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Approximation of the Spectrum of Closed Operators: 
The Determination of Normal Modes of a 

Rotating Basin 

By Jean Descloux, Mlitchell Luskin* and Jacques Rappaz** 

Abstract. This paper gives a theory of spectral approximation for closed operators in Banach 
spaces. The perturbation theory developed in this paper is applied to the study of a finite 
element procedure for approximating the spectral properties of a differential system model- 
ing a fluid in a rotating basin. 

Introduction. In this paper, we give a theory of spectral approximation for closed 
operators in Banach spaces. We then apply this theory to an analysis of the 
approximation of the spectral properties of some differential systems by finite 
element methods. 

Bramble and Osborn [1] and Osborn [14] developed a theory of spectral ap- 
proximation for compact operators in Banach spaces. Their theory can be applied 
to the analysis of many numerical procedures for the spectral approximation of 
differential operators, T, such that T + XI has a compact inverse for some X E C. 
Most of the differential systems in the theory of elasticity are in this class. 

However, there are many differential systems of interest in mathematical physics 
which do not have compact resolvents. These operators can have continuous 
spectrum, eigenvalues of infinite multiplicity, and finite limit points of eigenvalues. 
Also, the eigenfunctions need not be smooth since the differential systems are not 
necessarily elliptic. 

Descloux, Nassif, and Rappaz [4], [5] have studied the approximation of the 
spectrum of a differential system of interest in magnetohydrodynamics which has a 
bounded inverse, but not a compact inverse. They developed a theory of spectral 
approximation for bounded operators which treats this problem. An analysis of the 
approximation of the spectral properties of a class of bounded operators by finite 
element methods has also been done by Mills [12], [13]. 

The results in this paper apply to closed (not necessarily bounded) operators in 
Banach spaces. We apply the perturbation theory developed in this paper to the 
study of a finite element procedure for approximating the spectral properties of a 
differential system modeling a fluid in a rotating basin. We note that, unlike 
previous authors, we analyze the approximation of the differential operator directly 
and not through its inverse. 
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The time-dependent equations for the differential system modeling a fluid in a 
rotating basin are 

at (0.1) ~'fiiwRu, (x,t)E 2xR , 

(O. 1) Ta f uv--s- cR u-, (x, t) (i Q X R, 

u n =O, (x, t) E a x R, 

J dx = o, 

where Q C R2 is a bounded, connected open set with smooth boundary, M, 
u = (ul, u2) is the horizontal volume transport, D is the height of the fluid above 
equilibrium level, R is the linear operator Ru = (- u2, ul), n' is the exterior normal 
to a2, andf > 0 and w are real constants representing friction and Coriolis terms. 

Thus, we are concerned with approximating the spectral properties of the system 

T(t, u') = (-V" u,V i- Ru'), x EE Q, 
(O 2) ~u *n =-u, x E auG, (0.2)Uf0,xA, 

fdx = 0. 

We note that T - I is a symmetric, formally dissipative operator with maximal 
nonpositive boundary conditions [9]. 

If f = w = 0, then T(O, RVip) = 0 for all smooth functions V/ such that 4' = 0 on 
M2. Hence, in this case (f = w = 0), 0 is an eigenvalue of T of infinite multiplicity. 
Since the sum of an operator with noncompact inverse and a bounded operator has 
a noncompact inverse, it follows that T - X has a noncompact inverse for the 
general case f, co E R, X E C, X belonging to the resolvent set of T. 

We give here error estimates for a finite element procedure proposed by 
Platzman [15] to approximate the spectral properties of (0.2). The selfadjoint case 
f = 0 was analyzed by Luskin [ 1] by techniques different from those used here. 

In Section 1, we give a general theory for the approximation of a closed operator 
A by a family of finite-dimensional operators {Ah). In our applications, A will be a 
differential operator, and Ah will be an approximation of A given by a finite 
element procedure. We propose two properties, (P1) and (P2), and show that these 
properties imply the convergence of the spectral properties of Ah to those of A. 
Error estimates in the applications will follow from Theorem 1.3. 

We give special results in Section 2 for the case where A and Ah are selfadjoint 
operators in a Hilbert space. These results apply to the approximation of a 
continuous spectrum. 

The operator theory developed in Sections 1 and 2 is applied, in Section 3 and 4, 
to examples of the approximation of spectral properties of differential operators by 
finite element methods. In Section 3, we apply our theory to obtain error estimates 
for the approximation of the spectral properties of scalar, second order, uniformly 
strongly elliptic operators by the standard finite element method. This example is 
included even though the results are not new since we believe that its inclusion will 
make it easier for the reader to understand our main example in Section 4. 

In Section 4, we define and analyze the approximation of T. Theorem 1.3 gives 
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optimal order estimates for the approximation of eigenspaces. Optimal order 
eigenvalue estimates for this problem have been given in [11] for the selfadjoint 
case and are derived from the results in this paper and in [3] for the general case. 

We note that we use, without explicit reference, the classical spectral theory; see, 
for example, Kato [6], Riesz-Nagy [16]. 

1. Approximation of the Spectrum of Closed Operators in Banach Spaces. We first 
introduce some notation. Let X be a complex Banach space with norm 11 11. Denote 
by 6J3 (X) the set of bounded, linear operators B: X -- X. Also, denote by C(X) the 
set of closed, linear operators C: 6D (C) c X -- X, where the domain of C, 6D (C), 
is not necessarily dense in X. For C E C(X), p(C) is the resolvent set of C defined 
by 

p(C) = {z E c I (z - C)-Y E ((X)}. 

If z E p(C), we define the resolvent operator Rz(C) = (z - C)- 1: X X. The 
complement of p(C) is a(C) = {z E C I z 5 p(C)), the spectrum of C. 

Let Y and Z be closed subspaces of X and x E X. We set 

8(x, Y) = inf lix - yl, (Y, Z) = sup 8(y, Z), 
yGE Y yEY 

IIYII= 1 

3(Y, Z) = max(3(Y, Z), 3(Z, Y)); 
3(Y, Z) is called the gap between Y and Z and is a measure of the "distance" 
between these spaces. If C and D are in C(X), with graphs Gc, GD C X X X, then 
we define 6(C, D) = 6(GC, GD), i.e., 

6(C, D) sup inf {ix - y + 1 Cx -Dy}. 

lixl + I CxII = 1 

Furthermore, we define 

?(C, D) = max(3(C, D), 3(D, C)). 

Finally, if Y is a subspace of 6D (C) n 6D (D), we set 

C-Dll y = sup II Cy-Dyyll. 
yE Y 
IIYII = 1 

Now, let A E C(X) be a given operator. In order to approximate o(A), we 
consider a family { Xh) of finite-dimensional subspaces of X parametrized by h and 
linear operators Ah: Xh -- Xh. 

We denote by a(Ah), p(Ah), and RZ(Ah): Xh -> Xh the spectrum, resolvent set, and 
resolvent operator of Ah considered as a bounded operator in Xh. However, when 
used in connection with expressions of the type "3(Ah, A)" or "hIA - Ah is Xh A 

considered a closed operator in X with nondense domain Xh. 

Let F c p(A) be a given Jordan closed curve. Then 

E = I Rz(A) dz: X--X 

and, if F C p(Ah), 

Eh = RZ(Ah) dz: Xh -Xh 
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are the spectral projectors relative to A and Ah respectively. We shall also use the 
relations 

AE= zJRz(A) dz:X--X 

and 

AhEh = 2ifzRz(Ah) dz: Xh -- Xh. 

We now introduce the following two properties: 
(P1) limhO 38(Ah, A) -> 0, 
(P2) Vx E X, limhO 8(x, Xh) = O. 

The following theorems contain the main results of this section. We note that 
c < xo shall denote, in this paper, a positive constant which is independent of h, 
but which varies from estimate to estimate. 

THEOREM 1.1. Suppose (P1) is valid and let K c p(A) be a conpact set. Then there 
exists ho > 0 and c = c(K) such that, for h < ho, we have K c p(Ah) and 

1IRz(A) - Rz(Ah)IIxh < c3(Ah, A), z E K. 

Theorem 1.1 shows that if (P1) is valid, then the approximation of O(A) by a(Ah) 
is upper semicontinuous. Furthermore, for h < ho 1IRz(Ah)IlXh is uniformly 
bounded on K. This is a stability property. 

THEOREM 1.2. Suppose (P1) is valid. Then there exists ho > 0 and c so that, for 
h < ho, we have the bounds 

(1.1) 11 E h-IEIXh + ||AE - AhEhIIXh < c3(Ah, A), 

(1.2) 3(Eh(Xh), E(X)) < c3(Ah, A), 

(1.3) 8(x, Eh(Xh)) ? c{3(X, Xh) + 3(Ah, A)IIxII) x E E(x). 

THEOREM 1.3. Suppose that (P1) and (P2) are satisfied and that E(X) is the 
finite-dimensional subspace corresponding to an isolated eigenvalue X of algebraic 
multiplicity m of A. Let a be the ascent of (X - A) and let f be a holomorphic function 
defined in the neighborhood of X. We set 

Yh = mint{ (A I E(X), Ah), 3(Ah, A)). 

Then, for h small enough, Ah I Eh(Xh): Eh(Xh) -> Eh(Xh) has exactly m eigenvalues 
Xl,h, ... ^ Am h repeated according to multiplicity. Also, there exists ho > 0 and c such 
that the following bounds are valid for h < ho: 

(1.4) &(Eh(Xh), E(X)) < c-yh 

( 1.5) 8(Ah I E,(x,), AI E(X ) < CYh, 

(1.6) f (X) - - 2 f(l,h) < Cyh, 

i=1.m 
( 1.7) max {A - lk,hla < C-yh 1 =I . .. I m 
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Remarks. If (P1) and (P2) are satisfied, then (1.3) of Theorem 1.2 shows that 

limhO 8(x, Eh(Xh)) = 0, Vx E E(X), i.e., any x E E(X) can be approximated by 
vectors in Eh(Xh). It is not true however that any z E a(A) can be approximated by 
eigenvalues of Ah, i.e., there may exist z E a(A) so that dist(z, a(Ah)) fails to 
converge to zero. (The approximation of c(A) by a(A.) is not necessarily lower 
semicontinuous.) The classical counterexample is the shift operator; see, for exam- 
ple, Kato [6, p. 210]. Note that if A and Ah are selfadjoint operators in a Hilbert 
space, then lower semicontinuity is true under weaker conditions than (P1), (P2); 
see, for example, Kato [6, p. 431]. 

In order to prove Theorems 1.1 and 1.2, we first prove a sequence of lemmas 
which are variants of results found in Kato [6, pp. 197-208]. 

LEMMA 1.1. Let B E 6J (X), C E C(X). Then 

(a) 8(C, B) < II C -B I I(c), 
(b) IC - B16D(C) < (1 + IIBII)28(C, B)/(1 - (1 + IIBII)6(C, B)) 

if the denominator is positive. 

Proof. Part (a) follows directly from the definitions. We prove part (b). Let 
x E 6D (C), llxll = 1, and let e > 0 be arbitrary. It follows from the definition of 
8(C, B) that there exists y E X such that 

(1.8) lx - yll +ilCx - Byll < 8(C, B){iixii +iiCxiii + e. 

Consequently, we have 

ii(C -B)xii?iiCx- Byll + By - Bxii 

(1.9) IICx - ByII +IIBIi Iy - xlI 
< (1 +BI){IICx - Byl+lily - xlli 

< (1 + iiBil)[S(C, B){ llxil + lCxill + e]. 

Replacing IlCxll by II(C - B)xII + IIBiI lixll in the right-hand side of the above 
inequality and letting e -- 0 yields the estimate 

(1.10) ii(C - B)xjI < (1 +iiBii)6(C, B){(1 +iiBii)Jixll +ii(C - B)xjI}. 
The result now follows from (1.10). Q.E.D. 

Remark. It follows from Lemma 1.1 that if A E (1 (X), then property (P1) is 
equivalent to limh,O IIA - A II Xh = 0. This is the spectral approximation condition 
of Descloux-Nassif-Rappaz [4]. 

LEMMA 1.2. Let B E @ (X) and C, D E C(X). Then 

8(C + B, D + B) < (1 + iiBil)28(C, D). 

Proof. Let x E 6D(C), IlxII + II(C + B)xII = 1, and let e > 0 be arbitrary. We 
have then, by the triangle inequality, that 

(1.11) lIxiI + 11 Cxii < lxii + II(C + B)xii +iiBxii 1 + iiBii. 

Thus, it follows from the definition of 5(C, D) that we may choosey E 6D (D) such 
that 

(1.12) lix -Y| + |Cx - Dyii < 8(C, D)(1 + iiBii) + e. 
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Hence, 

lix -Yll + ll(C + B)x - (D + B)yll 

(1.13) < lix -yll + Cx - Dyll + |IBI| |x -yll 

< (1 + 11 BjI)28( C, D) + (1 + 1I BI1)e. 

Hence, the result follows from (1.13) after letting e -> 0. Q.E.D. 

LEMMA 1.3. If C and D E C (X) are invertible, then 

3(C, D) = 3(C 1,D ). 

Proof. This result follows directly from the definitions. Q.E.D. 

LEMMA 1.4. Let C, D E C(X) and suppose there exists K such that 

(1.14) IlDxll > KIIXII, x e ?(D). 

If 6(C, D) < min(l, K), then C is invertible. 

Proof. We show that if C is not invertible, then 3(C, D) > min(l, K). Let 
x C 6D(C) be such that xlxiI = 1 and Cx = 0. Let - > 0 be arbitrary. It follows 
from the definition of 3(C, D) that since Cx = 0 we can choose y E 6D (D) such 
that 

lix - yl + IlDyll S (C, D) + c. 

It then follows from (1.14) that 

(1.15) 3(C, D) + c > ||x - Y|| + KIIyII > 1I -IIyIII + KlIyll 
> min(l, K){f 1I I -Yll I + IlYll } > mi(l, K). 

Since e > 0 was arbitrary, it follows that we have reached the contradiction 
S(C, D ) > min(l, K). Q.E.D. 

Proof of Theorem 1.1. In this proof, c depends on K but all estimates are uniform 
for z E K. By Lemma 1.2, 

(1.16) 8(z- Ah, Z - A) < c3(Ah, A), z E K. 

It follows from (1.16) and (P1) that 

(1.17) lim 8(z -Ah, z - A) ->0 uniformly for z E K. 
h--*O 

Since K c p(A), there exists cl such that 

(1.18) ll(z - A)xIl > cillxlI, x E 6D(A), z E K. 

We can now conclude from (1.17), (1.18) and Lemma 1.4 that there exists ho > 0 
such that z - Ah is invertible for h < ho and z C K. Since Xh is finite dimensional, 
we have that K c p(Ah) for h < ho. 

Furthermore, it follows from (1.16) and Lemma 1.3 that 

(1.19) 3(RZ(Ah), Rz(A)) S c3(Ah, A), z E K. 

Hence, we can obtain from Lemma 1.1 b the result 

(1.20) 1IRz(A) - RZ(Ah)Ilxh < c8(Rz(Ah), Rz(A)) 
< c3(Ah, A), h < 0h, z E K. Q.E.D. 
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Proof of Theorem 1.2. The result (1.1) follows from Theorem 1.1 and the 
following estimates: 

IE - Ehllxh +IIAE - AhEhllXh 

( 1 .21) ||2 7IJ (RZ(A) - RZ(Ah)) dZ + |2-J(zRZ(A) ZRz(Ah)) dzI 
(1.21) 27i ~~~~~~Xh 27Tl Xh 

S (2K)-' max IIRz(A) - RZ(Ah)IlXhf ( +lzl)ldzl. 

The estimate (1.2) now follows directly from the estimate (1.1). 
In order to prove (1.3), let x E E(X) and xh E Xh. Then x - Ehxh = E(x - xh) 

+ (E - Eh)xh. Consequently, 

(1.22) 3(x, Eh(Xh)) < (h|Ell i|X - Xhll + I|E - Ehllxh llxhll) 

< (IhElI + I|E - Ehlxh)llx - Xhll + lIE - EhllxhlI xl 

The result (1.3) follows by taking the infimum over xh E Xh and using (1.1). 
Q.E.D. 

It remains to prove Theorem 1.3. We first quote without proof the following 
simple result: 

LEMMA 1.5. Let Y and Z be two subspaces of X with the same finite dimension and 
let P: Y -* Z be a linear operator such that 

(1.23) j1Py -Yll < Illy l, y E Y. 

Then P is biective and 

(1.24) IIP-lzll < 21lz1l, z e Z. 

LEMMA 1.6. Let Y and Z be two subspaces of X. 
(a) If 3(Y, Z) < 1, then dim Y = dim Z. 
(b) If dim Y = dim Z < oo, then 

(1.25) 8(Y, Z) S 8(Z, Y)[1 - 8(Z, Y)]'. 

Proof. For (a), see Kato [6, p. 200]. For (b), see Kato [7]. Q.E.D. 
In the rest of this section, we suppose that the hypotheses of Theorem 1.3 are 

satisfied. Also, c and ho will denote two generic positive constants which depend on 
F. 

LEMMA 1.7. 6(A I E(X)' Ah I Eh(Xh)) < c8(A I E(X)' Ah), h < ho. 

Proof. Let x E E(X), IlxII + IlAxlI = 1, and let xh E Xh be such that 

(1.26) lix - xhll + |lAx - AhXhll < S(AIE(X), Ah). 

We have 

lix - Ehxhll + lAx - AhEhxh|l = 21. f(RZ(A)x - RZ(Ah)Xh) dZ 

(1.27) + 2',i ff(ZRz(Ax - zRz(Ah)xh) dz 

< (2?f)' max 1IRz(A)x - Rz(Ah)xhll (1 +lzl)ldzl. 
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In order to conclude the proof of the lemma, it suffices to estimate 

RlR,(A)x - RZ(A)xhI I for z E r. 
For rh E X., we have by Theorem 1 that 

llR.(A)x - RZ(Ah)xhll < ||R.(A)x - rhll +llrh - RZ(Ah)xhjl 

=lIRz(A)x - rh1l +IIRZ(Ah)[(z - Ah)rh xh] 

(1.28) < 1lRz(A)X - rhl1 + cll(z - Ah)rh XhII 

< 11Rz(A)x - rhIt + c((z - Ah)rh- (z A)Rz(A)xll + lx - xhil) 

< clJRz(A)x - rhll + cljARz(A)x - Ahrhll + ClX - Xhll. 

Since Rz(A)x E E(X), we can choose rh E Xh so that 

IlRz(A)x - rhll + lARz(A)x - Ahrh1 

(1.29) < S(A IE(X), Ah)(11 Rz(A)xjj + 11ARz(A)x1j) 
< c3(AlE(X), Ah)(xII +lAxjj) < c(A IE(X), Ah). 

The proof now follows by utilizing (1.26) and (1.29) in (1.28). Q.E.D. 
Remark. Lemma 1.7 is still valid if the hypothesis (P1) is replaced by the uniform 

boundedness of Rz(Ah) on r. 
Proof of Theorem 1.3. From (1.2) and (1.3) of Theorem 1.2, it follows that 

limh-+O 3(Eh(Xh), E(X)) = 0. Consequently, by Lemma 1.6(a), dim Eh(Xh) = 
dim E(X) = m for h < ho. This proves that for h < ho, AhI Eh(Xh): Eh(Xh) -* Eh(Xh) 
has exactly m eigenvalues X1,h h ... X A h repeated according to multiplicity. 

By Lemma 1.6(b), we have that 

(1.30) 3(E(X), Eh(Xh)) < c min{3(E(X), Eh(Xh)), 3(Eh(Xh), E(X))}, h <ho. 
It follows from Lemma 1.7 that 

(1.31) 8(E(X), Eh(Xh)) < c3(AIE(x), AhIE(xh)) I cE(AIE(X) Ah). 

The result (1.31) and (1.2) of Theorem 1.2 yield (1.4) when substituted in (1.30). 
We have by (1.1) of Theorem 1.2 that 

(1.32) 8(AhIE,(x), AIE(X)) < c3(Ah, A), h < ho. 

Hypothesis (P1) and Lemmas 1.6 and 1.7 allow us to conclude the validity of (1.5). 
Now let u1,... ., u,, be a basis for E(X) with Iluill + IIAuill = 1, i = 1, ... , m. 

We then choose ulh, . * * I Um,h ,E Eh(Xh) so that 

(1.33) llUi - Ui,h l + J1Aui - AhUi,hll ? 8(AIE(x), AhIE,(X^))' M. 

Next, we define Ah: E(X) -> Eh(Xh) as the linear operator such that Ahui = Uih, 

i = 1, . .. , m. It follows by (1.5) that 

(1.34) Iu - Ahuil+lIAu- AhAhUll< CYhIIUII, u E E(X). 

By (P1) limh,O Yh = 0, so by Lemma 1.5 and (1.34) Ah is a bijection whose 
inverse A,71 is uniformly bounded for h < ho. Let A = AIE(X) and Ah = A,-1A A: 
E(X) -* E(X). For u E E(X), we have 

(1.35) I(A -A)ull =IIA,2(AhA - A Ah)uI 

< C{ll(A,h - I)Au|l +jjAu - AhAhUll} < CYh,jjUjj, h < ho. 
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Consequently, 

(1.36) I AhIIE(X) A yh 

Now A,, has eigenvalues X1,h,. .., X,flm and A has the eigenvalue X of algebraic 
multiplicity m. Also, a is the ascent of (X - A). We have reduced our problem to 
the matrix case. The results (1.6) and (1.7) of Theorem 1.3 now follow from the 
classical perturbation theory for finite-dimensional operators [17, pp. 80-811. 
Q.E.D. 

2. The Approximation of the Spectrum of a Selfadjoint Operator. In this section, 
we suppose that X is a Hilbert space, A: 6D (A) c X -* X is selfadjoint, and Ah: 
Xh X. is selfadjoint in Xh for all h. If I c R is an interval (finite or infinite), E: 
X X will denote the spectral projector of A relative to I, and Eh,,: Xh -* Xh will 
denote the spectral projector of Ah relative to I. We can prove the following 
theorems: 

THEOREM 2.1. (P1) < V closed intervals I, J, one of them bounded, I n J = 0, we 
have 

lim IIEIE,,JIIxh = 

h--* JIO 
=0 

THEOREM 2.2. Suppose that (P1) is valid. Let J c I where J is a closed bounded 
interval and I is an open interval. Then 

(2.1) lim0 5(Eh,J(Xh), EI(X)) = 0. 

THEOREM 2.3. Suppose that (P1) and (P2) are valid. 
(a) Let I be an open interval and x E E,(X). Then 

lim 8(x, E,,1(X,)) = 

(b) If X E a(A), then 

lim dist(X, a(Ah)) = 0. 

Remark. Theorem 2.3(b) states that the approximation of a(A) by a(Ah) is lower 
semicontinuous. 

Theorems 2.1, 2.2, and 2.3 have been proved in Section 3 of Descloux, Nassif, 
Rappaz [41 when A is bounded (recall our remarks after Lemma 1.1). Our proof 
will reduce the unbounded case to the bounded case. We shall restrict ourself to the 
proof of Theorem 2.2. Theorems 2.1 and 2.3 can be obtained by similar arguments. 
Furthermore, for the sake of simplicity and without much loss of generality, we 
shall suppose that p(A) n R =# 0. 

Proof of Theorem 2.2. As mentioned above, we suppose there exists a E R with 
a E p(A). We introduce the function +(X) = (a - X and set B = 40(A) = Ra(A). 
By Theorem 1.1, Bh = k(Ah) = Ra(Ah) is well defined for h sufficiently small and 

lim IB - BhIjxh = 0. 

For an interval M, FM: X X-* X and Fh M: Xh -4 Xh will denote, respectively, the 
spectral projectors of B and B, relative to M. As a first case, suppose a M I and set 
K = ?(J) and L = ?(I). Then K and L are, respectively, a compact and an open 
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interval with K c L. From Theorem 4 of Descloux, Nassif, Rappaz [4], we can 
conclude that 

(2.2) lim 8(Fh,K(Xh), FL(X)) = O0 
h--*O 

However, the result (2.1) follows from (2.2) since Fh,K(Xh) = Eh,J(Xh) and FL(X) = 

EI(X). 
The case a E I can be reduced to the preceding one by noting that we can find 

compact intervals J 1, J2 and open intervals I1, I2 with the following properties 
(for h sufficiently small): 

a E II U I2, 
Jl c I1, J2 c I2, 

EA(X) = EJ1(X) ( EI2(X), 

Eh,J(Xh) = Eh,j l (Xh) E Eh,J2(Xh). Q.E.D. 

3. Application to Scalar Elliptic Boundary Value Problems. We shall need the 
following notation to discuss the application of our theory to the approximation of 
the spectral properties of scalar elliptic boundary value problems. Denote by 2 an 
open set in R' with a smooth boundary, aQ. As usual, we denote by L2(Q) the 
Hilbert space of square integrable, complex-valued functions with inner product 
and norm 

(3.1) <F, G> =FG dx, Il2= <F, F>. 

We denote by H'(9) the space of complex-valued functions whose distribution 
derivatives of order less than or equal to r, r a nonnegative integer, are in L2(Q) 
with norm 

(3.2) 11 fl,2 = E11 D 2 

raI%r 

We wish to consider the spectral approximation of the operator 

n n 
Lu= - Di(auDju) + aiD1u + au, x E Q, 

(3.3) i,j=l 

u =E aiviDju = O, x E au, 
i,j= 1 

where we assume that L is a uniformly, strongly elliptic operator with real-valued 
coefficients in C (Q) and v = (v1, . . . , vn) is the unit exterior normal to aQ. We 
associate with L the continuous, sesquilinear form on H '(Q) x H '(Q), 

n n 

(3.4) B(4pq, 4) = E Kau,Dy4, Dj44> + 2 <a,D,4, 4'> + <a4, 4'>. 
i,j=l I= 

We may assume (by replacing L by L + , , e R) that, for some b > 0, 

(3.5) Re B(O, 0) > blclkl 2, O E H (2). 
Let Sh C H'(0) be a family of finite-dimensional subspaces, parametrized by h, 

0 < h < 1, with r a positive integer and c a positive constant, independent of h, 
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such that for 1 < s < r + 1, u E Hs(Q), we have 

(3.6) inf (Iju - xli + hilu - xlli) < chsilulls. 
X E= h 

Many finite element spaces are known to satisfy (3.6) [2]. 
We define the operator Lh: Sh -S by the relation 

(3.7) B(Uh, W) = <LhUh, W>, W E Sh 

Note that Lh is well defined since Sh is finite dimensional. We shall study the 
approximation of the spectral properties of L by the spectral properties of Lh. 

Define the space 

H2(Q) = (u E H2(Q) ? 5u = O for x E aQ}. 

We consider L as a closed operator from L2(Q) to L2(2), i.e., X = L2(Q), with 
domain D(L) = H 2(Q). Also, in the notation of Section 1, we set Xh = Sh. It 
follows from (3.6) that if u e C (Q), then 

8(u, Sh) = inf u - xll -)O as h -O. 
XE= h5 

Since C (Q) is dense in L2(Q), it is clear that property (P2) is valid. 
We now turn to the verification of (P1). To that end, let Pho: L2(Q) -Sh be the 

L2(Q) projection, 

(3.8) KP2u-u, W>=, W E h 

and let Ph: H 1(Q) -* Sh be the H 1(Q) projection defined by 

(3.9) B(Phu - u, W) = 0, W 
It follows from (3.5) that Ph' is well defined. 

The following estimates for Pho and Ph are well known [2]. There exists c < oo 
such that, for 0 < s < r + 1 and u E Hs(Q), 

(3.10) IIPhou - ull < chsilullI 
and such that, for 1 < s < r + 1 and u E Hs(2), 

(3.11) j1Phlu 
- ull + hIIPh'u - ull, < chIllull,. 

We now verify that 
(3.12) 3(Lh, L) -*0. 

For Uh e Sh, let u E D(L) satisfy 

(3.13) Lu = LhUh. 

It follows by elliptic regularity that 

(3.14) 1| U112 < C|ILh Uhl. 

Now it is easily verified that Uh = Phlu. Hence, by (3.1 1) and (3.14), 

(3.15) lIu - Uhl =-|U - Ph'u|l < ch 2IIU12 < ch2I Lh UhII 

Since Lu = Lh Uh, we can conclude that for each Uh Sh, there exists u E D(L) 
such that 

(3.16) llu - UhII + |lLu - LhUhll < ch (Uhil + +Lh UhJI). 

Hence, we can conclude that 

6(Lh, L) < ch2. 
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It is well known that the spectrum of L consists of isolated eigenvalues with 
finite-dimensional generalized eigenspaces. Let X E a(L) and let E(X) be the 
generalized eigenspace corresponding to X. Thus, dim E(X) < oo. We shall show 
that 

(3.17) S(LIE(X), Lh) < chr+I. 

The result (3.17) will imply that the conclusions of Theorem 1.3 are valid with 

Yh < ch 
If u c E(X), set Uh = Phu C Sh. It follows from elliptic regularity that E(X) c 

C '(Q). Hence, by (3.1 1), 

(3.18) II u - Ph,uI| S chr |IIUIr+Il. 

Also, note that if u c H2(s), then 

(3.19) P2Lu = LhIPhU. 

Thus, it follows from (3.10) that 

(3.20) IlLu - Lh UhIl = IILu - LhPh'u|| = IILu - P?Lu|I < chr+ 111 LUr+ 1- 

Note that since dim E(X) < ox and all norms on finite-dimensional spaces are 
equivalent, there exists a constant c < oo such that, for u E E(X), 

11 Lujjr+ 1 < Cll uII, || U||r+1 <- C|| U||- 

So, (3.17) follows from (3.18) and (3.20). 
The results on eigenvalue approximation implied by (3.17) are not the optimal 

O(h2r) results for this problem that have been obtained by other methods [1], [14] 
unless r = 1. However, it can be shown that optimal O(h2r) eigenvalue results for 
the problem can be derived from Theorem 1.3 for this problem if the approxima- 
tion of L by Lh is analyzed in a space X which is taken to be an appropriate 
negative order Sobolev space. 

4. Application to the Linearized Shallow Water Equations. We turn now to the 
description and analysis of an approximation procedure for the spectral properties 
of the operator, T, associated with the linearized shallow water equations. Recall 
that 

T(t, u') =(V- u,-V Dfu'- wRu), x E= !2, 

(4.1) u n =0, x Ec M, 

>,dx =0, 

where Q c R2 is a bounded, connected open set with smooth boundary, 30, 
u = (U1, U2), R is the linear operator Ru = (-u2, u1), n is the exterior normal to aQ, 
and f > 0 and X are real constants representing friction and Coriolis terms. We 
assume that aQ has a finite number of connected components, {aj)}'.0. Also, 
assume that the sets a3i are smooth arcs in R2. 
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We shall need the definitions of the following spaces of scalar-valued functions: 

LQ) = {w C L2(I)Ifwdx=O 

(4.2) H2(Q) = H1( 72) n L * 

Hcl(Q) = { w c H 1(0) I w(x) = 0 for x E ago, and there exist constants, 

(Ci),_ such that w(x) = c, for x C 2 i = 1, ... , s}. 

For k > 1, set 

(4.3) Hk(g) = H'(P) n Hk(Q), Hk(9) = HA(2) n Hk(Q). 

We give these subspaces of L2(Q) and H 1(a) the inner product and norms defined 
in (3.1) and (3.2). 

We also define the following spaces of vector-valued functions: 

L 2()2 = {iu = (U1, u2)u, U2 2), 

Hk(Q)2 = {iU = (U1, U2)IU1, U2 e Hk(Q)} for k > 1. 

With these spaces we associate the inner product and norms 

<U, F> = <U1, V1> + <U2, V2>, 

liuli2 = <u, ui>, for ui = (ul, u2), v = (vI, v2) E L 

||u 112 = IIu'iIK + 11 U2IIk, for u = (us u2) k() 
Finally, for functions (I, ui), (t, v) C L 2(Q) x L2(E2)2 we define the inner product 

<(G,u), (, )>= KD, > + <K, > 
and norm 

ll(t, U)II2 = < , ) ( U>)>, 

and for functions (D, u) E H 1 () x L2(Q)2 we define the norm 

ll(D, u)II2 = 12 + 11d112_ 

If u- E L2(0)2, then there exist unique scalar functions 4 E H l() and 4, C 
H '(Q) such that 

(4.4) u= -V + RV%P. 
The functions {4, 4} are known as Stokes-Helmholtz potentials for ud [8], [15], and 
we define the functions Su = 0, Hu = 41. It follows from elliptic regularity [10] that 
for k > 0, there exists c = c(k), c < ox, such that 

(4-5) ||ISU lk+l I-< Cll'll|k, || Hu ||k+ I -<- Cl| U'||k, VU- G H(). 

It is easily verified that 

(4.6) <V0, RV4/> = 0, 0 C H*(Q), C E HCl(2). 

Hence, (4.4) is an orthogonal direct sum decomposition. 
Let {G)th }, 0 < h < 1, be a family of finite-dimensional subspaces of H 1(a) 

parametrized by h. Set 

(4.7) ' = ' n Hl(Q), 

(4.8) = 6Ri n H'(p). 
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We assume that there exists a positive constant c, independent of h, and a 
positive integer r such that, for 1 < k S r + 1 and w e Hik(2), 

(4.9) inf (||w - xl + hllw - xil1) < chkiwiik, 

and, for 1 6 k < r + 1 and w e HC2), 

(4.10) inf (|1w - x|l + hiiw - xlil) < chkiiwik. 

We also wish to assume that the spaces { th4 satisfy the "inverse property" that 
there exists a positive constant c, independent of h, such that 

IIXIII S ch-'11X11O, X D h' 

We shall use the spaces of vector-valued functions 

= {U U = -Vo + RV, 4 E Gh*, * e h}. 

It follows from (4.5), (4.9), and (4.10) that, for 0 S k S r, u- H k()2, 

(4.1 1) inf || u' - xll < ch kllU||lk- 

We shall need the result that if I e 9U., then 

(4.12) V 9 e 6h 

It is easy to see that (4.12) is valid if 9D1h contains the constant functions. 
In order to define our approximation procedure, we introduce the continuous, 

sesquilinear form B(- , *) on X x X = [H 1() x L2(0)2] x [H'(2) x L2(2)2] by 

(4.13) B((G, iu (t, v)) = <u, VO>-<KVD, F>-Kft; +wRi, F>, 

(T, u), (t, v) E H*(Q) x L2(0)2. 

We regard T in (4.1) as an unbounded, closed operator, T: H*(Q) x L2(0)2 

H*(Q) x L2(i2)2, with domain 

(4.14) D ( T) = { - )i e Hi (2), i E L2()2, V. i e H'(Q), u * = n on 

Thus, if (D, u) E D(T), 

(4.15) B((t, u), (t, v)) = <T(G, u), (t, F)>, (v, F) E H*(Q) x L2(Q)2. 

We now define T1: 6Xh* X DLh > Gh* X 6Xh by 

(4.16) B((Z, U), (Y, V)) = KTh(Z, U), (Y, V)), (Y, V) e h X th. 

The operator Th is well defined since the spaces 9h* X 9th are finite dimensional. 
We now show that the spectral properties of Th approximate those of T by 

verifying (P1) and (P2) in this case for X = Hl(Q) x L2(0)2 and Xh = Th,** X 9Lh. 

The verification of (P2) follows directly from (4.9) and (4.11). To see this, we note 
that for (i, u-) E [L2(Q) n C ?()] x C o(i)2 it follows from (4.9) and (4.1 1) that 

S((, ),Xh)-.*0 ash-*0. 

The validity of (P2) now follows from the density of [LX2) n C (Q2)] x C oc()2 
in H'1() x L2(2)2 

We next turn to the verification of (P1). In order to prove this result, we 
introduce and analyze some projection operators. First, we define the H (Q) 



THE SPECTRUM OF CLOSED OPERATORS 151 

projection P**: H*(Q) -- Dth* by 

(4.17) <V(Ph* W - W), VX> = 0, x E xh 

and the H,'(0) projection Ph: H,'(Q) -* h by 

(4.18) KV(Phw - w), V X> = 0, x E C14. 

It is well known [2] that there exists c < x such that, for 1 < k < r + 1 and 

w E Hk(Q) 

(4.19) w|PhW - wll I < ch'k I Wll k 

and, for 1 < k < r + 1 and w E H 

(4.20) 11 Ph W - W|I, < ch k1w 'W||k. 

It follows from (4.1 1) that if Qh: L2(i)2 * h is the L2(Q)2 projection defined by 

(4.21) KQhu u, X> , X 9Lh 

then there exists a constant c < x such that 0 < k < r and u E Hk(Q)2 imply that 

(4.22) lQh Q u -l < ch || u |lk' 

It is easily checked that 

(4.23) QhU = VPh SU + RVPhHi. 

Finally, define the L2(Q) projection Qh: L2*(Q) __ 9Th* by 

(4.24) hW - w, X>= 0, X E 6h 

It follows from (4.9) and the inverse property of R,h that there exists c < x such 

that if 1 < k < r + 1 and w E H (kq), then 

(4.25) <lQhW - W|| I ch k| w|llk 
The following lemmas will help us analyze T1. 

LEMMA 4.1. (a) Let u E L2(0)2 and X e Rh*. Then 

(4.26) <U QhU VX = 0. 

(b) Let ' E H*(Q) and X h. Then 

(4.27) <V(G - Pr), X> = 0. 

Proof. The proof follows easily from (4.6) and the definitions of P.* and Qh. 

Q.E.D. 

Now let gh = Ph Qh H* ) x L2(Q)-h* X h 

LEMMA 4.2. If (u, u) e D(T) and (Y, V) E 6Xh* x 6hX,, then 

(4.28) B((', u) - (g,u), (Y, V)) = KT(t, u) - Th S(h', u), (Y, V)> 

=--wR(u - '), V>. 

Proof. The proof follows directly from the definition of B and Lemma 4.1. 

Q.E.D. 

Hence, it follows from Lemma 4.2 that if Qh = Qh D Qh (, u) e D(T), and 

(Y, V) & 9Th* X (h then 

(4.29) KQhT(9, a) - Th6h(g ), (Y, V)> = -KwR(u Q--,hU, igV> 
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THEOREM 4.1. 6(Th, T) < ch. 

Proof. Let (Z, U) E gD1h* X ?h and denote Th(Z, U) by (D, E). We must find 
(u, ie E D(T) such that 

(4.30) |l(Z, U) - (t, 0)/X + II Th(Z, U)- T(G, +)Ilx 
< ch(||(Z, U)IIX + 11Th(Z1 U)llx) 

We choose (u, ) as follows. Let 4 e H2(Q) be the solution to 

AO= D, x Q, 

(4.31) a =O, u 
an 

where a/an is the exterior normal derivative. (Note that f a D dx = 0 since D e 
L2(Q).) Now set D = Z, u_ = -V4 + RVHU. It is clear that since Z E H1(2), 
V *= -Ao = -D e H '(), u * n = -ao/an = Ofor x E af that (, u3 E D(T). 

It follows by the definition of 0 that P,* = SU. By elliptic regularity for (4.31), 

1112< c|ID|| < cll Dll-. 

Hence, we can conclude from (4.19) that 

(4.32) |)V (Sui -SU))j = 11V (o - Ph*k)ll < ch)l)IO2 < chjDlljDI 
So, 

(433) )(Z, U)-(i" )IK = |V(Siu - SU))) s ch lD)j1 

< ch||I Th (Z, U)||x- 

Denote T(D, uO by (d, e). It follows from (4.31) that d = D. Since 6h(' = 

(Z, U), we obtain from (4.29) 

(4.34) K Qh eE, VE = <RR(V - VPh*o), V> 

Thus, if we set V = Qhe - E in (4.34) and use the Cauchy-Schwarz inequality, we 
can derive the estimate 

( ) ||~~Qhe -Ell < c|lVo - 
VPh*o|l < chl|+||2 (4.35) lIh ) cjc 

< ch 11Dll I <ch || Th(Z, U)|lx 

We must now estimate 

(4.36) ||e Qhe| innf Ile'-X. 

By the definition of T, 

(4.37) e = - fu -wRud = -VZ - f(-Vo + RVHU) - w(-RV5 - VHU). 

However, 

(4.38) -VZ - jRVHU +wVHU E9Lh 

and 

(4.39) ljfVp + wRV4)f1 < clJDJJ1. 
So, 

-Qhe)I = inf )IfJV + oRVO - 
- 

6 chII5W + wRVIj, 
(4.40) XE%h 

_ chII I1 <1 ch_ ThZ 11 w X 1 
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The triangle inequality, (4.35), and (4.40) yield 

(4.41) 1I T(D, u) - Th(Z, U)IIx =I||-E | chl Th(Z, U)IIx. 
Thus, (4.30) follows from (4.33) and (4.41). Q.E.D. 

Now let X e a(T) be an isolated eigenvalue of T with finite algebraic multiplic- 
ity m. Let E(X) be the generalized eigenspace corresponding to X. It follows from 
Theorem 1.3 that we are interested in an estimate for 6(TI E(X)' Th). 

THEOREM 4.2. Let X E a(T) be an isolated eigenvalue of T and let E(X) be its 
associated generalized eigenspace. Assume dim E(X) = m < x, and assume that 

(D, u) E E(X) implies that H E 
I 

I'(i), ui E Hr(Q)2, V* u- E Hr(Q). Then there 
exists c < x, independent of h, such that 

(4.42) 6(TIE(X), Th) < chr 

Proof. Let (D, u7) E E(X). Set (Z, U) = 'gh(D u). It follows from (4.19) and 
(4.22) that 

(4.43) I(a u) - 
u h( G, U)Ix < ch r(IVtIr+i +IItUiIr). 

Also, setting (Y, V) = Qh T(, u)- Th6Yh(D, u) in (4.29) and using the Cauchy- 
Schwarz inequality, we obtain 

(4.44) -=QhT(~, Th gh(G, 
x QhT(D, u) - Th6Ph(% , 0) 

< cl|u 
- 

11U| < Chr||llr U - Qh uI ? C rIIIr 

Finally, from (4.22) and (4.24) we obtain 

(4.45) IIT(D, u7) - QhT(D, u)IIx < chr(IllIIr+l +1IU1Ir +|V u||r). 

The result of the theorem now follows from (4.43), (4.44), (4.45), and the finite 
dimensionality of E(X). Q.E.D. 

Finally, we note that our results can be combined with the results in [3] to obtain 
optimal order estimates on the convergence of eigenvalues. Assume that the 
conditions of Theorem 4.2 are valid. Let E(X*) denote the generalized eigenspace 
associated with the eigenvalue X of T*. We note that it is well known that 
dim E(X*) = m and that X is an isolated eigenvalue. 

Let 

Wh = 6(E(X), E(Xh)), Wvh = 6(E(X*), E(Xh*)). 

Let a be the ascent of X. Then it follows from Proposition 3.2 of [3] that for ho 
sufficiently small 

max I-Vi,hI ? CWhW A-- E i h S ho. 
i .m = 

Under the hypotheses of Theorem 4.2 we have proven that Wh < ch r. Now assume, 
in addition, that (D, u) E E(X*) implies that D E H* I(Q), u E Hr(Q)2, V * u E 
Hr(Q). Then we can conclude, from applying the above arguments to the adjoint 
problem, that vh* < chr. Hence, under the above conditions, we obtain the optimal 
order eigenvalue estimates 

max IA a,.hI Sch2r, |A--, Sch2r, h < ho. 
i .m = 
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