that =S, = n — 4 for k even implies s = 2, a fact which can be used
in all further processing of P. Lemma 7 provides the additional bounds

(25) Sy, < —282/n + c(2k, 5),

where [c(2k, s)] is not used since 2|a,-|2" need not be an integer. This bound is very
restrictive if |S, | is near n.

Since P is reciprocal, the conditions (22) for k > h provide extra conditions on
4, k < h. It was found to be advantageous to use one of these explicitly: using a,_,
=a,,, and combining (21) for k = hand k = h + 1, we find
26) (n+Dajay = —a,@,S;,_y ++ " +a,_151)

+@S,_y - +a, 1S, + Syt

which, if a;, . .., a;,_ are given, and @, # 0, confines a, to an interval of length
2[c(h + 1, 9)]/(h + 1)a,, often determining a,, uniquely if a, = 2.

In addition to all the above, the bound |a, | < b(k, 0, s) is occasionally a further
restriction.

It should be clear how R, is constructed. In principle, one constructs each P in
R, individually then processes it as in 3(a) and 3(b). We in fact allowed the processes
of 3(c) and 3(a) to interact somewhat in that the a(k, m) were calculated as soon as
enough information was available to determine them. For example, if n = 16, then
a,...,aq already determine a(k, 1) for k = 1, 2, 3 and a(1, 2) independent of a,
and ag. Thus it may be possible to reject all P with a certain initial segment of coef-
ficients.

4. Discussion of the Polynomials Found. For even n < 16, all reciprocal poly-
nomials of degree n with measures < M were found, where M = 2 for n = 4, 6, 8 and
10,M =15 forn =12 and 14,and M = 1.3 for n = 16. An idea of the computation
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involved is given by the CPU time in seconds on the AMDAHL 470 V/6-II at the Univer-
sity of British Columbia:

n M time number found

10 13 1.235 7
10 2.0 11.694 185

12 15 16.108 43
14 1.5 191.245 93
16 1.3 827.884 14

For n =10, . .., 26, all polynomials with H(P) = 1 and M(P) < 1.3 were found.
The times in seconds for n = 16, 18, 20, 22, 24, and 26 are 4.496, 13.799, 42.010,
131.236, 396.384, and 1232.219 respectively.

The tables in Section 6 contain the noncyclotomic factors of a subset of the
polynomials just mentioned, normalized so that the first nonzero a; with k¥ odd has
a; > 0. The column “number found” in the above table gives the total number of
polynomials normalized in this manner which would appear in a complete list.

Using the fact that M(P,P,) = M(P,)M(P,), and the fact that we know all recip-
rocal polynomials of degree at most 16 and of sufficiently small measure, it is easy to
decide whether any of the polynomials are reducible. From our data, we can rule out
possible factorizations of the form P = P, P, with P, and P, being reciprocal and non-
cyclotomic. Using Smyth’s result on nonreciprocal polynomials, we can rule out non-
reciprocal factors P, of P, provided M(P) > 03 = 1.7548 . . ., since if a nonrecip-
rocal P, divides P, then so does its reciprocal. It turns out that, after cyclotomic fac-
tors have been removed, the only reducible polynomials which remain have v(P) =
n/2 and factor in the form PyP§ where P, is nonreciprocal and Pg is the reciprocal
of P, normalized to be monic.

Among the P of small degree there are a number of remarkable occurrences. For
example, the following polynomials, all with »(P) = 2, have the same measures:

(i) M=17467934983, P, =12 21 2 2 1,degP, =6,
P,=11-1-11 -1 —-11 1,degP, =38,

(i) M =1.7709445842, P, =110 -2 0 1 1,degP, =6,
P,=101212101,
P;=121-2 -3 -2121,

deg P, = deg P; = 8,
(iii) M = 1.8789962005, P, =11 -1 -3 1 31 -3-11 1,
= 20 -2-3-20211,
P;=112234343221,
all of degree 10,

~
~N
|
—
—_
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(ivy M=14986652983, P,=11 -1 -120 -302 -1 -111,
Pp,=1221-1-3-3-3-11221,
P,=1122233322211,

all of degree 12,

where we have used a notation whose meaning should be obvious; or see [2].

The triples of the same degree in (iii) and (iv) are most easily explained. If one
writes P(3) for the polynomial whose roots are the cubes of the roots of P, then it can
be verified that, in either (iii) or (iv), each P, has the same P(3) up to the symmetry
x — —x. In each case, if w is a primitive cube root of unity, then

27 P, (wx)Pl(wzx) = Pz(x)P3(—x),

so the surprise is simply that the left member of (27) is reducible over the rationals.

The explanation of (i) and (ii) is somewhat more involved. We first observe that
if v(P) = 2, then M(P) is the largest root of the polynomial Q whose roots are a; 0,
with i <j, so deg 0 = (g ). When P is reciprocal, 2 = n/2 of the roots of Q are equal
to o;a; ! = 1, hence M(P) is a root of P21(x) = O(x)/(x — 1)", the 2nd compound
of P, which has degree n(n — 2)/2. Note that for n = 6, 8 the degree of P21 is 12
or 24, respectively.

A simple calculation then shows that, in example (i),
(28) P2I) = P20 Py (%)%,
while, in example (ii),
29) Pi21(x) = P21 (x) = P2V )P, (@) Py (—ix).
In example (ii), there is additionally
(30) P, (x)P,(—x) = P4(ix)P5(—ix).

One moral of the above is that M(P) does not determine P up to the obvious
transformations P(x) — P(+x°). In fact, it is quite possible for a nonreciprocal P,
to have the same mesaure as a reciprocal P,. For example, if

Pix)=(x-0)(x—a)(x—B) (x—§)

has |al > 1> |B] = |al™ !, but is nonreciprocal, so § # a~ !, a1, then M(P,) =
lal? is the unique root outside the unit circle of a reciprocal polynomial Pll 21 of
degree (‘2‘) = 6. For example, if P, =1 0 0 1 1 with M(P,) = 1.401268368,
then P[21 =1 0 —1 —1 —1 0 1,so0 that P,(x) = P{21(~x) has M(P,) = M(P,)
as we verify from our list. This explains the following coincidence of measures:

(v) M = 19635530390 = (1.4012683679)?, attained for

Py=12-1-3-121, n=6,p®y)=1,and
P,=110131011, n=38,vP,)=4.
For here we have P3(x) = P, (x'/2)P,(-x'/2), while P,(x) = P,(x)P}(x).
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5. Nonexhaustive Search. As was mentioned in [3], the set {M(P): P non-
reciprocal} has at least two limit points smaller than 6, = 1.3247 . . . , namely

1 1
A, = exp {fofo logl¢ +¢z7  +z4+1 +271 +§"lz+§"1|dsdt}

1255425 . .. €= e217is, z = e21fit),
and
1,1
A, = exp {f f logl¢ +z+ 14271 +¢77 dsdt} = 1.285734. . ..
0oJ o [

These are the unique limit points of the following sets of polynomials:
Py(x) = x28 + ax?h=m 4 pxhtm 4+ oxh 4+ pxhTm 4+axh + 1,
and
Py(x) = x*P + ax" ™ 4+ bx" + axh-m + 1,

respectively, where m and A are relatively prime and a, b, ¢ are either 1 or —1.

Thus all but a finite number of such P; and P, will have M(P) < 1.3, and it is
of interest to examine those with, say, M(P) < 1.25.

We examined all of these for # < 25. None had measures less than ;. Among
the P, have been found the smallest known values of M(P) for fixed v(P) = 4. For
example, the following degree 36 polynomial has »(P) = 4, and M(P) = 1.2294828102:

P=11100-1-1-101110-1-2-101110
-12-101110-1-1-1001T11

This is a factor of x*#% + x35 —x31 — x22 —x13 + x% + 1.
Another more extensive family which was investigated for 42 < 20 is the set of
polynomials of the form

P(x) — (x2h+l _x2h—k - xh+s+l + xh—S + xk+l - 1)/(x _ 1)

Since L,(P(x) (x — 1)) = 6!/2, these all have M(P) <1 + 2'/2 by Gongalves in-
equality (16). All known small Salem numbers (¢(P) = 1) are measures of members of
this family [2].

6. Lists of Polynomials. The composition of the following tables is described in
Section 4. For degrees = 18, only the first half of the polynomial is listed, as in [2].
Only one of the polynomials listed is reducible, namely 1 1 —1 -3 -1 1 1=
(1 0 -1 -1)(1 1 0 —1),as discussed in Section 4. In case n = 18, M(P) < 1.27
and H(P) > 1, the number in parentheses following the degree is the smallest degree of
a reciprocal Q of even degree with H(Q) = 1 of which P is a factor.



TABLE 1

and measure M(P) <M, for 4 < n < 16.

Measure

1.7220838057
1. 8832035059

Measure

1.4012683679
1. 5061356796
1.55€03C1913
1.5823471837
1. 6355731299
1.7467934983
le 7548776662
1. 77C9445842
1.7816435986
1. 7642797448
1.8310758251
1. £3928¢£17552
1. 8548181172
1.9468562683
1.963552C390
1.9748187083
1.5677931668
1.9962080000

Measure

=
"

1.28063815¢3
1.3599997117
1.3672228028
1.3700868743
1. 4250052678
1.4575874796
1.4762823965
1.4874€76383
1.5230602489
1.536£161220
1. 5471965656
1.5682443656
1.€C5445€288
1.6185305986
1. 6241475659
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1. 7461934583
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Measure

1.17628C8183
1.21€291¢€€11
1. 2303914344
1. 2612305611
1.2672338594
1.28358236C6
1.2934859531
1.3C43637617
1.3373132102
1.35068C3377
1.3€15561¢€23
1.3689986768
1. 3€E3€3¢€5634
1.3984561816
1.42599251C17
1.4310005551
1. 4314046376
1.448423C402
1.4723531176
1. 47238172015
1.4796086733
1.48040€EC56
1.482415€382
1. 4938778456

Measure

l.22178552817
1.2407264237
1.251C4¢€6172
1.2643938547
1l.27281€3651
1.3019549435
1. 3C2268€C51
1. 3C44325¢€27
1.3101213237
1,3159144319
1.3221661921
1. 33455225¢€7
1.3434948981
1. 3702684012
1.377€7417854
1.3877955034
1.3887530310
1.3977398823
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TABLE 1 (continued)
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TABLE 1 (continued)
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TABLE 2

All irreducible reciprocal polynomials of degree n, 18 < n < 26,

which divide a reciprocal polynomial of height 1

and even degree at most 26, having measure at most 1.27.

18
18
18
18
18
18
18
18
18
18
18

2C
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20{22)
20
20
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20
20
20
20(24)
20
20
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22(24)
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Measure
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TABLE 2 (continued)

n Measure \Y First half of polynomial
24 1.21€85515C3 2 100CO01 0-1000 0-1
24 1.21905715018 2 110-1-1-1-1-1 01111
24 1. 2344438349 2 1000-10-110C1-11
24 1.2537437612 2 11111CO00-1-1-1-1-1
24 1.2541043056 2 110-1-1000110-1-1
24 1.2544517819 2 1001-1 00-100001
24 1.2562017318 2 11100C¢C00CO0C1-1-1
24 1.2576061050 4 1110-1-1-1 000001
24 1.26C1C324(C4 1 11001-10111 0-1-1
24 1. 26162239C4 2 111100-1-1-1-1 0C1
24 1.2€4€33(C8C3 2 1 ¢-1CC10-1001 0-1
24 1.2665387000 2 11001 10-1-101 01
26 1. 2237174549 3 11100-1-1-1-1 00101
26 1.22€092€945 2 10010C0CO00C1O00O01
26 1.23450033¢8 3 10-110-110-110-101
26 1.2375C4E€212 1 1 C¢C10C10C1C1 00-1
26 1. 2402541787 3 110-1-1 0001011 01
2¢€ 1.2476CE7C26 2 101 C1000010101
26 1.2488187537 3 11110C000 01-1-1-1
26 1. 2494993332 3 11000000000 0-1-1
26 1.2573832167 3 1 000CC10000001
26 1.26C€7650282 2 11100-1001110-1-1
26 1.26134175293 z 11 0CC106060000 0-1
26 1.2630381399 1 110000-1000000-1
26 l. 26523C€7C5 3 110-1-1 00-1-1 011 0-1
26 1.2683338900 3 1000C10C000001
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