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Local Piecewise Polynomial Projection Methods 
for an O.D.E. Which Give 

High-Order Convergence at Knots 

By Carl de Boor and Blair Swartz* 

Abstract. Local projection methods which yield C(m`1) piecewise polynomials of order 
m + k as approximate solutions of a boundary value problem for an mth order ordinary 
differential equation are determined by the k linear functionals at which the residual error in 
each partition interval is required to vanish on. We develop a condition on these k 
functionals which implies breakpoint superconvergence (of derivatives of order less than m) 
for the approximating piecewise polynomials. The same order of superconvergence is 
associated with eigenvalue problems. A discrete connection between two particular projec- 
tors yielding ? (IA12k) superconvergence, namely (a) collocation at the k Gauss-Legendre 
points in each partition interval and (b) "essential least-squares" (i.e., local moment 
methods), is made by asking that this same order of superconvergence result when using 
collocation at k - r points per interval and simultaneous local orthogonality of the residual 
to polynomials of order r; the k - r points then necessarily form a subset of the k 
Gauss-Legendre points. 

Introduction. This is the last in a triple (see [2], [3]) of papers concerned with 
high-order approximation to eigenvalues of an O.D.E. using collocation at Gauss 
points. Correspondingly, its two sections are labelled 9 and 10, but it can be read 
without reference to [3], i.e., to Sections 5-8. Items labelled x.y or (x.y) are to be 
found in Section x, e.g., in [2] in case x is less than 5. 

When writing [2], we were forced to go through the arguments in [1] once again 
and ended up improving upon them somewhat; see the proof of Theorem 9.2 
below. In the process, we considered more general local piecewise polynomial 
projection methods in an effort to discover just what produces the superconver- 
gence at breakpoints in Gauss-point collocation. This led us to a simple set of 
conditions on the local projector used which, so we found, had been formulated 
much earlier by Pruess [4] in another context. In addition to updating our earlier 
results in [1] and [2] to cover this wider class of projection methods, we give a 
detailed analysis of these special local projectors and establish a simple link 
between the two best known among these, viz. Interpolation at Gauss points and 
Least-squares approximation. 

9. Some Projectors Which Yield Superconvergence. As de Boor and Swartz [1] 
describe it, local projection methods which involve sufficiently rough piecewise 
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polynomials are basically determined by a bounded linear projector Q which 
carries C[-1, 1] onto Pk (polynomials of order k, i.e., of degree < k), and hence 
satisfies 

(1) Ilf - QfIl < constQlIDkfllo allf E C(k)[ 1, 1], 
for some constant constQ. Then, given a partition A: (ti)l of [0, 1] with 

O = to < . ..* < t=1, = 5 := max Ati, 

Q determines a map QA projecting X'=1C[ti_1, ti] =: CA onto Pk,A (the space of 
piecewise polynomials of order k with breakpoints in A) by translating the proce- 
dure for C[- 1, 1] to each partition interval; i.e., by requiring that, on each [ti, ti+,I 
and for y E CA, 

(2) QAy = Si QSiy, with (Sig)(s) := g(ti+ 1/2 + sAti /2) for s E[-1, 1] . 

Then, from (1), 

(1A) If - QAJfI(i) < constQIAtiI I|Dkfl1(i), 

with 

II gII()I sup{ g(t)I: ti < t < ti+ I} 

Finally, the projection method for the mth order differential equation Mx = y, 
f3x = 0, is determined by requiring that x e P -m+k, n C(m)[O, 11 
satisfy 

(3) QAMxA = Q,y, f3XA = 0. 

We consider a set of constraints upon Q which permits proof of ((lAlk+n) 

breakpoint superconvergence for this projection method. These constraints, con- 
structed by Pruess in another context [4, pp. 553-554, esp. p. 554, line 5], can be 
stated as follows: 

For some positive integer n < k (and in terms of L2[- 1, 1]), 

(4) Pi (1 - Q)[Pk+n+l-i = 1, n. 

This condition is equivalent to the following: For some sequence (fi)k + with 

(5a) Pj = span(fyl, allj, 

we have 

(5b) Qfj = O forj > k, 

and 

(5c) f tj = ? for i < k j < k + n + 1-i. 

Indeed, by (5a), (4) is equivalent to having 

fr(l-Q)fj=O forr<i, j<k+n+ 1-i,andi= 1,...,n. 

In fact, since (1 - Q)Ij = 0 forj < k, (4) is equivalent to having 

ffr(I-Q)fj = O for r < i, k j < k + n + 1-i, and i = 1, ...,n, 
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i.e., forj > k and r S k + n + 1 - j, and so, by (5b), (4) is equivalent to (5c). This 
shows that (5a-c) implies (4). On the other hand, for any linear projector Q onto 
Pk, we can find (i)k,+ satisfying (5a-b) by taking 

f: (f I Q)gi, > k, with (gi) s.t. Pj = span(g)yl, allj, 

hence the argument also shows that (4) implies (5a-c). Finally, this last statement 
shows (with g1(t) = t'-', all i) that (4) is also equivalent to 

(6) f tr(0-Q)ts=o 0 for r < n, r + s < k + n. 

Since Pruess was the first to consider projectors satisfying (4) (i.e., (6), see [5]), we 
call any linear projector Q onto Pk and satisfying (4) a ssuper projector of order 

(k, n). 
Example 1. Collocation. Taking, in particular, fi(t) = J1j<i (t - pj), with 

p 1,... , Pk the collocation pattern and Pk+ 1,.. .Pk+n arbitrary, we find, from (5), 
the condition 

k 

f'p(t) (t-pj) dt = O for allp E Pn 
_1j=l 

(used in [1]) to imply that Q, given by polynomial interpolation at p, .. ., Pk, is a 
ssuper projector of order (k, n). 

Example 2. Essential least squares (method of moments, or of iterated integrals). 
Taking, in particular, f = Pi_ - := the Legendre polynomial of degree i - 1, all i, 
we find that Q, given as least squares approximation from Pk' is a ssuper projector, 
of order (k, k). We have called the corresponding process "essential least squares" 
because the associated projection method (3) requires that the residual error, 
MxA - y, be orthogonal to Pk,A = D k[P,+kA n ker (] (assuming ( = (13,)' to be 
linearly independent on Pm); while ordinary least squares asks that this residual be 
orthogonal to M[PI+k A n ker (3]. This process has also been called a "local 
moment method" for an mth order equation. In this connection, recall that 
Wittenbrink [6, Example 3c] shows this to be equivalent to asking that the iterated 
integrals of orderj, 1 < j < k, of the residual error vanish at all the breakpoints. 
We have chosen, however, to emphasize its connection to least squares. 

The validity of (4) suffices for proof of the following result from which we shall 
conclude 0 (lAlk+n) breakpoint superconvergence. The lemma (and its proof) are a 
variant of Pruess' result [4, Section 3] and [5, Lemma 2]. 

LEMMA 9.1. Let Q be a ssuper projector of order (k, n). Then 

(7) ff(I - Q)g < constQ E IlDifIl JIDk+ngjg. 

Proof. Let (Tjf)(t) := 2i<, Df(O) tl/i!. Then 

ff(l - Q)g = f1f(l - Q)Tk+ng + '((IflI IDk+ngll), 

while 
~~ lf(~~~ k+n-1 

f(_ - Q) Tk +g = E Drg(O)/rf f(t)(I - Q)tr, 
-1 r=k I 
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since Q reproduces Pk. On the other hand, since Q is a ssuper projector of order 

(k, n), 

f'(Tk+n-rf)(1 - Q)tr = 0 

(using (6)), and so 

ff(l - Q)t = f'(f -Tk+n rf)(l - Q)tr = (3(Dk+n rfl) 

Consequently, 

f _f(i - Q)g = ?(kE IlDrgjl IIDk+n-fI1)1 

and the substitution j := k + n - r brings this into the form (7). L-1 
With the definition (2) of QA, it follows that 

f'f( - Qa)g = i (\ti,/2)1 (Sif)(1 - Q)(Sig) 
i=O 

1- 1 

< constQ (A1i /2) E I IDiSif II 1D k+n-jSigl 
i=O j<n 

while, e.g., 

11 D'Sif 11 = (lXti/2YII DfII(f). 
Consequently, we have 

COROLLARY 1. If Q is a ssuper projector of order (k, n), then there exists constQ so 
that forf E XO- 1Lno)[t,ti+ t1] andg e> XK7-1L 

- 
[t1, t,kn 

j f(1 - Q,)g < constQ : (zAti)l llfIIn,(0)I gIIk+n,M) 
i=O 

with 
1flfIr,(i) := maxI1D-fil(i). 

If now f and/or g in Lemma 9.1 are not as smooth as required, say, f e VZ), 
g ? L(k+ng), with nf, ng < n, then we are only entitled to consider Tk+ ̂ g and Tjf 

forj < nf, hence, instead of (7), we get 

(8) f f(l - Q)g S constQ > IlD-fjj jID k+(n.-j)+ gjj. 
i <nf 

Correspondingly, we get 

COROLLARY 2. If Q is a ssuper projector of order (k, n), then there exists const so 
that for f E X>-K'L(Z.)[ti, t,+] and g e X'- L(k+ N)[t ti+I] with nfi, ngji < n, all 
i, 

(9) j f(l - Q0)g < const (tj)1+k+min{nf. ng,,)IIfl I iII i 
i=O 

We now sketch proofs concerning the convergence of xA satisfying (3) to x. 
From the proof of Theorem 3.1 in de Boor and Swartz [1], we find that x, exists 
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uniquely for JAI sufficiently small; that if Mx E CJIO, 1], then 

IIDr(x - xA)llm S const w0(Mx), 0 < r < m, 

with w,U(J) := supi sup{lf(t) - f(s)l: ti < s, t <ti+}; and that if x E C(m1-)[O, 11 
n c m+ k)[0, I], then 

IIDr(x 
- xA)II, 6 constlAlkllXllm+k,A, 0 < r < m; llxllj,, := maxllxllj,(i). 

The proof of Lemma 4.1 in that paper, which uses this convergence of x, =: Rx 
together with the Markov inequality for polynomials, yields additionally that 

11X,A11r,U) < const(JAIIAti)k,,Xll m+k, a, r > O. 

The proof of superconvergence then goes as follows: for fixed s E [ti, ti +I] and for 
fixed r < m, 

D (x -xA)(s) =f|v(t) [ M(x - xA)(t) ] dt, where 

v(t) := (ar GI aSr) (S t) E- L(m -I-r)[0, I] n (cn)[o,S] x C(n) S 1]) 
G := Green's function for M under suitable homogeneous side conditions fi. 

Since 

M(x - xA) = (1- Q,)Mx + QAiM(x - xA) + (QA - l)MxA, 

with the second term vanishing by (3), the corollaries to Lemma 9.1 yield (uni- 
formly in s) 

|Dr(x - xA)(s)l < const E (Ati)k+1+n(i) V1(1n()(l|I|1MXllk+ n,(i) + lMxAl lk+ n,(i))JA 
i =O 

where 

min: mi - I1 -r, n} if s E (ti, ti +1) 

n otherwise. 

Thus, we conclude the superconvergence rates of the following theorem which 
generalizes the collocation conclusions of [1, Theorem 4.1]: 

THEOREM 9.2. Let Q be a ssuper projector of order (k, n). Then, for sufficiently 
small JAl, there exists xA e P%+k,A satisfying (3), hence, then, the linear projector PA 
given by the rule 

(9) QAPA f = QAf, PA f E {Mz: z E + +k,A 13Z = 01 

is well defined. Further, consider xA E m+kA satisfying (3) as an approximate 
solution to Mx = y, jx = 0, where the coefficients of M lie in C(n+k)[O, 1] and the 
side conditions f3 are suitable. Then, uniformly in the maximum mesh size Al1, we have 
the global estimates 

IlDr(x - xA)ll0 < const w'(y), 0 < r < m; 

IlDr(x - xA)lto < constlAlk+min{mr,n)llXllm+k+min{rm-,n),A 0 < r < m; 

while, uniformly over the breakpoints (tQ)l of A, 

lDr(X - XA)(ti)l < constlAlk+n lxiim+k+n,A' 0 < r < m. 
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Remarks. Isolated solutions in C(m+k+n)[0, 1] to nonlinear problems can be 
handled as in [1, Theorem 3.11, where the question of superconvergence is reduced 
to the superconvergence associated with a linearized problem (which we have just 
settled). 

We have left open so far the question of when the side conditions 13 are 
"suitable". Simply put, the side conditions are "suitable" if Green's function 
resulting from them allows the earlier argument to be made. If, for example, 13 
consists of multipoint conditions, then one fixes a partition AO = (t4()) of [0, 1] 
whose partition points contain all the points involved in ,3, and insists that all 
partitions A under consideration are refinements of AO. Green's function for (M, 13) 
then satisfies 

(10) (a/aS)rG(s *) E Cn)[O,S] x> C(n)[S, 1], 

and this is enough to complete the argument for x, correspondingly in 
X= lPm+k,A[t,P)l, t4(0)]. In fact, it is easy to see now how to handle the more general 
situation in which we have differential operators of possibly different orders on the 
different intervals given by the partition AO, with appropriate side conditions at the 
points of AO tying the pieces together. 

Turning now to the eigenvalue problem, Corollary 1 of Lemma 9.1 is the general 
version promised in [2] of Lemma 3.1 there. It therefore permits the following 
generalization of Theorem 3.1 there. 

THEOREM 9.3. Let T = NM-1 be the compact map on Lp[O, 1], 1 < p < oo, 
associated with the sufficiently smooth operators M, N, and .8 of (0.2). Let u be a 
nonzero eigenvalue of T with corresponding invariant subspace S, and let J be a 
matrix representation for T IS. Let TA = PA\T, where P, is the projector given by (9) 
associated with a ssuper projector Q of order (k, n). Then, for all small JAl, T has an 
invariant subspace SA, and TAI s has a matrix representation JA for which 

IIJ - JAIll < constIIIk+n. 

10. Ssuper Projectors of Order (k, k) Associated With Point Evaluations. We now 
look in more detail at the possible ssuper projectors of order (k, k). To begin with, 
we only consider their action on P2k, and this we can describe fully by specifying 
their action on the elements of some basis for P2k' We found it particularly 
convenient to work with the basis (pi)2k 1 consisting of the Legendre polynomials. 
Then, for any linear projector Q onto Pk' 

QPi =Pi 

(1) Qpk+j E ajrpk-r j=0,...,k -1, 
r=1 

and different projectors Q correspond to different matrices (aij). Further, two such 
projectors agree on Pk + r if and only if the corresponding matrices agree in rows 
0,...,r-1. 

Let 

| - I - QPj1 j >k. 
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Then (fj) satisfies (9.5a-b), hence, with (9.5c), Q is ssuper of order (k, k) if and 
only if 

k 

Pi- P E a-ok-1,rPk-, = ? for i < k <j < 2k + 1-i. 
r k k= I 

This holds if and only if 

aj-k_lr=O for i- 1 =k-r and i<k<j<2k+ 1-i, 

i.e., if and only if 

aqr =0 for 0 < q < r-1. 

We have proved 

LEMMA 10.1. The conditions 

Qfk+j = 0 with 
(2) j-1 

fk+l := Pk and fk+j := Pk+j-1 - a Pl,rpk-r, j= 2... kg 
r= I 

establish a one-to-one correspondence between ssuper projectors Q on P2k and lower 
triangular matrices (air)k7-j1 

Of course, any such ssuper projector Q on P2k can be extended to infinitely 
many such on C[-i, 1]; and any such can be obtained in the form QP, with P an 
arbitrary linear projector on C[-1, 1] onto P2k' We choose to ignore this aspect, 
though, since the property of being ssuper of order (k, k) depends only on the 
action on P2k 

Lemma 10.1 gives rise to several observations. 
The first interesting basis function, viz. fk+l is simply the kth Legendre poly- 

nomial, Pk. Hence, if we think now of Q as being given by the rule 

(3) Qf E Pk and qi*Qf = qi*f, i = 1, . . ., k, 

for suitably chosen linear functionals q*, ... , qk*, then we must have 

(4) qi*pk =? 09 =l,...,9k. 

Now, in Example 1 (Collocation), we had 

qi* f = f(pi) , i= 1, ... ., k, 

and so (4) is satisfied (for n = k in Example 1) since then (pi)k is simply the 
sequence of zeros of Pk. In Example 2 (Least squares), 

qi*f Pif, i= 1,...,k, 

and, again, (4) is satisfied since Pk is orthogonal to Pk = span(PI ). Suppose now 
that, in an attempt to bridge the gap between these two particular ssuper projec- 
tors, we look for ssuper projectors for which some of the interpolation conditions 
are point evaluations, say 

q*=f(=), i = 1, ..., r, 
for some r. Then we conclude from (4) that {a1, ... ., or} must be a subset of 

{Pig ... , PkI = zeros of Pk. This leads us to consider 
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Example 3. Ssuper projectors using point evaluations. Let (pi)k be the zeros of Pk in 

some order. Then, for r = O, . ., k, the conditions 

(5) Qrf E Pk, f Qrf Pr Qrf(Pi) = f(Pi) for i = r + 1,. . ., k, 

define a ssuper projector Qr of order (k, k). 
This provides us with a sequence of ssuper projectors of order (k, k), with Qo, 

i.e., interpolation at the Gauss-Legendre points, at one end and Qk, i.e., Least- 
squares approximation, at the other, and so demonstrates a perhaps surprisingly 
simple connection between the two. 

We now verify Example 3. In order to confirm that (5) defines a linear projector 

Q, we note that the conditions mentioned are equivalent to demanding that 

Qrf E Pk, qi Qrf=qf i== 1.f.. k, 

with 

(lPi_ If, i=l,...,r, 

f(Pi)f i=r+1, .... ,k. 

Thus it suffices to show that the matrix 

(7) id =I 

is invertible. For this, assume that this matrix maps a = (ai)k to 0, i.e., 
k 

(8) 4'*P = ?, i = 1, . . .,I k withp := ajPj-,. 
j=l 

Let (wi) be the weight vector (known to be strictly positive) for the corresponding 
quadrature rule 

k 

Jf= w wjf(pj), allf EP2k. 
I j=l 

Then (6) and (8) imply that 

I r 
0= Ppi-1= w1p(pi)Pi-I(pi), i=1 , r, 

_I~~~~~~i j=l 
which shows that the invertible matrix (Pi_ 1(P1)X.,- maps the vector (wjp(p1)) to 0, 
and consequently p not only vanishes at Pr+i... ., Pk (by (6) and (8)) but also 

p(pj) = O forj = 1, .. . , r. Thusp = O, and so a =O. 
Note that the invertibility of (7) just proven implies the invertibility of 

(9) (- Pi))j =r+l 

sinceqi*t_ = fPi1Pj = O fori < r <j. 
To verify that Qr is ssuper (a fact not immediately obvious to us), we now show 

that Qr can be obtained from Qo by a suitable modification. For this, we need to 
consider these projectors on P2k+1 (on which the ssuper projectors of order (k, k) 
form a k(k + 1)/2-dimensional hyperplane). Let 
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hence, 
k 

.J 
- 

k+j1 a,-sk-s' j=1, - I ., k + 1, 
s= 1 

for some matrix (a[r] )k + l,k With this notation, we get, for r = 0, 

+i] (Pi) = Q, i=1 0 , kg j = 29 . . + 1 

and so 

[ al 0 [~Pk-l(Pk) Pk-1(PI) 

. . . agk Pk-k (Pk) ... Pk-k(P1) 

(10) [Pk+ l(Pk) ... Pk+ I(Pi) 

PL k+k(Pk) 
. . . 

Pk+k(P1) 

with (a,1,?) a lower triangular matrix (by Lemma 10.1) since Q0 is ssuper. Now write 
(10) in terms of partitioned matrices as 

(10)' All 01[B11 B121 [C1 C121 
[A21 A22J[B21 B22] [C21 C22j 

with AI1, B,1. and C11 all of order k - r. Our intent is to replace A22 by 0 and to 
modify A21 correspondingly in such a way that the equality in (10) or (10)' is 
preserved at least in the first k - r columns. Explicitly, 

C21 = A21BII + A22B21 = [A21 + A22B21B l I B, 1 

(and B1 1 is indeed invertible since it is just a permutation of the matrix (9)). Thus 

(11) ~All0 B11 B12 _C11 C12 

[A21 0 B21 B22] [C21 C22] 

with 

A21 :=A21 + A22B22B1I1 C22 := A21B12. 

Now consider the linear projector Q on P2k +1 given by 

(12) Qhf={f' i?<k, 
(12) { ~~~~~~0, i > k, 

with 

fi pi -P1, i < I, 

(1) fk + I Pk, and (aij)=[ 1 

k 

fk +i Pk+i-1 - ai-IJPkJ ij > 1, 
j=1 
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Then (aij) is lower triangular. Hence Q is a ssuper projector of order (k, k) by 
Lemma 10.1. Further, on comparing (10)-(10)' with (11), we see that, for the linear 
functionals q* of (6), 

q*fk+i = fk+i(pj) = ? for i = 2, . . ., k + 1, j = r + l, ..., k, 

while the fact that the last r columns of (aij) are zero implies that fk+i + Pr 
i = 2, ... .,k + 1, i.e., also 

qj*fk+i = for i = 2... Ik + 11, j=1.,r 

In addition, trivially, qJ*fk+l = 0, all j. We conclude that ker Q 'p2k -1 

span(fk+j)k + is contained in n ker and thus must equal it since both are 
of dimension k + 1. This shows that Q = Qr (on P2k + ), i.e., 

[ A21 + A22B21B11 0] 

We have established, in particular, that Qr is ssuper of order (k, k). In addition, 
comparing again (10)-(10)' with (11), we see that Qr agrees with QO on 
span(f)i i1 -r = P2k+ I-r Thus, we could not tell QI and Qo apart on P2k* 

We close our discussion of Example 3 with the following four observations. 
(i) For r #; s, Qr differs from Q5 somewhere on P2k+2-max{r,s} (while, as we just 

noted, the two agree with QO, hence with each other, on P2k+1,max{rss). For the 
proof, apply both sides of (10) to the matrix 

(Wk+ 1-ipk_j(Pk + 1i )ki,J= 1. 

Tlhen, assuming that the Legendre polynomials have all been normalized to 

1 =f:Jp2 J p 2(Pi), 

we find that 

(15) a =( W )Pk+i(Ps)Pki(Ps) 

and, in particular, 
k 

a = E WSPk+i(Ps) Pk-i(Ps) 

(16) s=1 

= Pk+iP -i + constk D k(Pk+iPk-) # 0. 

This shows with (14) that rank(a,Vl) = k - r, all r, and so proves our assertion. 
(ii) The agreement of Qr with Qo on P2k + -r is not restricted to the particular 

ssuper projector Qr. If Q is any ssuper projector of order (k, k) which enforces 
agreement at k - r points, then, not only must the k - r points all be zeros of Pk, 
say the points Pr+l' . . . , Pk (in some suitable ordering), but such Q then necessarily 
agrees with QO on P2k+ 1 -r. For, by Lemma 10.1, Q satisfies (2) for some lower 
triangular matrix. The matching of function values at Pr+ 1 . . . , Pk then forces the 
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equality 

al 1 0 Pk-I(Pk) Pk-1(Pr+1) 

ak-r,1 * akIr L -r Pk-r (Pk) Pk-r(Pr+ 1) 

Pk + I (Pk ) ... Pk + 1(Pr +l1) 

P2k-r(Pk) P2k-r(Pr++ 1) 

In the terms of (10)', this reads 

(ai),j= 1BII = C11 

and the invertibility of B11 used earlier now proves that therefore 

(aij)k7 1 All = (a[kj)ii. 

(iii) The sequence Q1l..., Qk -I connecting Qo to Qk constructed in Example 3 
depends on the particular order Pi, . .. , pk in which we have chosen to write down 
the k zeros of Pk. If (Q[) is the sequence corresponding to the ordering p'., 
then Qr = Qr' on P2k+l if and only if the two sets {Pr+* * *Pk and {Pr+l1, *Pk 
coincide. Indeed, from (14), Qr = Qr' on P2k+ 1 if and only if 

A21 + A22B21B1 = A1 + A' -1. 
Now, obviously, Ai1 = At, -(15) makes this quite explicit, but it is clear anyway 
since Qo does not depend on the order in which we write down the interpolation 
points,- and A22 is invertible, e.g., by (16). Thus, Qr' = Qr on P2k+ if and only if 
D B1 (B11)-- B2IBj1 = 0. Let II be the permutation matrix for which B' = 
BHI. Then, on partitioning 11 as B is in (10)', we find 

B = B1II1 + B21121, B21 = B21 1 + B22H121, 

or 

DB'l = B'1 -B lB' 

= B211111 + B22H21 - B2,BjI(B1IIH1 + B12H21) 

= (B22 - B2IB11B12)1121. 
Now note that B22 -B2 B1B12 is the lower right diagonal block obtained by block 
Gauss elimination applied to B, and hence is invertible (since B is). We conclude 
that D = 0 if and only if 17121 = 0, and that says that HI permutes the first k - r 
columns of B among themselves. 

(iv) Finally, we observed earlier that the collection of all ssuper projectors 
of order (k, k) on P2k+I forms a linear manifold or hyperplane of dimension 
k(k + 1)/2. We now show that this linear manifold is spanned by the particular 
ssuper projectors Qr introduced here. Precisely, we show that the collection of all 
ssuper projectors of order (k, k) on P2k+I is the affine hull of the 1 + k(k + 1)/2 
particular projectors 
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with QO interpolation at all the zeros (pi)k of pk, while, for 1 < r < s < k, Qrs is given 
by orthogonality to Pr and matching of function values at the k - r points 

Pr, *. *, Ps-I, Ps+i I, * * Pk- Here, (pi) are in any particular order; in fact, in the 
definition of Q5, this order could even change with r (though not with s). To prove 
the assertion, it is sufficient to show that the k(k + 1)/2 linear maps { Qr, -Qo: 
1 < r < s < k} are linearly independent (as points in the linear space of all linear 
maps on P2k + 1) and for this, it is sufficient to exhibit points xi1 in P2k + 1 and linear 
functionals iJ_ on P2k+ 1 for which 

Nij(Qrs - Q #)x7j 0 for (i,j) = (r, s), 

=0 fori >r,andfori = randj >s, 

since this insures that the matrix (Aj(Qr, - Qo)xij) is upper triangular with nonzero 
diagonal entries (using the ordering 11, 12, . . . , 1k, 22, . . ., 2k, 33, . . . , kk), 
hence invertible. (We are using here the standard argument whereby the sequence 
(y5) in a linear space is linearly independent if and only if there exists a corre- 
sponding sequence (Pr) of linear functionals on that space for which the matrix 

(prYs) is invertible.) First, pick xij = P2k +1-i, all i, j. Then, since Qrs forces 
agreement at k - r points, it agrees, by (ii), with QO on P2k+ -r and so 

P'j(Qrs - Qo)xij = 0 for 2k + 1 - i < 2k + 1 - r, i.e., for i > r no matter how we 
pick pj. Further, pick ,uij: f H f(pj), all i, j. Then, as both QO and Qrs match the 
value at pj when r < j #; s, we conclude that Pj(Qrs - Qo)xij = 0 also for i = r 
and j > s (> r). Finally, we claim that i((Qij - Qo)xij # 0. For, otherwise, 

Qi1P2k +1-i would agree with P2k +-i at Pi, . .. , Pk as well as at the linear 
functionals fH> fuPr-If, r = 1, ... , i - 1, i.e., Qi1 would agree with Qi-i -I at 

P2k+ 1-i and this would contradict (i). 
Finally, up to this point, this section has been concerned with ssuper projectors 

of order (k, k). But we think it worth recording a version of Lemma 10.1 for ssuper 
projectors Q of order (k, n), 1 < n < k, along with a corresponding corollary 
concerning the k linear functionals (q*)k associated with Q. 

LEMMA 10.2. The conditions 

k- n +j- 1 

(17) Qfk+j = 0 with fk+j : Pk+j-1 - E aj- 1,rpk-r, j = 1, *. *, N, 
r= 1 

establish a one-to-one correspondence between ssuper projectors Q of order (k, n) on 

Pk+ N N > n, and lower trapezoidal matrices 

(18) (aqr)N1 rk=i, with aqr=0fork-n+q<r<k. 

In terms of linear functionals (q*)k associated with Q via (3), the ssuper projector 
criterion (9.4) may be expressed as 

pi(1 kn kerrql') i = 1, n; 

and Lemma 10.2 may be restated as 
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COROLLARY. The linear functionals (q*)k define a ssuper projector Q of order (k, n) 
on Pk+N, N > n, if and only if the two blocks of the (k + N) x k matrix 

Bkxk 

CNxk 
with bij := qj*Pk-lIi, O < i < k, and cij := qJ*Pk+1, 0 S i <N, 

(whose transpose describes the action of the functionals with respect to the basis 
(Pk-1 ... * Po, Pk, .. *I* Pk+N-1) of Pk+N) satisfy 

CB-1 = A, 

where the matrix A = (aij)N-l k l has the lower trapezoidal form (18). Two sets of 
linear functionals define distinct ssuper projectors precisely to the extent that the 
corresponding matrices A are distinct. 

Proof. Q is a projector onto Pk if and only if B is nonsingular. Q is ssuper of 
order (k, n) on Pk+ N if and only if the matrix A of (18) is connected with Q via 
(17). The (j - 1, i) element of the assertion C - AB = 0 is found by applying q,* 
to (17). 
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