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Note on Irreducibility Testing

By John Brillhart

Abstract. An effective method is developed for deducing the irreducibility of a given
polynomial with integer coefficients from a single occurrence of a prime value of that

polynomial.

1. Introduction. It is usually true that a reducible polynomial F(x) with integer
coefficients, say

(1) F(x) = G(x)H(x),

where G(x) and H(x) are nonconstant polynomials with integer coefficients, cannot
take a prime value for an integer value of x. The exceptions to this (and these are the
only exceptions) occur when one of the factors in (1) has a value £1 and the other
factor is a prime. Since |G(x)| and |H(x)| are large when |x| is large, it is clear that
there are only a finite number of exceptional x for which this can happen. It follows
then, that a polynomial of unknown nature which does take a prime value for an
integral x, where |x| is large enough to avoid being exceptional, will have to be irreduc-
ible in Z[x].

2. A Determination of “Large Enough”. Rather than trying to find the excep-
tional values of x so as to be able to avoid them, it is sufficient to find a circle about
the origin in the complex plane inside of which they all lie. Then, any integer at least one
unit away from this circle will be nonexceptional, as will be proved in Theorem 1.

LEMMA 1. Let G(2) be a nonconstant polynomial with integer coefficients, and
let m be a positive number exceeding the moduli of the zeros of G(z). If 1z| =z m + 1,
then |G(z)l > 1.

Proof. Let o; be the zeros of G(z). Then |G(z)| = lay| |z — a;l > 1, since lay| > 1
and each linear factor on the right exceeds 1 when |z| =Zm + 1. Q.E.D.

THEOREM 1. Let f(x) be a nonconstant polynomial with integer coefficients,
and let m be a positive integer exceeding the moduli of the zeros of f(x). If f(xy) is
a prime for some integer x,, such that |x,| =m + 1, then f(x) is irreducible in Z[x].

Proof. Suppose f(x) = g(x)h(x), where g(x) and h(x) are polynomials with inte-
ger coefficients and deg # = 1. Then, certainly, m exceeds the moduli of the zeros of
&(x) and A(x). Also, prime = |f(x,)| = [8(xy)l|A(xy)l, so by Lemma 1 the second
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factor is an integer > 1, i.e. |h(x,)| = prime, which implies deg & = 0, since otherwise
Lemma 1 would imply 1g(x,)| > 1. Thus, g(x) = %1, which gives the theorem. Q.E.D.

3. Computation of m. Let f(x) = ayx" + - - - + a, be a polynomial with inte-
ger coefficients. Then a value for m can easily be obtained from the inequality of
Cauchy [5]:

m=1+ m,?xlak/aol, for1 <k <n.

(Also see [4, pp. 137—139].) The value of m given by this rough estimate is often too
large to be convenient, so another method may be used, which is also due to Cauchy
[5] (also see [2, p. 73]). Let f(x) = a,x" + - - +a,, ay =1, as in Theorem 1.
Construct £*(x) = agx™ — Z4_, lag|x" =%, and find the smallest positive integer m such
that, when f*(x) is divided by x — m, the resulting quotient will have nonnegative
coefficients and resulting remainder will be positive, i.e.

f*(X) — (x _m)(aoxn—l 4 blx"_2 + .4 bn—l) + R,

where b, ..., b,_, are nonnegative and R > 0. (Such an m can readily be found
by synthetic division.) This m will then exceed the moduli of the zeros of f(x), since

n
IFG) = aglxl” = 3 lal 1x|"~*
s=1

= (IxI = m)(@olxI""" + b IxI"2 +-- -+ b, )+R,

so that |f(x)| > O for |x| = m.

Example (see [2, p. 74]). Let f(x) = 2x® — 7x5 — 10x* + 30x> — 60x? + 10x —
50. Then the first method gives the poor value m = 31. The second method, with
F*ee) = 2x% — 7x5 — 10x* - 30x> — 60x? — 10x — 50 and the calculation

6 | 2 -7 -10 -30 -60 -10 -50

’

2 5 20 90 480 2870 17170
gives m = 6. Thus, setting x = 7,8, . .. we find f(7) = 101009 is a prime, so
f(x) is irreducible in Z[x]. If the degree of f(x) is high, or if there are no prime values
of f(x) for any x values tried, beginning with +(m + 1), it may be advisable to compute
the smallest possible value for m. To do this, one may use a more elaborate third
method, which will not, however, be discussed here; see [6, pp. 148—151].

Remarks. 1. A theorem similar to Theorem 1, in which the real parts of the
zeros are employed, is given in [1].

2. The method discussed here in general reduces irreducibility testing in Z[x] to
primality testing in Z, although some polynomials, such as x2 + x + 4, which are ir-
reducible in Z[x], cannot be shown to be such by this method, because they never
take a prime value for an integral x.

3. For some polynomials it may be useful to use x"f(1/x) instead of f(x) in
this method.

4. Some values of f(x) do not need to be tested for primality, since they are
known in advance to be composite; for if a prime p divides f(x,), where 0 <x, <p—1,



NOTE ON IRREDUCIBILITY TESTING 1381

then p will also divide f(x, + kp), k € Z. Thus, since |f(x)| is increasing for |x| >
m + 1, f(x; + kp) will be composite, except possibly for the first value of be, + kpl
=m + 1, when f(x, + kp) may equal *p.
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