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Asymptotically Fast Factorization of Integers 

By John D. Dixon* 

Abstract. The paper describes a "probabilistic algorithm" for finding a factor of any large 
composite integer n (the required input is the integer n together with an auxiliary sequence 
of random numbers). It is proved that the expected number of operations which will be 
required is O(exp{ 83Qn n In In n)l/2)) for some constant f > 0. Asymptotically, this algo- 
rithm is much faster than any previously analyzed algorithm for factoring integers; earlier 
algorithms have all required O(na) operations where a > 1/5. 

1. Introduction. Recently there have been several proposals for very fast "proba- 
bilistic" tests for primality (see [9] and [12]), and in [7] it is shown that a result, 
which so far has only been proved on the assumption of the extended Riemann 
hypothesis, would imply that there is an almost as fast strictly deterministic 
algorithm to decide primality. These all test an integer n for primality in O(ln n)k 

time for some small integer k. 
This has led to a situation in which it is relatively easy to decide when an integer 

is composite but very difficult to find any proper factor. Indeed, in spite of 
considerable recent progress, algorithms for finding a factor of an integer known to 
be composite are comparatively slow. The best that has been proved for any 
published algorithm is that it is possible to factor an integer n in time O(n') with 
a > 1/5 (see [5, ?4.5.4], [11], [6] and [8]). In the present paper, we describe a class 
of algorithms for which it can be proved that "nearly all" will find a factor of an 
integer n in time O(exp f,8(ln n ln ln n)1"2)) for some constant ,8 > 0. This may be 
interpreted as a proof of the effectiveness of a "probabilistic" algorithm for 
factoring large integers. As it stands, however, in contrast to the primality tests 
mentioned above, the method seems to be more of theoretical than practical 
interest. 

2. The Algorithms. We shall consider a general family of algorithms which 
include (in a simplified form) the algorithm discussed in [5, pp. 351-353], where it 
is called "Factoring via continued fractions". Let n be an odd integer divisible by 
at least two primes (the prime power case is easily disposed of). Following 
Legendre, we know that there exist integers x and y which are relatively prime to n 
and such that X2 y2 (mod n) but x my or -y. For such integers GCD(n, x + y) 
is a proper factor of n. Our search for the integers x and y is carried out in two 
stages. First we look for squares z2 which are congruent (mod n) to integers whose 
prime factors all lie in some set P. Then we use relations between the exponents in 
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the factorization of these latter numbers to construct the desired x and y. This 
process is described more precisely as follows (v is a parameter which will be 
specified later). 

ALGORITHM AL. 

Initialization. L is a list of integers in the range [1, n], P = {1, * * * ,Ph) is the list 
of the h primes < v, and B and Z are initially empty lists (Z will be indexed by B). 

Step 1. If L is empty, then exit (algorithm unsuccessful); else let z be the first 
term in L, delete z from L, and go to Step 2. 

Step 2. Let w be the least positive remainder of Z2 (mod n). Factor w = w'111piP, 
where w' has no factor in P. If w' = 1, then go to Step 3; else go to Step 1. 

Step 3. Let a (- (a, . . . , ah). Adjoin a to B and z = Za to Z. If the list B has at 
most h elements, then go to Step 1; else go to Step 4. 

Step 4. Find the first vector c in B which is linearly dependent (mod 2) on earlier 
vectors in B. Delete c from B and zc from Z. Compute coefficients fb = 0 or 1 such 
that 

c fbb (mod 2). 
be3B 

Let 

d = (dl, . . . , dn) 2- I(c + E fbb) (a vector of integers) 

and go to Step 5. 
Step 5. Let x - kIIlb zfb and y <--,p4 (so x2 plip74 - y2 (mod n)). If x -y 

or -y (mod n), then go to Step 1; else return GCD(n, x + y) (a proper factor of n) 
and exit (algorithm successful). 

Now suppose that L has length N and consider the number of operations 
(comparable to arithmetic operations between pairs of integers the size of n) which 
are involved in the execution of AL. If we let Ni denote the number of times 
which AL executes Step i, then clearly N + 1 > N1 > N2 > N3 and N4 = N5 = 

max(N3 - h, 0). In Step 2, factorization of w requires 0(h ln n) operations since 
each ai < ln n. In Step 4, the determination of c and the calculation of the 
coefficients fb can be carried out by a Gaussian elimination and so require at most 
0(h3) operations. In Step 5, the GCD can be computed in O(ln n) operations; see 

[5]. 
Hence the number of operations carried out in the execution of AL is 

N10(l) + N20(h ln n) + N30(l) + N40(h3) + N50(h + ln n) 

= 0(N1h ln n + N4h3). 

Our remaining problem is to choose the parameters v and N such that: (i) the 
algorithms AL terminate successfully for nearly all lists L of length N, and (ii) the 
number of operations required is as small as possible. 

Let E(n, N) denote the set of all n N lists of length N consisting of integers from 
[1, n]. Then our main result is as follows. 
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THEOREM. Let n be an odd integer divisible by at least two distinct primes. Put 
v = exp{(2 In n In In n)1/2) and put N = [V2 + 1]. Then the average number of 
operations required in the execution of AL (L E e (n, N)) is 
O(exp{3(2 In n In In n)'!2)), and the proportion of algorithms AL which fail to find a 
proper factor of n is O(N -12) (uniformly in n). 

Remark. One can deduce from the theorem that, if L is an infinite random 
sequence of integers from the interval [1, n], then with probability 1 AL will factor 
n and it will find a factor within expected time O(exp{3(2 In n In In n)1'2)) (see [2] 
for a discussion of such "probabilistic" algorithms). One could simulate L using a 
quasi-random sequence, but it seems unlikely that this will give a method competi- 
tive with known methods within the present range of practical computation (Step 3 
seems to require O(h(In n)2) storage). Algorithm E of [5, p. 352] is an algorithm of 
type AL where L is chosen to (hopefully) minimize the number of times that Step 2 
is executed. Making certain plausible assumptions about the regularity of primes, 
Richard Schroeppel has given a heuristic argument which suggests that Algorithm 
E will require only O(exp{(2 In n In In n)l/2)) operations. He has also proposed 
another related algorithm which he estimates will require only 
O(exp{(ln n In In n)112)) operations. It is not clear to me how these heuristic 
arguments could be transformed into actual proofs of the performance of these 
algorithms, but the arguments certainly suggest that these methods should do better 
than the average behavior described in our theorem. [Schroeppel's results are 
unpublished, but are referred to in [10]. I am indebted to Professor R. L. Rivest 
who supplied me with Schroeppel's description of his algorithm and its analysis. 
Professor Rivest's helpful comments also improved the exposition of the present 
paper.] 

3. Proof of the Theorem. We shall begin with some general lemmas. For any 
positive real numbers u, v, let I(u, v) denote the number of positive integers k < u 
which have all prime divisors < v. Then de Bruijn [1] proves the following. 

LEMMA 1. I(Vvk, V) > (T(V)I k) for each integer k > 1 where 'zr(v) is the number of 
primes < v. 

The proof is almost immediate since the binomial coefficient counts the number 
of ways to choose sets of up to k integers (permitting repetitions) from among the 
first r(v) primes. Although better asymptotic estimates for I(u, v) are known (see 
[1] and [4]), they require conditions on u and v which cannot be verified to hold in 
our case. 

We shall suppose that n (which is odd) has the canonical prime factorization 

(1) n= ~~~~~qllq'22.. q} (d > 2). 

Let T(v) denote the set of '(n, v) positive integers < n which have all prime 
factors < v, and let Q be the integers relatively prime to n which are quadratic 
residues (mod n). 

The following results about Q are well known; see, for example, [13, Chapter V, 
?4]. An integer k lies in Q if and only if k is a quadratic residue (mod q/li) for 
i = 1, . .. , d. Moreover, if k and k' are quadratic residues (mod q/li), then kk' is 
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also a quadratic residue (mod q/i). Thus, to each integer k relatively prime to n, we 
can define a quadratic character x(k) = (e1, . .. , ed) with e; = 1 or -1 depending 
on whether k is or is not a quadratic residue (mod q/t). Then X has the following 
properties: (i) X(k) = (1, . . ., 1) if and only if k E Q; and (ii) X(k) = X(k') if and 
only if kk' E Q. Finally, if w E Q, then there are exactly 2d solutions to Z2 = W 

(mod n) with z E [1, n]. 
In Step 2 of the algorithm AL, we are concerned with the set M(v) consisting of 

all integers z E [1, n] such that Z2- w (mod n) for some w E T(v). If no prime 
p < v divides n, then IM(v)l = 2dIT(v) n Qj. 

LEMMA 2. There exists a constant co > 0 such that, for all positive integers n and r 
and real v > n 1/2r the conditions 

(i) c-1 ln n > r > ln ln n and 
(ii) all prime factors of n are > v 

together imply that IM(v)l > n(ln n)r. 

Remark. This bound is probably not very good. It seems reasonable to expect 
that IM(v)l is approximately equal to I(n, v), which would imply a lower bound 
better than n(ln n)-2r. An improvement of this type in Lemma 2 would give 
improved constants in the Theorem but leave the general form of the result 
unchanged. 

Proof. It follows from (ii) that the integers in T(v) are relatively prime to n and 
so we can partition T(v) into a union of disjoint subsets Ti (i = 1, ... , 2") 
corresponding to the 2d different possible values for X. Let T(t) denote the number 
of divisors of t and write S (respectively, S,) for the sum of T(t)-l taken over all 
t < v? with t E T(v) (respectively, t E T,). Similarly, let S' denote the sum of T(t) 
over all t < Vn- with t E T(v). Then the Cauchy-Schwarz inequality gives 

(2) n( , v)2 < SS' 

and 
2d 

(3) S2 < 2d SE2. 
i=1 

Also, it is well known (see [13, p. 52]) that 

(4) SI S T (t) < Vn In Vn + Vn < Vn In n 

for all n sufficiently large (for example, if c0 > 2 and (i) holds). 
On the other hand, i S/ = T<n c(t) where c(t) = z r(s)-r(s')' where the 

latter sum is taken over all pairs (s, s') such that ss' = t, s < V , s' < , and 
both s and s' lie in the same Ti. Since s, s' E T7 implies that X(s) = X(s'), it follows 
from the above that c(t) 7# 0 implies that t E Q. Moreover, if t E Q, then the 
inequality T(s)T(s') > T(SS') shows that c(t) < 1. Thus, 2 S.2 is a lower bound on 
the number of t E Q with t E T(v). Hence, 

(5) IT(v) n Ql > 2 s52 

Combining (2)-(5), we obtain (when c0 > 2) that 

(6) IM(v)l = 2dIT(v) n QI > n'`(ln n) 24(xf, V)4. 
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Now condition (i) implies that v > n 1/2, > eC0/2 and r > In c0. Therefore, if c0 is 
chosen sufficiently large, then (i) implies that v and r will both be large and so 

1T(v) > v(2 ln v)-1 and r! < (r/2)r. 

Then, by Lemma 1, we have 

*(V , v) > Tvrr! > v(r In v)r> AG n In n)- 

Hence, by (6) and (i), we have 

IM(v)l > 24rn(ln n)-4r-2 > n(ln n)-4r, 

as required. 
Now, for each L Ef E(n, N), we shall define a(L) Ef E(n, N) as the list whose ith 

term w is given by w _ 2 (mod n) where z is the ith term of L. For each L0, let 
[Lo] denote the set of all L E E(n, N) such that a(L) = a(Lo); these subsets form a 
partition of E(n, N). 

LEMMA 3. Let n have the factorization (1). Then, for each integer k, the proportion 
of algorithms AL (L Ef E(n, N)), which execute Step 5 more than k times, is at most 
2-k. 

Proof. Let us say that L is 'bad' if AL executes Step 5 more than k times. Then it 
is enough to show that if Lo is bad then at most 2-k of the lists in [Lo] are bad. 
Write z1 for the value of zC which occurs when ALO executes Step 5 for the jth time, 
and suppose that zj originally occurred as the ijth term in Lo. Then, for each 
L E [LO], the term z in the ijth position satisfies Z2 z=2 (mod n). Since each 
element in Q has exactly 2d square roots (mod n), [Lo] is partitioned into 2dk 

subsets of equal size where L and L' lie in the same subset if and only if they have 
the same terms at the positions il, . . . , ik, respectively. However, L E [Lo] is bad if 
and only if its terms at the positions il, . . ., ik are ?zj, . , ?Zk since the value 
for y in Step 5 only depends on a(L). Thus, the proportion of bad lists in [Lo] is 
2"/2"k < 2k , as asserted. 

Now consider the main theorem. We shall begin by proving that the second 
assertion of the theorem holds under the slightly weaker hypothesis n > N > 4hv. 
Denote by XL the number of w in a(L) lying in T(v) and observe that XL, as a 
random variable on the space &(n, N), has a binomial distribution with mean XN 
and variance X(1 - X)N where X (the probability of the event w E T(v)) satisfies 
X > (ln n)lr for n large enough by Lemma 2; see [3, Chapter 9]. By our choice of 
v, this shows that X > v-1. By Chebyshev's inequality, the proportion of L E 

C(n, N), for which XL < XN - c, is at most c-2X( - X)N for any c > 0. In 
particular, taking c = 2XN, we find that the proportion of algorithms ALS for which 
XL < c, is smaller than 2c-1. But, by the choice of N, we have c > v-14hv = 2h if 
n is large enough. Hence, if XL> c and AL fails to find a factor of n, then AL must 
execute Step 3 at least 2h times and Steps 4 and 5 at least h times. But then Lemma 
3 shows that the proportion of AL (L E f(n, N)), which are unsuccessful and have 
XL > c, is at most 2-h. Thus, the proportion of all AL (L E E(n, N)), which fail to 
find a factor of n, is at most 

2c-1 + 2-h = O(vN-1) + O(n-1) = O(N-1/2) 
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This proves the second assertion of the theorem. To complete the proof of the 
theorem we recall that in Section 2 we showed that the number of operations 
required in the execution of AL is 0(N1h ln n + N4h3). From what we have just 
proved, all but 0(v-1) of the AL will have found a proper factor of n with no more 
than 4hv + 2 executions of Step 1. Thus, the average value of N1h ln n is 

O(v-'(N + l)h ln n + (4hv + 2)n ln n) = 0(vh2 ln n) = o(V3) 

since h = 0(v/ln v). On the other hand, the average value of N4h3 is 0(h3) by 
Lemma 3. Thus, the average number of operations required by AL is O(v3), as 
asserted. 
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