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A New Method for Chebyshev Approximation 
of Complex-Valued Functions 

By K. Glashoff and K. Roleff 

Abstact. In this paper we are concerned with a formulation of the Chebyshev approxima- 
tion problem in the complex plane as a problem of linear optimization in the presence of 
infinitely many constraints. It is shown that there exist stable and fast algorithms for the 
solution of optimization problems of this type. Some numerical examples are presented. 

1. Introduction. We are going to consider the following approximation problem: 
Let C(T) be the normed space of complex-valued continuous functions f on a 
compact subset T of the complex plane C, equipped with the uniform norm 

Ilfi10 = maxjIf(z)j 

Let f(z) and wl(z),... , wj(z) be fixed given functions out of C(T). For any set of 
n complex parameters x = {xI, ... , x" }, let 

n 

L(x, z) = E XrWr(Z). 

r= 1 

The problem is to determine an optimal set of parameters x such that 

(1) Ilf - L(x, z)jj < lf - L(x, z)jI. for all x. 

Problems of this type appear in many connections and have been treated by 
various authors; cf. [2], [12], [13]. Considering the computation of best rational 
Chebyshev approximations to complex-valued functions by descent algorithms, 
Ellacott and Williams [6] report that the main portion of computer time is spent in 
the solution of the linear subproblems. They have applied the very slowly conver- 
gent Lawson algorithm to these subproblems, and they remark that a fast linear 
algorithm would bring about a significant improvement in efficiency. 

In our paper we describe a new algorithm which seems to be the first one which 
works for the continuous case (where T is not a finite set), too. In our method we 
transform the complex approximation problem into a (real) linear optimization 
problem with infinitely many constraints, a so-called semi-infinite program (SIP); 
cf. [5], [8], [10]. This is solved by a two-step procedure: in the first step we apply the 
stabilized Simplex algorithm to a discrete approximation of the SIP and in the 
second we make use of the Newton-Raphson method in order to obtain very 
rapidly the solution of the SIP and thus of our original approximation problem. 
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2. A Simple Transformation. Let us consider the problem (1) which we restate as 
an equivalent optimization problem (2) below (here we introduce an additional real 
variable yO): 

(2) Minimizeyo under the constraints If(z) - L(x, z)I < yo for all z E T. 

This is a problem of nonlinear optimization, and it has been shown by Krabs and 
Opfer [12], Barrodale, Delves, and Mason [2] how to solve (2) by means of suitably 
chosen nonlinear programming codes (if T is a finite set). 

Our approach is a different one. We note that the nonlinear constraints of (2) 
can be restated as a set of linear restrictions. This is true because, for any complex 
number z, 

Izj = max{Re(z7)/7 qE S} 

where S = {7q E C/lql = 1) and where Re(w) denotes the real part of the complex 
number w. Thus, we can reformulate (2) as the following linear optimization 
problem: 

(3) Minimizey0, y0 + Re{L(x, z),q} > Re{f(z) -} for all (-q, z) E S x T. 

This optimization problem has 2n + 1 real variables, y0, y1, n y, Yn+ 1, ** Y2n, 
where we define 

Xk = Yk + Yn+k, k = 1, ..., n. 

Now the restrictions of (3) can be written as 

n n 
(4) YO + E Yr Re { wr(z)-} - Yn+r Im{ wr(z)q} > Re{f(z),)}, r= 1 r= 1 

for all (-q, z) E S x T. 

Before we consider a simplification of (4), which is possible for most applications, 
we formulate the dual problem (in the sense of linear optimization, cf. Glashoff 
and Gustafson [8]): 

2n+1 
Maximize E ai Re{ f(zi)'qi} subject to the constraints 

i=1 

ai > 0, (-qi, zi)6 ESX T (i= I,..2n + 1), 
2n+l 

(5) ai Re{wr(zi)} = 0 

2n+1 r=l 

ai Im{ wr(zi)qi } = 0 
i=l1 

2n+ l 

aE a= 1. 
i=l 

Let us now consider the case where T is a simply connected region bounded by a 
piecewise smooth Jordan curve C. Additionally, we assume that the functions f and 
wr are analytic in the interior of T and continuous on the closure of T. Then 

l1fl00 = max If(Z)j, z C 

and therefore our problem is equivalent to best approximation of f(z) by L(x, z) on 
the boundary C of T. Let C have the representation 
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C = {z(t)/t [0, 1]), z(O) = z(l). 

Then the optimization problem (3) can be equivalently formulated in the following 
way (where we use the fact that S = {exp(is)/s E [0, 2wT))): 

Minimize yo subject to the constraints 
n n 

(6) Y0 + E Yr Re{wr(z(t))exp(is)} - E Yn+r Im{wr(z(t))exp(is)} 
r = I r=1 

> Re{f(z(t))exp(is)} for all (s, t) E [0, 27T) X [0, 1). 

Problems of this type ("Semi-infinite Programs", SIP's) appeared first in a paper by 
Charnes, Cooper, and Kortanek [5]. It is possible to solve (6) by the straightforward 
generalization of the Simplex method to the case of infinitely many constraints; see 
for example Carasso [4], Hoffmann and Klostermair [11]. 

An extension of Remez' second algorithm for certain SIP's is due to Gustafson 

[9]. Encouraging applications of this algorithm to approximation problems in two 
dimensions-which are very similar in structure to (6)-are reported by Andreassen 
and Watson [1]. A computer program (Fahlander [7]) which can be applied directly 
to (6) is available. 

We are not going into the details of the theory and numerics of SIP (cf. [8], [9], 
[10]) but will just develop the main ideas which are essential for a numerical 
procedure. 

3. Numerical Method and Examples. A very simple, but nevertheless efficient, 
method for obtaining good approximations of the solution of (6) is the following: 
instead of the infinite number of inequality constraints appearing in (6), make use 
of only finitely many of them. This means: choose a fixed finite subset Am of 
[0, 2?T) x [0, 1). For example, construct the following 'grid' 

Am {(Sj, tk)/j = 1, . ., 1, k = 1, ..., p}, 

where 

sj = 2T(j-1)/l, j=l,...,1, 

tk = (k - 1)/p, k = 1, ... ., p. 
Here I andp are fixed numbers, and m = pl. 

Now we consider the following Linear Program derived from (6): 

Minimize yo subject to the constraints 

(7) 2n 
E yra,(sj, tk) > b(sj, tk); j=1...,1, k = 1, . . ., p. 
r=O 

Here we use the notation 
[1, r = 0, 

(8) ar(s, t) = Re{wr(z(t))exp(is)}, r = 1, ... , 

-Im{ wr(z(t))exp(is) }, r = n + 1, ... , 2n, 

and 
b(s, t) = Re{f(z(t))exp(is)}. 

For our examples, which we describe below, we used a FORTRAN program, 
evaluating the functions ar and b by means of complex arithmetic. 
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We solved the dual of the LP (7) by a stabilized version of the Simplex method 
due to Bartels and Golub [3] using triangular factorization of basis matrices. It 
turned out that good approximations were obtained for rather coarse grids very 
efficiently. 

Example 1 (cf. [2]). Here it is required to approximate f(z) = 1 /(z - 2) on the 
disc lzl < 1 by a polynomial of degree n - 1 with real coefficients. In the table 
below we show three typical results which we obtained using a TR 440 AEG-Tele- 
funken computer (Computer Centre of the University of Hamburg). In all three 
examples the grid consisted of / x p = 33 x 51 = 1581 points. 

n: 3 5 7 

exactyo: 0.083333 0.020833 0.005208 

Yo 0.083311 0.020833 0.005207 
Yi -0.500018 -0.499999 -0.500003 

Y2 -0.250020 -0.250001 -0.249999 
Y3 -0.166653 -0.125001 -0.124996 

Y4 - -0.062499 -0.062505 

Ys - -0.041667 -0.031249 

Y6 - - -0.015622 
Y7 - - -0.010419 

CPU time: 2.46 4.52 9.13 
(sec) 

The number of Simplex-iterations (Phase I + Phase II) were 5 + 8 for the first 
example, 9 + 12 for the second, and 14 + 25 for the third one. 

Example 2. Conformal mapping onto the unit circle; cf. [12]. Here it is required 
to approximate the identity z on the boundary C of a region T by polynomials of 
higher degree. We treated this problem for a number of regions but just want to 
present the results for the most difficult of these, namely the L-shaped region 
shown in Figure 1. 

Di 

D=2/f5> 

D 

FIGURE 1 
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Symmetry considerations lead to the conclusion that the imaginary parts of the 
solution vector must vanish and that it is sufficient to approximate z on the part of 
the boundary which lies in the upper half plane. Thus, the problem is 

n 

Minimize max Z(t)- E YrZ(t)r+| 
Yi. **Yn te[O, 2] r=1 

where 

(1/2+ t)+ it, 0<t < 1/2, 
Z(t) = 2IV5 * (3/2 - t) + it, 1/2 < t < 1, 

(3/2 - t) + i (2 - t) 1 <t <2. 

Choosing 1 = 17, p = 51, and n = 9, we obtained the following results: 

y, = 0.858, Y2 = 0.159, Y3 = -3.237, y4 = 7.201, 

Y5 = -11.01, Y6 = 11.49, y7 = -9.039, y8 = 4.486, 

y9 = - 1.427. 

The minimal distance is yo = 0.4332; 14 + 38 Simplex-iterations were needed 
(7.58 sec. CPU-time). The resulting image of the upper part of the L-shaped region 
under the conformal mapping 

n 

Z -* Z E YrZ 

r= 1 

corresponding to our solution, is shown in Figure 2. 

v.44 

O.36 

.28 

.2 

0.12 

-0.56 -0.24( 0?04 0.56 

FIGURE 2 

It seems to us that this way of approximately computing conformal mappings for 
rather complicated domains is not very promising. Increase of n (up to n = 21) 
gave only very slow improvements of the result. 

Example 3. Complex Chebyshev polynomial of degree 8 on a rectangle; cf. [13]. 
This is the problem of approximating the monomial z8 by a polynomial of lower 
degree. T is chosen as the rectangle [-2, 2] x [-1, 1], and because of symmetry 
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arguments it is sufficient to consider the following problem: 

4 

Minimize max Z(t)8 - X YrZ(t)2 |) 
t -[O, 31 r=I 

where 

Z(t) 2+ it, O<t<l, 
1(3 -t) +i, I <t <35, 

and where the parameters y1, . . , y4 can be chosen as real numbers in advance. 
The following table shows some results of our computations for various grids Am 

with different grid sizes. 
The number of Simplex-iterations needed for the solution of the corresponding 

Linear Programs did not exceed 7 + 10 (Phase I + Phase II) and the CPU-time on 
the TR 440 did not exceed 3.08 sec. for any of the four problems. 

1 p m Yo YI Y2 Y3 Y4 

9 19 171 99.93 -13.91 45.78 -31.55 7.69 
9 150 1350 100.13 -15.08 44.76 -31.52 7.76 

17 87 1479 101.91 -14.79 46.60 -31.80 7.72 
34 43 1462 101.88 -15.18 46.09 -31.86 7.75 

'exact' solution 102.12 -15.17 46.33 -31.88 7.75 

We have computed other Chebyshev Polynomials (up to degree 10) on various 
regions of the plane, too. All these examples show the same behavior as the one 
above, with a total number of Simplex-iterations of maximal 7 + 15 on a grid of 
maximal 1500 points and computing times around 3 sec. 

We are now going to discuss the last row of the table above where the result of 
the computation of the 'exact' solution of the continuous problem is shown. 

We used the method developed by Gustafson [91, [1O]. We cannot describe this 
method in detail here. Let us just state that its main idea is the following. A 
nonlinear system of equations is constructed for the 'unknowns' yo, . ., y4 of the 
primal problem and the variables of the corresponding dual; cf. (5). In our case, 
this led to a system of 15 nonlinear equations for 15 variables. We solved this 
system numerically by Newton's method, using the solution of the discretized 
problems as starting vectors. Numerical convergence was observed after four 
iterations. 

The absolute value of the optimal error function attains its maximum at the 
following points ti (with corresponding phases si); cf. Figure 3: 

t, = 0.3163 s1 = 5.1345 

t2= 1 52= 1.2494 

t3 = 1.7954 s3 = 3.4424 

t4 = 3 S4= 0 
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