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Collocation Approximation to Eigenvalues 
of an Ordinary Differential Equation: 

Numerical Illustrations* 

Carl de Boor and Blair Swartz 

Abstact. We display the numerical results associated with the collocation of three eigenvalue 
problems using from one to four Gauss points per partition interval in order to document 
the sharpness of the error bounds we have previously obtained. The ordinary differential 
operators involved are real with constant coefficients; two of the problems have an 
eigenvalue whose ascent exceeds one. We propose an explanation for the observed manner 
in which a set of simple approximate eigenvalues can approach a single multiple eigenvalue. 

Introduction. This is the second in a sequence of three papers concerned with the 
approximation of an eigenvalue of an mth order ordinary differential equation 
Mx = XNx (subject to m homogeneous side conditions) through the use of piece- 
wise polynomial projection methods as exemplified by collocation. We present here 
the numerical experiments which illustrate (indeed, pointed us toward) the conver- 
gence results we have previously described and proved [4]. The ascent, a, of an 
ODE's eigenvalue plays a crucial role in the bounds obtained on the convergence 
rate of approximating eigenvalues from the known convergence rates associated 
with the nonsingular problem Mx = y. For this reason, we first describe a tech- 
nique which can sometimes be applied to determine this ascent a priori. We then 
pose eigenvalue problems for three constant coefficient operators: one problem in 
which N is not the identity; others in which the order of the operator M, along with 
the eigenvalue's ascent and algebraic multiplicity, is two and three, respectively. 
Numerical results follow concerning the approximate eigenvalues associated with 
collocation at k (from one to four) Gauss points per partition interval; most of 
them exemplify the sharpness of our 0 (1A12k/a) error estimates for each approxi- 
mating eigenvalue and of our 0 (1A12k) estimates for certain averages of all ap- 
proximating eigenvalues. But, in one case involving a uniform partition, the 
individual numerical approximations of a multiple eigenvalue appear to converge 
faster than these estimates. We prove this is not illusory when collocating this 
problem with piecewise quadratics, concluding that the approximating eigenvalues 
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then have the same ascent (two) as the approximated eigenvalue. In most of the 
cases concerning the approximation of a multiple eigenvalue, however, the numeri- 
cally obtained eigenvalues appear to be simple and to converge to their common 
limit along equiangular rays in the complex plane. We end with an elementary 
explanation of this asymptotic phenomenon. 

Continuing our first paper [4] on these matters, we begin with 

5. A Way to Find the Ascent of an Eigenvalue of a Differential Equation. In this 
section we develop a technique which, in some circumstances, enables one to tell 
what the ascent of an eigenvalue of an ordinary differential equation actually is. 
The technique resembles one-parameter shooting; it is applied later to determine 
the ascent of an eigenvalue in each of the three problems we chose for our 
numerical examples. 

As usual, we consider our eigenvalue problem 

Mx = XNx on (0, 1), 

(0) ~~~~~~~~~~~~~n 
(0) M = Dm + E aiD', N = biD', n < m, 

i<m i=O 

(with sufficiently smooth coefficients) subject to the homogeneous side conditions 
(all of order less than m) 
(1) /3lx = * * = fim-Ix = O0 

(2) I3mx = O 
under which M is presumed to have an inverse, M-l. We suppose A (# 0) is an 
eigenvalue. We also presume we have in hand another linear functional fm which 
has the property that, for X near A, there is a unique solution ux to the problem 

MUX = XNux when Ux is subject to the m - 1 side of conditions (1) together with 
the final inhomogeneous condition 1m&U = 1. The map 

AH- u 

thereby defined is a smooth map for X near A (take ux E C[O, 1], say). (In 
particular, in each of our three examples, M and N are constant coefficient 
operators, the m - 1 conditions (1) are the initial conditions fA1x = (D'- lx)(0), f3mx 
is the initial condition (Dim - lx)(0), and f3 x is some linear combination of 
derivatives at the end points. The map X " ux is then analytic.) 

In these general circumstances we have the following Facts: 
I. (A, UA) is an eigenelement if and only if F: X * I3iux has a zero at A. (In fact, 

the final Fact fixes the ascent of A at the precise order of this zero.) 
II. The eigenvalue A is simple geometrically; i.e., its ascent equals its algebraic 

multiplicity. (For if (A, y) is an eigenelement, then x y - (f,B,Y)UA E 

ker(M - AN) and satisfies (1) together with,f3x = 0; i.e., x = 0.) 
III. If Xo . . ., Xr are near A, then 

(M - xON)[x0, . . ., Ar]ux = [XA, ... * Xr* Nu, 

with [A,., ... , XA]f the (j - i)th divided difference with respect to the parameter X. 
For 

(M - ON)[ X, ... ., Xr]u = [Ao .. ., Xr](XNu) - XO[4 .... X*, ]Nu, 
= 1 * [X,, . .. , Xr]Nux + Xo[o ... ., Xr]Nu, - o[ ,o... , Xr]Nu, 
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using Leibniz' formula; see, e.g., de Boor [1, p. 5]. Consequently, 
IV. ukr[ := (DX)rux/r! satisfies not only the m - 1 side conditions (1) but also 

the recursion 

(3) (M - XN)ulr] = Nur- 1] u 101 UA. 

V. If F: X A-* 13m UA has a zero of order at least a at A, then 
(a) (u[r]a)'-I satisfy the side conditions (1) and (2). (For drF/dXr = fmdru2/dXr 

= r! mu[r].) 

(b) y := 1/A is an eigenvalue of T:= NM-'. t, too, is simple geometrically, 
and its ascent is the ascent of A. 

(c) With 

V[r] := MU4Ar O < r < a, 

we have v[?] = MUA E ker( - T), and (from (3)) 

(- T) Tv[rll] 1 < r <a. 

(d) vl?0 7' 0, while, for 1 < r < a, v[r] E span(v[U])i<r would imply 

A2rV[O] - rTrv[O] V ( jU- T)rV[r] E (j - T)r span(v[l])i<r = {O} 

Hence 00?, ... ., V[a-I] are linearly independent, and 

V[r] E ker(t - T)r+ l \ ker( - T)r. 

The same statements hold for the sequence (Tv[r])o -1I 

(e) The ascent of y is at least a. (For v[al-] E ker(t - T)a \ ker( y - T)a1.) 
VI. If F: X H* ImuX has a zero of exact order a at A, then the ascent of y is a; i.e., 

the ascent of A is a. For if the ascent of y were to exceed a, there would be some f 
satisfying the side conditions (1), (2) so that 

- T)Mf = ,Tv[al]. 

But then 

(M - AN)f = Nu-'I] = (M - AN)uAa] 

using (3). It would follow that f - uka] E ker(M - AN); therefore f -ula = cuA 

(since both satisfy the m - 1 side conditions (1)). But then, as both f and uA also 
satisfy condition (2), it would follow that 

0 = 1mu[a] = (d_aF1dXa)1=A1r!, 

and this would contradict the assumption that A is a zero of F of exact order 
a. Ej 

6. Three Numerical Experiments: Problem Descriptions and Summary of Results. 
In this section we recall the numerical experiments which led us to conjecture the 
conclusions proved in the first three sections of this paper [4]. The experiments 
seemed necessary because previously published results, as noted in [4], proved more 
tantalizing than conclusive. 

Three eigenvalue problems ((5.0)-(5.2)) were considered, all with constant coeffi- 
cients and non-self-adjoint operators M. As mentioned in the previous section, the 
geometric multiplicity of all eigenvalues was one since m - 1 side conditions were 
the usual conditions (D'- lx)(0) = 0, 1 < i < m - 1. 
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Problem I illustrates the case of an operator N of order greater than zero. It uses 
the third order equation 

Lx:= D3x + a2D2x + a,Dx + aox = 0, t on (0, 1), 

a2 -5, a, := 20, ao := 17.8111159551842 

under boundary conditions 

0 = x(O) = (Dx)(0) = x(1). 
One solution takes the form 

x(t) = exp(at) - exp(bt)[cos(ct) + (a - b)sin(ct)/c], 

where 

a = -0.73544611132431, b = 2.86772305566215, c = 3.99928443790975. 
(These numbers were obtained as follows. If x has the above general form with a 
and b given by 

b = b(c, a2) {Ea2 + 3(c2 - a1)]1/2 -a2/3, 

a = a(c, a2) = -(a2 + 2b), c arbitrary, 

and with 

a, = 20, aO = ao(c, a2) - a(b2 + c2), a2 arbitrary, 

then Lx = 0 and x(0) = (Dx)(0) = 0. Then, for a2 = -5, the function f given by 

f(c,a2) := x(l)/(D2x)(0) 

has a zero, determined numerically as c = 3.99 ... ; the numbers a, b, ao associa- 
ted with this choice for c are exhibited above.) 

We obtained Problem I by choosing 

M :=L-a2D2, N= D2 

so that an eigenvalue for (5.0)-(5.2) is X = 5. We became convinced that the ascent 
of this eigenvalue is one through the following exercise: having fixed the value of 

ao = ao(c, a2) at 17.811 ..., the definitions of ao(c, a2), b(c, a2), and a(c, c2) 

determine c as a function of a2 in such a way that x satisfies Lx = 0 and 
x(0) = (Dx)(0) = 0. Then (for a2 near -5) 

F(X) = F(-a2) := f(c(a2), a2) (= X(1)/ (D 2x)(0)) 
is the function F= f3Ux of Section 5. Numerically, we found c(-5 + c) and 
corresponding F_ F(5 + c), c = .05 (-.01) .01; we report the following dif- 
ference quotients centered upon X = 5: 

c .05 .04 .03 .02 .01 
[(F+ -F)/2e - 0.134260] x 106 101 65 36 16 4. 

We took this (apparent) c2 convergence as sufficient evidence that dF/dXIl5 # 0; 
i.e., that the ascent of this eigenvalue is one. 

A description of the numerical method used and details of the numerical results 
are given in the next section. These results exhibit the kind of "superconvergence" 
one associates with collocating a third order nonsingular problem, both for the 
(real) approximate eigenvalue and for the breakpoint values of the approximate 
eigenfunction. 
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The second and third problems were chosen to exhibit results for eigenvalues of 
ascent greater than one. 

Problem II is a second order problem from Coddington and Levinson [5, p. 312]: 

MA D2, N 1, 

under boundary conditions 

0 = x(O) = (Dx)(0) + (Dx)(1). 

The functions required to determine the ascent as in Section 5 are 

u(t) = sin - t/ , F(A)=1,B2UA = 1 + COS -; 

so that F vanishes if and only if X =-(K7T)2, K an odd integer. At each such 
eigenvalue dF/dX also vanishes while d2F/dA2 = -1/(41X13/2) =# 0. Thus the 
ascent of each eigenvalue is two. We fixed upon X= _7T2; the eigenfunction and 
generalized eigenfunction are then, respectively, 

xI(t) = sin(7Tt), x2(t) = t cos(7t); 

one notes that (M - X)x2 = -27Tx, (as it should), while both satisfy the boundary 
conditions. 

The numerical results for Problem II are amusing in that for uniform partitions 
one obtains unexpected "superconvergence", and only for a nonuniform partition 
(we took 

(1) ti = (i /(2 - (i,( 1/, 0 < i < 1) 

did we observe the splitting of the approximate eigenvalues into two simple ones, 
converging as the square-root of the "superconvergent" rate from opposite (and not 
necessarily real) directions. Appendix I provides a proof, in the piecewise quadratic 
case, that the approximate eigenvalues associated with uniform partitions are real, 
have ascent two, and therefore converge as fast as their average; i.e., at the rate 
e (IA12). 

Friedman [8, p. 226] presents a second order problem whose (complex) eigen- 
value has ascent two under separated (complex) boundary conditions. 

Problem III is a third order problem with ascent (X) = a = 3 = alg.mult(X): 

M := D3, N := 1, 

under the separated boundary conditions 

0 = x(O) = (Dx)(0) = x(l) + b(Dx)(1) + c(D2x)(1). 

The constants and eigenvalue X = r3, namely 

b = -0.11629166020407, c = 0.0094658373919757, r = -10.205352107415, 
were determined by shooting from t = 0 (see Appendix II) so that the function 
F(X) = f33U of Section 5 had a zero of third order; i.e., the ascent of this 
eigenvalue is three. 
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Approximations for this problem were considered only for the previously de- 
scribed nonuniform partition; the approximate eigenvalues appeared to be simple 
and to converge at essentially the same rate (the cube-root of the 
"superconvergent" rate) along three equiangular rays emanating from X in the 
complex plane. (The piecewise cubic case seems an exception, and, as it appears to 
contradict the Proposition in Section 8, we feel that we may not have gotten close 
enough to the asymptotic situation in that case.) 

In Problems II and III, the geometric, harmonic, and arithmetic means of the a 
approximate eigenvalues (also of their reciprocals) converged, as hoped, at the 
appropriate "superconvergent" rates. 

Approximate eigenfunctions converging at this same rate at the breakpoints were 
easily constructed using these mean values and solving, by collocation, the ap- 
propriate approximating initial value problem. Such approximations are not neces- 
sarily eigenfunctions of any approximate operator, for they fail to satisfy the 
boundary condition at t = 1 exactly. The eigenfunctions of the approximate 
operators in Problems II and III, themselves, cannot be expected to exhibit much 
accuracy. After all, an exact eigenfunction also satisfies a nonsingular problem 
Mx - XNx = 0, under side conditions (A3ix = 0)1'-' together with an additional 
independent inhomogeneous side condition which we may regard as a normal- 
ization. Thus the corresponding eigenfunction of the approximate operator is also 
the collocation approximation to a nonsingular approximating problem My - 

XANy = 0; it is very close to the solution of the latter problem and consequently 
only within C (I- XAl) of the solution of the former. This is borne out by the 
numerical experiments; and the fact that, as noted in Section 2 of [4], the invariant 
subspace is approximated (for a = 3) to within ( 

(1Alk) (which is better than 

(IX -_AI) = ( (A112k/3) simply means that the error in each of these three ap- 
proximations to the single eigenfunction lies mainly in their span. 

7. Three Numerical Experiments: Method and Tabulated Results. Each of the 
three eigenvalue problems of Section 6 has the form 

Mx = XNx in (0, 1), order M = m, constant coefficients, 

subject to m - 1 homogeneous initial conditions (D'- x)(O) = 0 together with an 
additional homogeneous side condition f,mx = 0. In each problem we focus on how 
well a single known eigenvalue X is approximated. Approximate eigenelements 
(XA, x2), xA in P + kA,' are sought using collocation at k Gauss points in each of the 
I intervals of the partition A. The basis chosen for PK+kA was a set of B-splines 
with appropriately chosen (multiple) knots; information about such matters (in- 
cluding many computer programs) can be found in de Boor [1]. The associated 
matrix eigenvalue problem, involving the B-spline coefficient vector c, takes the 
general form 

(1) 'X c-XA c=O ('? l# IevenwhenN= 1), 

where the kl x (kl + m) matrices 9}L and DL have the special almost block-diago- 
nal structure described in de Boor and Swartz [2] and illustrated, e.g., in de Boor 
and Swartz [3]. To this system we adjoin the m homogeneous side conditions 
induced by (/3ixN = O)lt. 
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As indicated in Sections 5 and 6, the geometric multiplicity of the eigenvalue of 
interest is one. Taken with the m - 1 initial conditions, this fact allows us to 
compute the approximate eigenvalues by straightforward shooting for the complex 
zeros of the function (/3mXA)(XA), using XA, as the shooting parameter, while holding 

fimXN = (Dm -1x,)(0) fixed at one. Indeed, using one interpretation of Gauss-point 
collocation, we may concisely describe the whole process as finding approximate 
eigenvalues using shooting with an implicit Runge-Kutta scheme. 

The (complex) roots of (f8mx^)(XA) near A were sought out numerically using 
Muller's method as implemented in the computer program found in Conte and de 
Boor [6, pp. 74-80]. This program searches for a prescribed number of complex 
roots, given initial guesses which we took uniformly as 1. IX. (A less confused 
version of the program description may be found in the book's third edition.) The 
convergence parameters used in the program were 

EPI = 10-12, EP2 = 1 - 14 

together with a third parameter EP3 = 10-7 which took effect if the last change in 
the root was that small relative to the magnitude of X - XA, (all three exits were 
used, in fact, at one time or another). The range of the number of iterations taken, 
per root, was (excluding asterisked places in the tables to follow) 

Problem I II(uniform mesh) II(nonuniform mesh) III 
iterations 7-14 7-32 6-30 7-28 

with the higher figures associated generally with problems of large dimension. For' 
the reader who is curious concerning the results of requests for additional roots, we 
report the following: the eigenvalue of Problem II has ascent two and, for uniform 
partitions, the ascents of the approximate eigenvalues also appear to be two. A 
request for two roots in an analogous problem (uniform mesh) yielded two real, 
almost identical roots near the analog of - T 2; a request for four (nonuniform 
mesh) yielded two simple approximations near the analog of - T2, two near - 97T 2 

(the next nearest eigenvalue). 
Given a candidate for XA,, the linear system corresponding to the initial value 

problem would have been solved most efficiently (computationally) by solving a 
succession of local linear systems, block by block, beginning with the (k + m) x 

(k + m) block corresponding to the initial interval. Nevertheless, the method 
actually used was the complex band-matrix solver embedded in the LINPACK 
collection of subroutines [7]; for this our input specified and supplied m + k - 1 
super- and sub-diagonals constructed from the output of de Boor's B-spline 
package [1]. (These matrices were readily available, having been previously used in 
a relatively inefficient numerical method based, not on shooting, but on finding a 
zero of the determinant of the linear system (1) (plus side conditions) via Gaussian 
elimination.) 

The tables to follow concern the convergence of the eigenvalues obtained 
numerically on a CDC 7600 using single-precision arithmetic. The errors recorded 
in the tables are the magnitude of the relative error. The "rates" recorded are the 
slopes of the relevant secant lines on a log-log plot of these errors against 1/1, 
where 1 is the number of mesh intervals. In these tables, the number - 1.23-4 
represents - 1.23 x 10-4. Asterisks follow errors presumed to be contaminated by 
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roundoff problems or by problems associated with switches in convergence criteria 
for Muller's method. For complex XA, we also report the coordinates of 
exp[i Arg(X, - X)], i.e., the numbers 

RE := Real part (XA - X)/IXA - XI, IE := Imag. part (XA - XI. 
In the cases of nonuniform meshes, the harmonic mean of the simple approximat- 
ing X.'s (i.e., the reciprocal of the arithmetic mean of the corresponding l.l's) was 
generally better than the arithmetic or geometric means-sometimes by an order of 
magnitude (but not always-e.g., in Problem II, nonuniform mesh, k = 2, the error 
in the harmonic mean was up to three times that of the geometric mean, and in 
Problem III, k = 2, the error in the harmonic was up to four times that of the 
arithmetic mean). For nonuniform meshes, then, we report the simple approximat- 
ing eigenvalues (but not necessarily in the irregular order in which Muller's method 
found them) and immediately follow them with the data for their harmonic mean. 

Problem I, uniform mesh, X = 5 
k=l k=2 

Q rel.er.! rate A rel .er. rate 

2 3.26 3.5-1 5.78 1.6-1 
4 1.47 7.1-1 -1.02 5.04 8.8-3 4.15 
6 5.77 1.5-1 3.74 5.01 1.6-3 4.14 
8 5.41 8.2-2 2.22 5.00 5.1-4 4.08 

10 5.25 5.1-2 2.13 " 2.0-4 4.05 
12 5.17 3.5-2 2.09 9.8-5 4.04 
14 5.13 2.5-2 2.06 5.3-5 4.03 

k = 3 k = 4 
2 4.96 9.0-3 5.00 5.1-5 
4 5.00 1.2-4 6.24 3.6-7 7.15 
6 " 1.0-5 6.05 1.4-8 7.91 
8 " 1.8-6 6.02 1.5-9 7.97 

10 4.7-7 6.01 2.4-10 8.09 
12 1.6-7 6.01 7.6-11* 6.27 
14 6.3-8 6.01 4.0-12* 19.22 

Otherwise, we note the following: 
1. The hoped for superconvergent rates (modulo the ascent of the eigenvalue) are 

borne out by the results. 
2. The real, simple eigenvalue in Problem I is approximated by a real eigenvalue; 

the direction of convergence depends on k. 
3. The errors in the pair of simple eigenvalues approximating the real, multiple 

eigenvalue in Problem II (nonuniform mesh) are essentially real (imaginary) when 
k is odd (even), and they have opposite sign. 

4. Roundoff problems prevent the multiple approximate eigenvalue of Problem 
II (uniform mesh) from yielding better than l0-7 error; errors 100 times better 
could be attained (with more work, though) by the geometric mean of the two 
simple eigenvalues associated with the nonuniform mesh. 

5. The error in one of the three simple eigenvalues in Problem III (nonuniform 
mesh) is always real; convergence to X takes place along three equiangular curves 
for k > 1; for k = 4, exhibited rates exceed provable rates. 

6. The case k = 1 of Problem III (nonuniform mesh) is curious, for the errors in 
two of the simple eigenvalues seem to approach zero at a rate (e (1 -.65) along curves 
whose slopes are almost + 1 in quadrants I and IV, while the error in the third 
appears to be on the negative real axis and to have the faster rate (but larger 
magnitude) ?9(1--74). Were these rates in fact true asymptotically, it would con- 
tradict Proposition 8.1 (take /3 = 2 in (8.2b) in the next section) which asserts that 
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the slower two must converge from opposite directions. We prefer to believe (and 
the table may bear this out) that the rates exhibited have not yet attained their 
asymptotic behavior. 

Problem II, uniform mesh, -X = 7r2 9.87 

k =1 (see al so App . I) k = 2, -w 9.87 
Q -AA irel .er. rate rel .er. j rate 

2 10.67 8.1-2 2.3-3 
4 1 0.11 2.5-2 1.71 1.7-4 3.75 
6 9.98 1.1-2 1.94 3.4-5 3.91 
8 9.93 6.4-3 1.97 1.1-5 3.91 

10 9.91 4.1-3 1.98 4.8-6 3.80 
12 9.90 2.8-3 1.99 2.4-6 3.88 
14 9.89 2.1-3 1.99 1.8-6* 1.32 

k =3 k = 4 
2 9.87 3.3-5 4.2-7 
4 6.4-7 5.69 1.2-7* 1.87 
6 2.8-7* 2.05 2.3-7* -1.66 
8 2.9-7* - .14 2.7-7* -0.58 

10 2.4-7* 0.85 2.0-7* 1.43 
12 4.9-7* -3.96 2.6-7* -1.67 
14 1.0-7*10.30 3.8-8* 12.61 

Problem II, nonuniform mesh (6.1), -X = 7r2 ; 9.87 

Two simple approximating eigenvalues and their harmonic mean 

k = 1, RE = +10, rE = k= 2, -Real(X ) - 9.87 
t -Re(X ) Irel.er.1 rate | rel.er.| rate A RE IE 

13.51 3.7-1 4.9-2 -0.05 1.00 
4 7.97 1.9-1 4.9-2 -0.05 -1.00 

10.03 1.6-2 2.2-4 -1.00 -0.00 

11.26 1.4-1 1.39 1.2-2 2.06 -0.01 1.00 
8 8.83 1.1-1 0.87 1.2-2 2.06 -0.01 -1.00 

9.90 3.0-3 2.42 3.4-5 2.66 1.00 -0.00 

10.73 8.7-2 1.17 5.1-3 2.05 -0.00 1.00 
12 9.16 7.2-2 0.92 5.1-3 2.05 -0.00 -1.00 

9.88 1.3-3 2.10 9.1-6 3.27 1.00 0.00 

10.50 6.4-2 1.11 2.8-3 2.03 -0.00 1.00 
16 9.33. 5.5-2 0.94 2.8-3 2.03 -0.00 -1.00 

9.88 7.1-4 2.04 3.1-6 3.70 1.00 -0.00 

10.36 5.0-2 1.08 1.8-3 2.02 -0.00 1.00 
20 9.43 4.5-2 0.95 1.8-3 2.02 -0.00 -1.00 

9.87 4.5-4 2.02 1.3-6 3.83 1.00 -0.00 

k = 3, RE =?1, IE -0 k = 4, -Real (XV) ?9.87 
9.93 5.6-3 4.5-4 -0.00 1.00 

4 9.82 5.5-3 4 4.5-4 -0.00 -1 00 
9.87 2.9-5 2.5-7 -1.00 -0.00 

9.88 6.8-4 3.03 9.4-5 3.88 -0.00 1.00 
8 9.86 6.8-4 3.01 6 9.4-5 3.88 -0.00 -1.00 

9.87 2.9-7 6.61 8.4-9 8.35 -1.00 -0.01 

"1 2.0-4 3.07 2.9-5 4.04 -0.00 1.00 
12 " 2.0-4 3.06 8 2.9-5 4.04 -0.00 -1 .00 

2.1-8 6.52 8.7-10* 7.88 -0.73 0.68 

8.2-5 3.04 1.2-5* 4.06 -0.00 1.00 
16 8.2-5 3.04 10 1 .2-5* 4.06 -0.00 -1 .00 

3.1-9 6.68 3.4-9* -6.10 -0.01 1.00 

4.2-5 3.03 5.7-6* 3.97 -0.00 1.00 
20 4.2-5 3.03 12 5.7-6* 3.97 0.00 -1.00 

9.6-10* 5.16 1.5-9* 4.37 0.96 0.29 

The second author undertakes to preserve other data (including errors in ap- 
proximating eigenfunctions obtained by the initial value technique previously 
mentioned) for the next decade and to reproduce them (upon reasonable request) 
during that time. 
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Problem III, nonuniform mesh (6.1),-X 1063 
Three simple approximating eigenvalues and their harmwnic mean 

k=1 k=2 
. -Re( ) rel .er.I rate RE IE 6 -Re(Nt) Irel.er.I rate RE IE 

1187 1.3-1 0.89 0.45 1025 6.2-2 -0.57 0.82 
40 1187 1.3-1 0.89 -0.45 24 1025 6.2-2 -0.57 -0.82 

877 1 .8-1 -1.00 0.00 1139 7.2-2 1.00 O0.Oo 
1063 4.6-4 1.00 0.00 1062 4.4-4 -1.00 -0.00 

1162 1.1-1 0.69 0.84 0.55 1032 5.2-2 1.21 -0.56 0.83 
1162 1.1-1 0.69 0.84 -0.55 28 1032 5.2-2 1.21 -0.56 -0.83 

50 904 1.5-1 0.71 -1.00 0.00 1024 5.8-2 1.38 1.00 0.00 
1063 2.9-4 1.97 1.00 -0.00 1063 2.4-4 3.86 -1.00 0.00 

1146 9.9-2 0.67 0.79 0.61 1037 4.4-2 1.24 -0.55 0.83 
60 1146 9.9-2 0.67 0.79 -0.61 32 1037 4.4-2 1.24 -0.55 -0.83 

924 1.3-1 0.73 -1.00 -0.00 1114 4.8-2 1.38 1.00 0.00 
1063 2.1-4 1.98 1.00 -0.00 1063 1.4-4 3.89 -1.00 0.00 

1135 8.9-2 0.66 0.76 0.65 1041 3.8-2 1.26 -0.54 0.84 
1135 8.9-2 0.66 0.76 -0.65 1041 3.8-2 1.26 -0.54 -0.84 

70 939 1.2-1 0.73 -1.00 -0.00 36 1106 4.1-2 1.38 1.00 -0.00 
1063 1.5-4 1.99 1.00 -0.00 1063 9.0-5 3.91 -1.00 0.00 

1127 8.2-2 0.65 0.74 0.68 1044 3.3-2 1.27 -0.54 0.84 
1127 8.2-2 0.65 0.74 -0.68 140 1044 3.3-2 1.27 -0.54 -0.84 

950 1.1-1 0.74 -1.00 0.00: 1101 3.5-2 1.37 1.00 -0.00 
1063 1.2-4 1.99 1.00 0.00 1063 6.0-5 3.93 -1 .00 0.00 

1121 7.6-2 0.65 0.72 0.70 1046 2.9-2 1.28 -0.53 0.85 
1121 7.6-2 0.65 0.72 -0.70 1046 2.9-2 1.28 -0.53 -0.85 

960 9.7-2 0.74 -1.00 -0.00 1096 3.1-2 1.37 1.00 -0.00 
1063 9.2-5 1.99 1.00 -0.00 1063 4.1-5 3.94 -1.00 -0.00 

k =3 k= 4 
1020 7.7-2 -0.52 0.85 1046 3.1-2 -0.52 0.85 
1020 7.7-2 -0.52 -0.85 6 1046 3.1-2 -0.52 -0.85 

8 1144 7.7-2 1.00 0.00 6 1098 3.3-2 1.00 0.00 
1062 8.0-4 -1.00 0.00 1063 9.5-6 1.00 -0.00 

1042 3.8-2 1.72 -0.51 0.86 1054 1.7-2 2.12 -0.50 0.87 
12 1042 3.8-2 1.72 -0.51 -0.86 8 1054 1.7-2 2.12 -0.50 -0.87 

1104 3.9-2 1.68 1.00 -0.00 1081 1.7-2 2.30 1.00 0.00 
1063 8.8-5 5.45 -1.00 0.00 1063 1.2-5 -0.71 -1.00 0.00 

1051 2.3-2 1.85 -0.50 0.86 1058 8.9-3 2.85 -0.49 0.87 
16 1051 2.3-2 1.85 -0.50 -0.86 10 1058 8.9-3 2.85 -0.49 -0.87 

1087 2.3-2 1.87 1.00 0.00 1072 8.7-3 2.94 1.00 0.00 
1063 1.9-5 5.34 -1.00 0.00 1063 3.7-6 5.08 -1.00 0.00 

1055 1.5-2 1.92 -0.50 0.86 1060 4.8-3 3.39 -0.49 0.87 
20 1055 1.5-2 1.92 -0.50 -0.86 12 1060 4.8-3 3.39 -0.49 -0.87 

1078 1.5-2 1.93 1.00 0.00 1068 4.7-3 3.45 1.00 0.00 
1063 5.5-6 5.52 -1.00 -0.00 1063 1.2-6 6.46 -1.00 -0.01 

1057 1.0-2 1.96 -0.50 0.87 1062 2.5-3 4.24 -0.48 0.88 
24 1057 1.0-2 1.96 -0.50 -0.87 14 1062 2.5-3 4.24 -0.48 -0.88 

1074 1.0-2 1.96 1 .0 -0.00 1065 2.4-3 4.35 1 .00 -0.00 
1063 2.0-6 5.68 -1.0 0.00 1063 3 .7-7 7.42 -1.00 0.05 

1059 7.6-3 1.97 -0.50 0.87 5.7-4* 11.1 -0.26 0.97 
1059 7.6-3 1.97 -0.50 -0.87 5.8-4* 10.9 -0.26 -0.97 28 
1071 7.6-3 1.98 1.00 0.00 16 3.0-4* 15.4 1.00 -0.00 
1063 8.6-7 5.32* -1.00 0.02 4.7-6* 0.37 -0.9-3 

8. An Observation About a Multiple Eigenvalue's Asymptotics. Two of our 
numerical examples concern problems in which the algebraic multiplicity, a, 
coincides with the ascent, a, where both are greater than one. In these examples the 
approximate eigenvalues (for a sequence of nonuniform partitions) were observed 
to be simple and to converge to their common limit along equiangular rays in the 
complex plane. In this section we offer an elementary explanation of this phenome- 
non. 
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The conclusions concerning the approximate solution of eigenvalue problems 
which are relevant here are the following (justification for them is found in Part I 
of this paper [4]). One is given (in principle) an a X a matrix J of complex numbers 
whose sole complex eigenvalue y # 0 has algebraic multiplicity a (of course) and 
ascent ca; we suppose a > 1. One is similarly given a sequence of a X a matrices 
(Jn)l; they arise from the collocation process using a sequence (A,,)' of partitions 
of [0, 1] whose maximum interval lengths satisfy IA,, I -O 0. The a eigenvalues of Jn 
are denoted by ( (n))a* Their reciprocals are the approximate eigenvalues one 
actually calculates in collocation, the ones which approximate the single desired 
eigenvalue 1/f. One knows that Jn -* J in the following sense: there is a sequence 
(%n) of positive numbers converging to zero, computable in principle from the 
partition sequence, so that 

(1) J - Jn = 0(9,(n) 
Consequently each ,,fn) approximates jt to the extent that 

(n)1? a 
11n = A + C((I/a), < j <a. 

(A sequence of matrices (Z(n))r and a sequence of complex numbers (w")' satisfy 
the order relation Z (n)= (9 wn) if and only if there is some K > 0 and some 
integer N so that max jIZ.n)l < Klwnl, n > N. They satisfy Z(n) = O(wn) if and 
only if for every e > 0 there is some N(-) so that maxi IZ,fn)l < cIwnl for n > N(-). 
z(n) = o(l) if and only if Z(n) 0.) 

We now suppose there are r "worst" approximate eigenvalues. By this we mean 
that, for each n, ( (n))a can be and has been reordered so that 

K nif) _-,1/11Yn )- fl < K K-1 <?' I 

eventually for i = 1, . . . , r, while A4n) - 1 = O([,(n) - ) i > r. Indeed, we shall 
assume more: that the error in each has the beginnings of an asymptotic expansion 
in that of the first. More precisely, we suppose that, for each n, ( t(n))a can be and 
has been reordered to form a vector Il(n) E Ca which satisfies 

(2a) L(n) I L + jn[w + 0(1)] 

with 

(n) _ ET E Ca, 

and w some fixed complex a-vector. (In such circumstances w1 is necessarily one, 
and the number of worst eigenvalues is the number of nonzero components of w.) 

In addition, we assume that the r worst approximate eigenvalues converge slower 
than the known bound tn on J - Jn, i.e., 

(2b) I/(C- 1) = o(c,n) for some integer 8 with 2 < 8 < a. 

Very loosely speaking, Il(n) is a differentiable perturbation of ,i with respect to the 
error in ft(n) and the error in t4(n) is sufficiently bad relative to the known bounds 
on J - Jn. 

A situation such as we have just described could be anticipated for collocation if 
a sequence of partitions (A,,)X of [0, 1] was constructed by specifying each partition 



12 CARL DE BOOR AND BLAIR SWARTZ 

point in A,, using (4k) - f(i/n))n 0, where f is some sufficiently smooth homeomor- 
phism of [0, 1]. In this case, if k collocation points are specified for each partition 
interval using k fixed reference points (pi)k in [-1, 1] (independent of n and of A,,) 
then a known sequence for the bound (1) on J - Jn is given by An = IAn Ik. If the k 
reference points are the k Gauss points, then one may instead take An = IAn1I2k. We 
offer no justification for (2) other than that it appears to be satisfied (with ,B = a) 
in some of our numerical examples. 

Finally, for v E Ca, let 

aj(v) := thejth elementary symmetric function of the components of v; 

for example, a,(v) = v1 + +va; the geometric mean of (vj)a is aa(v)l/a; the 
harmonic mean, aua(v)/uaa 1(v). Then we offer simple proof of the following 

PROPOSITION 1. Suppose J - Jn is bounded as in (1), while the sequence of vectors 
(iL(n))r of approximate eigenvalues satisfies (2). Then there are at least /3 worst 
approximate eigenvalues; i.e., (wj , 0)+. Furthermore, (a>(w) = O)0-1. Finally, if 
there are exactly ,3 worst approximate eigenvalues, i.e., if (w1 = O)j+1, then there is 
some complex number const # 0 such that 

Wj = const exp(2vy/,8), 1 < j < /3. 

The proof begins with a fact concerning the elementary symmetric functions. 

LEMMA 2. For any vector v E Ca and with IL = ( [, .. , Ef)T E Ca, 

(T(IL + v) = E i(v) _ i i, 0 < j <?a. 

Proof (for completeness' sake). Express each side of the equation 

a a 

I 
[z 

- (it + Vj)] 
= II 

[(Z 
- i) - 

vj] 
j=l j=1 

in terms of the elementary symmetric functions 

a a 

E (-1/CJj(1L + V)Zai = (-1J(V)(Z - )a-i 
j=O j=O 

Now equate coefficients of corresponding powers of z. [] 
Up to a sign, the characteristic polynomials of the a x a matrices Jn are 

pn(Z) = Za + qn (z), (degree(qn) = a - 1), 

and they constitute a sequence of perturbations of the characteristic polynomial 
(z - fr)a = z a + q(z) of the a X a matrix J. The next result says (roughly) that if, 
for such polynomials, the perturbed zeros have a certain asymptotic form and if the 
slowest converging zero converges slower than the pth root of the rate at which the 
p highest order coefficients of qn are converging (to those of q), then at least p + 1 
perturbed zeros converge this slowly. The proof is a simple extension of the obvious 
proof for the case p = 1. 
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LEMMA 3. Let (vX)l be a sequence of vectors in Ca of the form 

(3) Vn= W + o(l) (some w E Ca independent of n) 

which satisfies, for some sequence (c,,)' of complex numbers converging to zero, for 
some complex number ,u, and for some positive integer p, the relations 

(4) ui(,I + ,nVn) = u/j(I) + o((,n),) 1 < j < p, 

where (,..., ,)T E Ca. Then aj(w) = 0, 1 < j < p. Consequently, the compo- 
nents of w consist of the a zeros of the polynomial 

a 

ST(Z) = Za + E (-1YCJ(w)za-; 
j=p+l 

so that if a - p or more components of w are zero, then w = 0. 

Proof. We suppress the subscript n. Because of Lemma 2, and since u0o(cv) = 1 
while uj(/I) = (ja)fi, assumption (4) means that 

ai (IL) + , ui (,V) 
a 

j=() + o(eP), 1< j < p. 
i=1 

Consequently, the vector a := (j(,(cv))Yj E CP satisfies the linear system P-ar = o(eP), 
where e is a lower triangular matrix, independent of n, whose main diagonal 
consists entirely of ones. Hence lall = o(cP). Now, aj(,v) = %aj(v), so that 

aj(v) = o("P-i) = o(l), 1 < j < p. 

But, from assumption (3), 

a> (v) = a> (w) + o() < j < p. 

Hence, aj(w) = 0 (1 < j < p) since aj(w) is independent of n yet o(l). Conse- 
quently, 

a a 

(z - w) = za + E (-1Yj(W)Za-i. 
j=1 j=p+l 

Recall, now, how aj(w) is a sum of products of j components of w. [1 
Proof of Proposition 1. Using (1) (as remarked at (2.15) of Part I of this paper [4]) 

j (J (ln)) j (jL) + <(3n) 1 < j < a. 

In Lemma 3, takep := - 1. Then, with n := ,(n)-, 

j((n)) = aj (i) + o((n)P), 1 < j <p, 

by assumption (2b); furthermore, -n -?0. We also take 

Vn := (pL(n) _ -)/&, 

(unless &n = 0 when we let vn := w given in (2a)). Because of assumption (2a) the 
hypotheses of Lemma 3 are now satisfied; we conclude that 

a (w) = O, 1 < j </3. 

Furthermore, if more than a - 8 components of w were zero, then w would be 0. 
But w1 = 1, hence at least /8 components of w are not zero. Finally, if (wj 1 0), but 

(Wj = O)j?1, then 

CJ;(w)=O, /3<j<a, 
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as well. Hence w consists of the a roots of 
a fi 

ST(Z) = Za + E (_l)i'i(W)za-i = za g3(Z3 - C) c (-i)'3'1 w 0 -- O. [1 
i=,B 1 

Contextual Remarks. The elementary results represented by Lemma 3 and 
Proposition 1 join a large body of work concerning the zeros of perturbed 
polynomials and the eigenvalues of perturbed matrices. Thus, as an immediate 
consequence of Lemma 3 we have the following result concerning differentiable 
perturbations of the polynomial (z - ,)a: 

COROLLARY 4. Suppose that, as the positive real variable X discretely (if not 
continuously) approaches zero, the coefficients of the polynomial 

a a 

(-l),.Ti 
Z a l- (i = [z - [i(x) 

i=O J=1 

take on the limiting values (i )( - u) the leading p + 1 coefficients approaching their 
limits with better than first order accuracy, i.e., 

(dqi/dX)(O+) = 0, 0 < i < p, somep > 0. 

Suppose, too, that for some r > l/p, dyj/d(Xr) exists at X = 0+, 1 < j < a. Then 

qiQ d11d(X'1P)](0+)) = 0, 0 < i < p, 

so that, not only does i, ,i, 1 < j < a, but also at least p + 1 components of 
[d,i/d(X'P*)](0+) are not zero if a single component is not zero. 

This may be compared, for example, with a stronger structure theorem of 
Wilkinson [10, pp. 64-65] which, under its stronger hypotheses and adapted to 
perturbations of (z - )a, says 

THEOREM (WILKINSON). Let tLI(X), . .. , taa(X) be the a zeros of a polynomial 

z a + a(1)i[()i + P(x)]zai; 

here each pi is a polynomial which vanishes at X = 0. Then (p,i)a consists of b disjoint 
subsequences; the aj zeros in the jth subsequence are the aj values of a series 
,u + cjw + djw2 + ... corresponding to the aj different values of w = Xl 

Wilkinson's result is observed in its eigenvalue context by Kato [9, footnote, p. 
73], who considers eigenvalue problems for both analytic matrices [9, Chapter II, 
Sections 1 through 4] and merely differentiable ones [op cit., Section 5]. (Kato's 
results become relevant if (J)l' is somehow construed as a perturbation of J via a 
single small continuous parameter X; in such circumstances the eigenvalues of J(X) 
would constitute a "'4-group".) For both kinds of perturbations, the eigenvalues are 
of course continuous; in the analytic case they can have only algebraic singulari- 
ties. In both cases, the spectral projector associated with J(X) is at least differentia- 
ble, although the individual spectral projectors associated with distinct approximate 
eigenvalues can have algebraic poles (or worse behavior) unless the ascent of y is 
one. In both cases, if the ascent of y is one, the approximate eigenvalues are shown 
differentiable (among a variety of other results). But when the ascent exceeds one 
and J(X) is merely differentiable (a case somewhat analogous to the situation 
above), Kato offers little else. 
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Appendix I: Quadratic Spline Eigenvalues Can Have Ascent Two if the Partition 
is Uniform; Convergence Can be (9(h2); Other Tridiagonal Schemes Can Have 
These Two Properties. Consider the (non-self-adjoint) eigenvalue problem from 
Coddington and Levinson [5, p. 312] 

(1) D2w-Aw = O, w(O) = O, Dw(l) + Dw(O) = O. 

The eigenvalues are 

A= -(kv)2, kodd,k > 0. 

From Sections 5 and 6 we conclude they have geometric multiplicity one and 
ascent two (hence their algebraic multiplicity, too, is two). The corresponding 
eigenfunctions are 

wI(t) = sin(kvt), 

while the corresponding generalized eigenfunctions 

w2(t) = t cos(kvt) 

satisfy the boundary conditions and (as they should) 

(D2 - A)w2 = -2k7Tw1, hence (D2 - X)2w2 = 0. 

We consider the approximating problem obtained by collocating (1) with Cl 
quadratic splines midway between a uniformly placed set of knots on [0, 1]. We 
show that, with h := JAl, 

(a) its eigenvalues are (9(h2) accurate and have ascent two (except the most 
negative eigenvalue has ascent one if I is odd), 

(b) its eigenfunctions are, up to a constant factor, exact at the knots. If they are 
normalized by matching Dwl(O) then they are e (h2) accurate at the knots. Either is 
(9 (h2) accurate in Lo,, as is its derivative, 

(c) the corresponding generalized eigenfunctions are, with their first derivatives, 
(9 (h2) accurate in Loo. 

Thus, the collocation of (1) with C1 quadratics on a uniform partition does not 
demonstrate the sharpness of the poor convergence rates we prove for problems 
whose eigenvalues have ascent > 1. However, the collocation of (1) using a 
nonuniform partition can exhibit such poor convergence rates, as is seen in the 
numerical results for Problem II. 

To prove (a)-(c) we begin by considering the second centered divided difference 
operator D + D -. Let h = 1/1. Then, if u(t) := exp[iK7T(t - p)] (9p, K real), 

(2) (D+D -a)u = 0, a :=-2(1-cos 0)/h2, 0 Ksh. 

Let v(t) := tu(t). Then 

D+D_v = (tD+D_ +2Do)u, Do := (D+ +D)/2, 
so that 

(3) (D+DD -)v = ipu, v := 2sin0/h. 

Letting U(t) := sin[K7T(t - .p)], the imaginary part of (2) yields (D + D -a)U 
= 0. Setting V(t) := (t - q) cos[Kv(t - p)], we have, from the real parts of (2) 
and (3), that 

(D+D -a)V = -vU, hence (D+D- _-a)2 V = 0. 
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Let c be the (I + 2)-vector of coefficients of the I + 2 translates of the quadratic 
B-spline associated with knots uniformly placed h apart on [0, 1]. Then the 
difference equations associated with collocating D2 _ A, using this basis, at the I 
midpoints of a uniform mesh, are 

(D+D -XA)c = 0, A := 1 + h2D D-/8, c =E(cj)+1 T. 
Let 
(4) : / (1 + uh2/8) (the denominator is never zero). 

Were thejth coefficient given by U(t%) (V(tQ), respectively), we would have 

(D+D_ -&A) U = O, 

(D+D --A) V = -v(1 -h2j/8) U, 

so that (D + D --A)2V = 0. Now, K and .p are completely arbitrary here; it is the 
boundary conditions which will determine them. These conditions, expressed in 
terms of the B-spline coefficients, are 

(6) cO + cl = 0, (D+c)o + (D-c),+ = 0. 

Pick, now, 

(7) K = 1 3, ... ., 2[(l -1)/2j + I =: Kmfax; 9P := h/2, 

thereby determining B-spline coefficients (using U and V, respectively) 

(8)(C)j = sin[KT(t - h/2)], tj := jh, j=O,..., I+ 1, K < Km, 

(B)j = (t- h/2)cos[KvQ(t - h/2)], K < K,(l even), K < Km.(l odd). 

The coefficient vector C satisfies the boundary conditions (6); in view of (5) it is an 
eigenvector with associated eigenvalue a = - 

. The ascent of a will be at least two, 
by (5), if the boundary conditions (6) are also satisfied by the coefficient vector B 
of (8) with the same choice (7) for K. But with this choice it may be verified that 

(B)O = -(B)1 = -h cos(K7Th/2)/2, 

(al) (D+B)o = - (D-B),+1 = cos(K7Th/2). 

Hence the eigenvalues a indeed have ascent at least two. 
Since the algebraic multiplicity of A = - (Kv)2 is two, there are exactly two 

approximate eigenvalues which converge to it; from (7), (4), and (2), we see that, 
eventually, both of these are -K. Hence the algebraic multiplicity of -K is, eventu- 
ally, at most two, so its ascent, as it exceeds one, is eventually exactly two. Because 
the average of the two eigenvalues approximating X converges at the superconver- 
gent rate associated with collocation at the single Gauss point per partition 
interval, we conclude 

(a2) AK = X + (9(h2), 

the convergence constant being computable from (4) and (2). 
Remark. In the same fashion, any sequence of approximate eigenvalues, all with 

ascent exceeding one, which converges to X (a sequence, say, associated with 
collocation of (1) at k Gauss points per interval) will converge at the superconver- 
gent rate (9 (h2k). Unfortunately, such a sequence has not been found to enable us 
to analytically verify the numerical results for Problem II, uniform mesh, when k 
exceeds one. 
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(9(h2) superconvergence (to a given A of ascent and multiplicity two) of some 
sequence of approximate eigenvalues also would follow if the ascent of every 
approximate eigenvalue exceeds one. And, indeed, the ascent and algebraic multi- 
plicity of the eigenvalues -K (K specified by (7)) is exactly two (except for -K if 1 
is odd) if one can show that the eigenvalues are distinct so that the I vectors (8) 
span the I-space of coefficients which satisfy the two homogeneous constraints (6). 
But, from (2) and (4), dai/dK < 0 for 0 < Kvh = 0 < g. Consequently, since 
&(K = 0) = O, O > K > 

- 
if 0 < K h < K2h < 1. Thus, the choice (7) indeed 

yields (for h fixed) a strictly monotone decreasing sequence of negative eigenvalues 
whose ascents and algebraic multiplicities are all two, except, possibly, for the last. 

Although approximate eigenfunctions are not of major concern in this paper, 
they are almost in hand for this example, and we pause now to consider them. 

The value of the spline corresponding to C of (8), at a knot tj = jh, is 

(b 1) sc(tj) = (Cj + Cj+ 1)/2 = cos(Kvh/2)sin( ,Ktj). 

Hence, the spline eigenfunctions are exact at the knots-up to a constant factor. 
The mid-knot value of sC (at tj := (tj- I + tj)/2) is 

sc( 5) = [(1 + h2D+D718)C]j = (1 + ah2/8)Cj = wl() + 0(h2). 

Hence llsc - w,1 = (9(h2). If the spline eigenfunction is normalized by requiring 
that its derivative at 0, (D + C)O, match that of w1, then 

sn. ti) 
= { fKh/ [2 tan( rKh/2) ] } sin(,gKtj) 

(b2) = wI(tj) + 0(h2); 

the mid-knot values of sn0r are also 0 (h2) accurate. 
That the spline, sB, corresponding to B of (8), differs from the generalized 

eigenfunction w2(t) = t cos(K7t) by 0((h2) may be seen as follows: SB(P) = w2(0) 

while sB(l) =-cos(K1rh/2) = w2(l) + 0(h2). At thejth mid-knot t, 
tI 

sB( 5) =[(I + h2D+D718)B]j 

(c) = [B + h2(oB - vC)/8]j = '5 cos(A7 '5) + 0(h2). 

Hence IISB - W211c. = 0(h2). 

The derivatives of sC, Snom, and SB are piecewise linear. As each can be shown to 
be (9 (h2) accurate at the knots, these derivatives are also 0 (h2) accurate in Loo. L1 

As an aside, this Appendix also shows that the usual finite difference operator 
D + D - has eigenvalues and eigenfunctions with similar properties if the unknowns 
represent function values at the mid-knots (t,)l rather than B-spline coefficients; 
the boundary conditions (6) describe the usual extrapolations in this context. For 
the approximate eigenvalues for this problem are aK (rather than AK); the mesh 
point values of the eigenfunctions and generalized eigenfunctions (at (t )'+1) are 
given by (8). If we use this difference-scheme interpretation but take A (above (4)) 
to be 1 + h2D + D /12, then the approximate eigenvalues are 

OK OK! (1 + aKh /12) = AK + 0(h4); 
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the difference scheme is then the Numerov scheme. The "linear spline Galerkin" 
scheme (along with the knot-collocated C2 cubic spline scheme) has an A = 1 + 
h2D+ D - /6 and consequent e (h2) eigenvalue approximations (here we take (t1)' as 
knots and B-spline coefficients as unknowns; the collocated boundary conditions 
are satisfied by (8)). 

Appendix II: An Eigenvalue Problem With Ascent Three. Consider the initial 
value problem 

D3u-Xu = 0, X= r3,r#O0; 

u(0) = Du(O) = 0, D2u(0) = 3r2. 

Then u(t) = f(rt), where 

f(y) := exp(y) - 2 exp(-y/2)cos(y - 3), a := V/2. 
Furthermore, 

(D,u)(t) = rg(rt), (D,2u)(t) = r2h(rt), 
where 

g(y) exp(y) - 2 exp(-y/2)cos(ay + Z/3), 

h(y) := exp(y) - 2 exp(-y/2)cos(ay -). 
We seek numbers a = 1, b, c and a value R such that the function 

G(r) := au(I) + b(D,u)(I) + c(D,u)(1) 

has a zero of third order at r = R # 0. (The third homogeneous boundary 
condition for the eigenvalue problem will be taken to be [ax + bDx + cD2x](1) = 
0; an eigenfunction will be f(Rt).) Forming G' and G", we seek values y = R such 
that the matrix 

f yg y2h 

914(y) 
= f, (yg), (y2 h)' 

f (yg)" (y2 h)" 

is singular. Using the relations f' = g, g' = h, h' = f, we see that 

gl(y) = diag(l, y -'I y 2)%L(y), 

where the symmetric matrix 6Z is given by 

f yg y2h 

'(Y) := Yg yg +y h Y2y + y3f . 
y2h 2y2 + y3f 2y2h +4y3f + y4g 

yg yg+yh 
f 

2yh+y4 
Finally, then, we search for a zero y = R of det[6X(y)]. The coefficients of u(I), 
(Du)(1), and (D 2u)(1) are then the solution of OL(R)(1, b, c)T = 0. These constants 
are displayed in Section 6, Problem III. 

That R is a zero of G of exact order three follows if 

G"' = f"' + b(yg)"' + c(y2h)"' # 0 aty = R. 

This last is so since, as may be checked, 

G".(R)/3 = bf(R) + 2c[Rg(R) + f(R)] #0. 
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Finally, we note that the functions required in Section 5 are 

u,(t) = u(t)-3r2 = f(XA/3t)/ (31X12/3), (X 3) 

F(X) = f3UX = G(X1/3)/ (31X12/3). 

We observe that if G has a zero of exact order three at R # 0, then F also has such 
a zero at X = R 3, since then 

d3F/dQ3lX=R3 = G"'(R)/ (3R2)4 # 0. 
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