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On a Fourth Order Accurate 
Implicit Finite Difference Scheme 
for Hyperbolic Conservation Laws: 

I. Nonstiff Strongly Dynamic Problems 

By Amiram Harten* and Hillel Tal-Ezer** 

Abstract. An implicit finite difference method of fourth order accuracy (in space and time) is 
introduced for the numerical solution of one-dimensional systems of hyperbolic conserva- 
tion laws. The basic form of this method is a straightforward generalization of the 
Crank-Nicholson scheme: it is a two-level scheme which is unconditionally stable and 
nondissipative. The scheme is compact, i.e., it uses only 3 mesh points at level t and 3 mesh 
points at level t + At. 

In this paper, the first in a series, we present a dissipative version of the basic method 
which is conditionally stable under the CFL (Courant-Friedrichs-Lewy) condition. This 
version is particularly useful for numerical solution of problems with strong but nonstiff 
dynamic features, where the CFL restriction is reasonable on accuracy grounds. 

Numerical results are presented to illustrate properties of the proposed scheme. 

I. Introduction. We consider here numerical solutions of a one-dimensional 
system of hyperbolic conservation laws 

(I. 1) wt + fw)." ? 

Here w(x, t) is an m-vector of unknowns and f(w) is a vector-valued function of m 
components. The system (1.1) is said to be (strictly) hyperbolic when all eigenval- 
ues al(w), . .. , a,,(w) of the Jacobian matrix 

(1.2) A (w) = gradw f 

are real and distinct; the eigenvalues ak(w) are also referred to as characteristic 
speeds. Throughout this paper we denote by vj2 = v(jAx, nAt) a discrete approxi- 
mation to solutions w(x, t) of (1.1), where Ax and At are the space and time 
increments, respectively. 

In this paper we present an implicit finite difference method of fourth order 
accuracy (in space and time, i.e., a 4-4 scheme) for the solution of (1.1). Such a 
method involves two subjects of much dispute: explicit methods versus implicit 
methods and higher order accuracy versus lower order accuracy. We can give 
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arguments in favor of both sides in this controversy (as a choice of "best scheme" 
is very much problem dependent), and we therefore refrain from making further 
comments on these issues. We refer the interested reader to the excellent review 
paper by Morton [13] for a description of recent developments and considerations 
in choosing a numerical scheme. We would also like to suggest a recent paper by 
Turkel [15] on evaluation of schemes with second order accuracy in time and 
fourth order accuracy in space (2-4 schemes), explicit as well as implicit. Beam and 
Warming [2] discuss pros and cons for using implicit schemes. 

In Section 2 we review the explicit fourth order accurate scheme of Abarbanel, 
Gottlieb, and Turkel [1], and the Crank-Nicholson type implicit schemes of Beam 
and Warming. 

In Section 3 we derive a two-level implicit fourth order accurate method which 
we consider to be a generalization of the Crank-Nicholson scheme-it is uncondi- 
tionally stable, nondissipative, and uses the same stencil of mesh points: 3 at level n 
and 3 at the advanced level n + 1. Analysis presented in this section, as well as 
numerical experiments not reported here, indicate that there are cases where the 
coefficient matrix is not invertible in the classical sense. Further analysis and 
description of algorithms that overcome this difficulty are deferred to future 
papers. 

In Section 4 we present a version of the basic method which is dissipative and 
conditionally stable under the CFL (Courant-Friedrichs-Lewy) condition 

(1.3) At iaxlak(w)l < 1. 

This algorithm is particularly useful for numerical solution of problems with strong 
but nonstiff dynamic features, i.e., where temporal derivatives are at least as large 
as spatial derivatives, but all characteristic speeds are of the same magnitude. 
Under such circumstances the CFL restriction (1.3) is acceptable on accuracy 
grounds. 

In Section 5 we discuss the variable coefficient case and in Section 6 the 
nonlinear case, where special attention is given to the computation of shock waves. 

II. Numerical Background. Abarbanel, Gottlieb, and Turkel [1] have recently 
developed three different versions of fully fourth order accurate (4-4 accuracy) 
explicit schemes for the solution of (1.1). Their best scheme is the following 
two-level, four-step algorithm: 

V(1) = .L,Vn _ a Adn 

(2) (3 2)Vn _ 

(2.1) v3 = (3- L2) v-AdVn 2) + t(1 - L2)fn] 

v(n+l) = v-n 1X[f(3) + 2,4[(2) + 2(2 - 12)j(1) + 1(3 - pA2),fl]n 

where ,u and 8 are the commonly used operators 

(2.2) ,LFj = 2(1+1/2 + FJ-1/2), aFj = Fj+ 1/2 Fj- 1/2, 

X = A t/zAx andfn = f(vn),f(i' = f(v(i)), i = 1, 2, 3. The explicit scheme (2.1) uses a 
centered stencil of mesh points: 5 points at level n and 1 point at level n + 1. The 
scheme (2.1) is dissipative and stable under the optimal CFL condition (1.3). 
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One constructs an implicit Crank-Nicholson type scheme for the solution of (1.1) 
by replacing the integral in the relation 

(2.3) n+1 =W +ft+tw,dt 

with a trapezoidal rule, i.e., 

(2.4a) wn+ 1 = wn +-( W n+ 
1) + 0((At)3) 

and then substituting (from the partial differential equation (1.1)) wt=-fx to 
obtain 

(2.4b) W~n+1 + 2tfn+l = Wn - 2tfxn + o((At)3). (2.4b) w = 
2w -yf + 

To introduce spatial discretization, we make use of the following finite difference 
operators 

(2.5a) 1x x + 0( 

(2.5b) x -f = fx + 0((AX)4). AX 1 + 26 

Approximatingfx in (2.4b) by the second order centered difference (2.5a) results 
in the nonlinear scheme 

(2.6a) v n+1 + A2 n+1 = Vn -_x X 3n 

which is second order accurate in time and space (2-2 scheme). 
Using the fourth order Pade formula (2.5b) to approximate fx in (2.4b), one 

obtains, upon clearing the denominator, the nonlinear scheme 

(2.6b) (1 + 32/6) vn1 ++ O n+1 = (1 + 82/6) vn - X jsf n. 

This scheme is second order accurate in time but fourth order accurate in space 
(2-4 scheme). 

Both schemes (2.6a) and (2.6b) are unconditionally stable, nondissipative and 
have the same stencil of mesh points: 3 points at level n and 3 points at level n + 1. 
Clearly, under most circumstances, it is preferable to use the more accurate 2-4 
scheme (2.6b) rather than the (2-2) scheme (2.6a) (see [15]), as there is a relatively 
small amount of extra work to be invested. 

One may linearize (2.6) by expandingfn+ ' around v' in the following way 

(2.7) ffl+l =ffn + An(Vn+l - vn) + 0((At)2). 

Denoting Av ' = vn+ _ vn, we rewrite the linearized (2.6) in the computationally 
convenient Av-formulation of Beam and Warming [2]; (2.6a) and (2.6b) become, 
respectively, 

(2.8a) ( + 
x 

) M 

(2.8b) (1 + 62/6 + 2 pAnAVn =-Xj8f n. 

Equations (2.8) constitute a block tridiagonal system of linear algebraic equations. 
This tridiagonal system of equations is diagonally dominant for CFL numbers 
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smaller than 2 in the 2-2 scheme (2.8a) and for CFL numbers smaller than 4/3 in 
the 2-4 scheme (2.8b); it can then be solved by an inexpensive direct LU factoriza- 
tion (see [9, pp. 55-61]). Analysis of the scalar constant coefficient case and 
numerical experience indicate that direct factorization without prohibitively large 
round-off error is possible for larger CFL numbers as well. (This is not the case 
when parabolic terms are added to (1.1); see [8].) 

The linearization of the schemes (2.6) increases memory storage requirement 
considerably; as a result, extension of these linearized schemes to multi-dimen- 
sional problems can be handled only by ADI (alternate direction) factorization or 
spatial operator splitting. One may attempt to solve the nonlinear scheme (2.6) 
directly by some iterative method. Gustafsson in [4] used a quasi-Newton iterative 
algorithm; it seems that this algorithm is always less efficient than linearization. 
Wirz, De Schutter, and Turi, in a recent paper [16], present a semi-implicit 
relaxation technique for the solution of the one-dimensional problem (1.1). The 
nonlinear 2-4 scheme (2.6b) is cleverly written as a system 

(2.9a) = 
j 2 j J J ) n = 0, .. 

(2.9b) (l + /6)P+ j Mjn+ = , j= 1, 2, . .., M-1 

Here P = -f,,/Ax. The solution to (2.9) is obtained by explicitly sweeping forward 
and backward on the bounded spatial direction. This procedure reduces the 
memory storage requirement at the expense of more flux computations. The merit 
of using (2.9) instead of linearization has yet to be evaluated. 

III. Basic 4-4 Formulation. In this section we derive and analyze a fully fourth 
order accurate variant of (2.8b). To obtain fourth order accuracy in time we 
discretize the integral in (2.3) by a trapezoidal rule with "end correction" (see [3, p. 
105]) 

(3.1) w ln+1 = w+ AWn + Wn + 12 (wn - n+ 

Next we substitute temporal derivatives into (3.1) by spatial derivatives via the 
differential equation (1.1), i.e., wt = -f wtt =-f, = -(Awt)x = (Afx), to get 

n+1 Atn+l n(At)l2 w+ At + 12 + 12 (A 

(3.2) A Lt __(At 'f.2 
Wn - 

_-fn +n +(A)+ O((At)5). 

To obtain fourth order accuracy in space, we approximate fX in the term Atfx/2 in 
(3.2) by the fourth order accurate Pade formula (2.5b), and we approximate the 
second order derivative (Af,)x by 

(Afx)x = 62 A6f + O((AX)2). 
(Ax) 

The last approximation is sufficiently accurate since the term (Afx)x is multiplied 
by (At)2, and it appears in (3.2) in a form of temporal difference, (Afx)xl+', which 
contributes another order in At. Upon clearing the denominator (1 + 82/6) in the 
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Pade approximation (2.5b) and neglecting the terms 

2 ( t) aA8fIn+' = 0((Lt)3(Lx)2) 

as being of the same order as the truncation error, we get the 4-4 scheme 

(1 + 8 2/6)v n + I + A , n + I + sA n + Isfn + 1 

(3.3) A 2 

= (1 + 32/6)V n - A ;fn + _3A nf n. 

Comparing the 4-4 scheme (3.3) with the 2-2 scheme (2.6a) and the 2-4 scheme 
(2.6b), we see that (3.3) can be regarded as a generalization of the other two. Since 
the 4-4 scheme uses the same stencil of mesh points as the 2-2 scheme and the 2-4 
scheme, and since this is the most compact stencil to achieve a 4-4 accuracy, we 
feel that referring to (3.3) as a compact scheme is justified. 

To linearize the scheme (3.3) and still preserve the temporal fourth order 
accuracy, we first obtain a second order accurate approximation v3 to the solution 
of (1.1) atleveln + 1 

(3.4a) = v + 0 

Then we expand fnf+ 1 and A n+ ' around v3 in the following way 

(3.4b) ff+l = f +iA(vn+l - v) + O(jjvn+' -vt12) _f+vAAvn + 

(3.4c) A = +((At),) 

where A = A(v), f = f(t), and f denotes f = f + A(v -v3) and as before Avn = 

v f+ - v . Using the linearization (3.4) in the scheme (3.3), we get the following 
A-form 

(3.5) /6 + OA + - 8ASA f) + 8 (A n8f A A 

We remark that one can also express w,, in (3.1) as w,, = (A2wx)x; this leads to a 
slightly different form of (3.5). 

Next we analyze the 4-4 scheme in the constant coefficient case 

w, + Awx = 0, A = constant matrix. 

In this casef(w) = Aw, therefore in (3.5) ff = f Av" and A = A _ A. Thus, for 
any method of computing v3 in (3.4a), the linearized scheme (3.5) becomes the same 
as (3.3) with f = Av, i.e., 

(3.6) (I + 82/6 + .AOt3 + ViA2o2)Vn+1 = + 82/6- jA,u8 + L A202)vn. 

We perform a Fourier analysis of the scalar case by substituting in (3.6) 

Vj = VIeikj-x V'e', 4 = kAx, I = n, n + 1. 

Let v = aAt/Ax denote the CFL number. The amplification factor g(t, v), defined 
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by vn+1 = g(t, V)V n iS 

I 1--(2 + v2)sin 2 -i -sin 
(3.7a) g(C, P = - 

(3.7a) ~ ~ ~ ~~I 1- (2 + V2)sin 2 + i 2 sin 

Thus, g(t, ') is the ratio of a number and its complex conjugate, and therefore 

(3.7b) I g(C, )I = 1, g(4, V) = e-i(f^) 
where (p(, v), the phase shift of the scheme per time step, is the following real 
number 

1 v sin 
(3.7c) (p2jn ]) = 2tg-' 

2 

1- (2 + v2)sin2- 

Just as for the 2-2 and the 2-4 schemes in (2.6), the 4-4 scheme is unconditionally 
stable, nondissipative, and its only error is a phase error. We point out again that 
the linear stability of (3.3) does not depend on the way v3 in (3.4a) is calculated. 

The finite difference operator on the LHS of (3.5) and (3.6), L,, can be rewritten 
in the constant coefficient case as 

(3.8) (L4v) 12 (v- 1)(v - 2)vj, 6 (- - 2)(v + 2)vj 

+ 12(p + 1)(v + 2) vj+. 

This finite difference operator gives rise to a tridiagonal coefficient matrix. It is 
easy to see that this matrix is diagonally dominant, and consequently nonsingular, 
if I I < 1. When diagonally dominant, the system of linear equation (3.5) can be 
safely solved by a direct LU factorization, since in this case the accumulation of 
round-off errors is not prohibitively large (see [9, pp. 55-61]). We remind the reader 
that the tridiagonal matrix coefficient of the 2-2 scheme (2.8a) is diagonally 
dominant when IPI < 2, and that of the 2-4 scheme (2.8b) is diagonally dominant 
when IPI < 4/3. It can be shown that even when diagonal dominance is lost, the 
coefficient matrices of the 2-2 and the 2-4 schemes remain nonsingular and that 
direct LU factorization is still possible. Unfortunately, this is not so for the 4-4 
scheme (3.5). 

The finite difference operator L, in (3.8) becomes singular when IvI = 1; this is 
easily seen from the fact that its Fourier symbol vanishes for Ivi = 1 and =7. 

Indeed, the mesh oscillation function Vj = e (-1y is an eigenfunction of LI 
with a zero eigenvalue. Consequently applying the 4-4 scheme (3.5) to problems 
with IvI > 1 may result in an ill-conditioned coefficient matrix, or even a singular 
one. This difficulty is not inherent in the method as indicated by the regularity of 
the amplification factor (3.7a) and the phase shift (3.7c) for all values of the CFL 
number. A more detailed analysis will be given in future papers; there we shall 
modify the 4-4 method so as to be applicable to problems which involve large CFL 
numbers, such as problems with parasitic stiffness (i.e. waves with negligible 
amplitude but large characteristic speed) and problems which involve marching to 
a steady state. 
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In the present paper, we consider possible applications to nonstiff problems with 
strongly dynamic features, i.e., where temporal derivatives are at least as large as 
spatial derivatives, but all waves have speeds of propagation of the same magnitude 
and have to be resolved equally well. In the next section, we shall present an 
inherently dissipative variant of (3.3) which is more robust. This scheme is condi- 
tionally stable under the CFL restriction (1.3), but for the type of problems 
considered here this is not overly restrictive since it is in any case needed by 
accuracy considerations. 

IV. Dissipative 4-4. Let L2 be a second order accurate finite difference approxi- 
mation to the solution operator of (1.1) 

(4.1) t3 = L2v" n "I 
= wn+l + O((At)3). 

Assuming f(w) and A(w) to be sufficiently smooth functions, we have from (4.1) 

(4.2a) f- f(v) = f(wn +) + O((At)3) n _A(v) = A(wn+') + O((At)3). 

Thus, 

(4.2b) SA f = SAn+lafAn+, + O((At)3 (AX)2). 

Therefore we can replace SA n + ldffl 1in (3.3) by &Aif without disrupting the fourth 
order accuracy of the scheme. Linearizing fn+l in (3.3) by (3.4b) and using (4.2b), 
we get 

(4.3) ( 1 +2/6 + -AjA ) =(A n -f A A^ 

where as before Avn = vn+ - vn, = f + A(vn - ). We observe that the coeffi- 
cient matrix in (4.3) is identical in structure to that of the 2-4 scheme (2.6b); this 
matrix is diagonally dominant for CFL numbers smaller than 4/3. 

Next, we study the linear stability of (4.4) by Fourier analysis. In the constant 
coefficient case f(w) = Aw, A = const, we have A = An A, f" = J-Av, and 
(4.3) becomes 

(4.4) (I - 62/6 + 
j I)Avn = _Vovn + 32(vn - v), 

where v is the CFL number. Substituting V= -Ve = Ve't, Vj= VeJ V= 

g2(9, v) Vn into (4.4), we obtain the following amplification factor 

iv sin 4 + 
I 

v2sin2 " (1 - g2(, )) 
(4.5) g(t, v) = 1 - - 2 

( 
1 -sin- + i-sin 

3 2 2 

Here g2(t, v) is the amplification factor of L2 in (4.1). 
We take L2 in (4.1) to be the explicit second order accurate Lax-Wendroff (LW) 

scheme (see [11]) 

(4.6) v = V + A282v 2 

The amplification factor of this scheme is 

(4.7) g2(U, v) = 1 - 22y - iv sin . 
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The amplitude of the amplification factor (4.5) with (4.7) is 

(4.8a) Ig(, v)I2= 1 - 4v4(1 - 2)y3 1 + vy 
(3 - 2y)2 + 9P2y(I - y) 

where y = sin2 (/2. Thus, the scheme (4.4), (4.6) is stable for IPI < 1. For small (, 

we get 

(4.8b) I g(t, P)I = 1 - 1 4(1- v2)6 + O(t7), 
288 

which shows that the scheme is dissipative of order 6. We note that the potentially 
harmful mesh oscillation mode vj = (-1)', corresponding to T = , is being damped 
by (4.4), for 0 K< I PIK 1, 

(4.8c) I g( V)I2 = 1- 4v4(1 -4). 

This mode is completely annihilated for -PI = 2' /4 , 0.84. The dissipation in the 
4-4 scheme (4.4) is generated by the dissipation in the LW scheme in (4.6), for 
which 

(4.9) Ig2(C, v)I2 = 1 - 4V2(1 - 2)Y2 
Comparing (4.9) with (4.8), we see that the basic properties of the LW dissipation 
are inherited by the 4-4 scheme. 

v= 0.75 v -0.95 

v = 0.25 v = 0.50 

FIGURE 1 

Amplification factor (4.8a) of the dissipative 4-4 scheme 

In Figure 1, we illustrate the nature of the dissipation in the 4-4 scheme (4.4) by 
polar plots of I g(q, P)I, 0 < 4 < 7, for v = 0.25, 0.50, 0.75, 0.95. The distance be- 
tween the curve of Ig(t,q )I and the unit semicircle measures the amount of 
dissipation in the scheme. Just as for the LW scheme (4.9), the dissipation in the 
4-4 scheme (4.8) vanishes for v = 0, I I = 1; therefore one should use a CFL 
number smaller than 1. From Figure 1 we see that a choice of v = 0.95 is a good 
one: it is very accurate for the long waves (see (4.8b)) but damps considerably the 
harmful short waves (see (4.8c)). The vanishing of the dissipation for v = 0 can 
cause nonlinear instabilities for the 4-4 scheme (4.4) as well as for the LW scheme; 
we shall discuss this difficulty in Section 6. 
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To study the phase error in the 4-4 scheme (4.4) we rewrite the amplification 
factor as 

g(t, P) _Ig(t, v) Ie-'('), 

where Tp(t, v) is a real number which describes the phase shift per time-step 
assigned by the schemes to a sinusoidal wave with wave-number {, and is given by 

2 
12,A + 4)2 -32+') (4.10) q(~, v) = tg-1[v sin 

- 
(2 + 3v2y + 3(2 - 2)y + 9 

+ (4.10)~~~~~ 
((, 4) t 

sn(Iy53 + (9B,2 _ 12 v4 + 4)y2 - 3(3 p2 + 4)Y + 9 ] 

Following [2], we illustrate the nature of the phase error in the 4-4 scheme by polar 
plots of 1p(9, V)/E, 0 < ( < T, where PE = akAt = vt is the phase shift per 
time-step in the exact spatially periodic solution of the scalar wave equation 
w, = awX = 0. In Figure 2 we compare the phase error of the dissipative 4-4 
scheme (4.10) with those of the nondissipative 4-4 (3.7c) and the 2-4 scheme (2.8b) 
for v = 0.25, 0.50, 0.75, 0.95. The deviation of the curves p/qE from the unit 
semicircle measures the relative phase error; P/PE < 1 signifies lagging phase 
error. Similar polar plots for the 2-2 scheme (2.8a) are available in [2]. 

v- 0.75 v-0.95 

v -0.25 v -0.50 

FIGuRE 2 
Relative phase error P/PE; -nondissipative 4-4, 
+ + + + dissipative 4-4, +-+-+-+ 2-4. 

We make the following observations about Figure 2: 
(1) The accuracy in phase of the 4-4 schemes, dissipative as well as nondissipa- 

tive, improves as the CFL number increases. In fact q = PE for v = 1. 
(2) The accuracy of the nondissipative 4-4 is slightly better than that of the 

dissipative 4-4, but both are of the same quality. 
(3) The accuracy of the 2-4 scheme is about the same as that of the 4-4 schemes 

for i < 0.25, but its accuracy deteriorates rapidly with increasing CFL number. 
The last statement was verified experimentally in more practical problems by 
Turkel in [151. 
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From a combined study of amplitude and phase error, we conclude that the best 
choice of a CFL number for the dissipative 4-4 is in a neighborhood of i = 0.95. 

V. Variable Coefficient Problems. In this section, we consider a hyperbolic 
variable coefficient problem of the form 

(5.1) w, + A(x)wx = 0. 

In this case, w, = -A(x)wx, w,, = A(x)[A(x)wxjx. To obtain fourth order accuracy 
in the spatial discretization, we approximate the term A(x)wx by a modified Pade 
formula 

(5.2) A(x)wx = 1Z A -Auw + 0 3Ax 1 + 82 /6 

and, just as before, it is sufficient to approximate the higher order term 
A(x)[A(x)wx]x by 

(5.3) A(x)[A(x)wx]x = ASA&w + 0( 
(AX)2O(x)) 

Rearranging terms, we get the following expression with a2 4= a4 1 = 1 for the 
nondissipative 4-4 scheme 

[1 + a2482/6 + 
x 

(4A - AIL)O + a44 ASAS Av' 

(5.4) 
A~~~~~~ 

= _3-(4pLA -AIA)8v 

The variable coefficient version of the 2-4 scheme (2.6b) is given by (5.4) with 
a24 = 1, at4, = 0. To simplify our programming, we considered (5.4) with a24 = 

a" = 0 to be the variable coefficient version of the 2-2 scheme (2.6a). In general, it 
would be simpler to replace the operator (4pA - A,u)6 in (5.4) by ApA to 
approximate A a/ax to second order accuracy. 

Proceeding as before, we obtain the following algorithm for the dissipative 4-4 
scheme (4.3) in the variable coefficient case 

(5.5a) v = Vn _AxA n + n 

[1 + 8 /6 + A(41L4 AIA)8 AvO 
(5.5b) 

- -3 (4A - A1)avn + A2 A8Ad(v V v) 

Comparing (5.5) with (5.4), we find that the explicit correction in the dissipative 4-4 
scheme causes an enlargement of the stencil of mesh points: the number of mesh 
points at the level n + 1 remains 3, but at the "explicit level" n it increases from 3 
to 5. However, the computational effort required in the dissipative 4-4 scheme is 
only slightly larger than that in the nondissipative 4-4 scheme, as all the terms in 
the RHS of (5.5a) must in any case be computed to set up (5.5b). By way of 
justification, we remark that adding an explicit dissipation term to the RHS of the 
nondissipative 4-4 scheme involves 7 mesh points at level n. 
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Next, we describe some numerical experiments with the periodic, scalar variable 
coefficient problem*** 

(5.6a) ' 2 + cosx 
with the initial data 

(5.6b) w(x, O) = 2 + sin(2x + sin x), - < x < 7, 

and the periodic boundary conditions 

(5.6c) w(- , t) = w(7r, t), t > 0. 

The exact solution to the problem (5.6a)-(5.6c) is given by 

(5.6d) w(x, t) = 2 + sin(2x + sin x - t). 
TABLE I 

Mesh refinement chart-variable coefficient problem (5.6) 

Error NONDISSIPATIVE 
2-2 RATIO 2-4 RATIO DISSIPATIVE 

( RATIO 4-4D (5I*) RATIO 
n;UI44455 4-4 (5.4) 

20; 19 2.290 x 10 1 ----- 2.370 x 10-2 ----- 8.188 x 10-3 ----- 5.978 x 10-3 

4.04 5.35 20.1 20.9 

40; 39 5.674 x 10-2 ..... 4.428 x 10-3 4.075 x 10-4 ----- 2.863 x 10-4 ----- 

4.13 4.38 17.4 17.6 

80; 79 1.374 x i0-2 ..... 1.011 x 10-3 _ 2.337 x 10-5 ----- 1.628 x 10-5 ----- 

4.08 4.13 16.6 16.7 

160; 159 3.369 x 10- 
3 

2.446 x 10-4 1.407 x 1 6 -----1 9.774 x 10- 7 ----- 

TABLE II 
Error accumulation-variable coefficient problem (5.6) 

Eror 2224Dissipative Nondissipative 
a 2-2 || 2-4 |i 4-4 (5.5) 4-4 (5.4) 

50 7.343 x 10-2 5.673 x 10-3 5.002 x 10-4 3.561 x 10-4 

100 1.343 x 10 1 1.121 x 10-2 7.867 x 10-4 5.787 x 10-4 

150 1.899 x 10o1 1.547 x io-2 1.142 x 10-3 8.373x 10-4 

200 2.510x 10 1 2.152 x 1o-2 1.554 x 10-3 1.143x 10-3 

250 3.393x 10 1 2.836 1o-2 2.020x 10-3 1.489x 10-3 

300 3.820x 10 1 3.397x 10-2 2.482 x 10-3 1.827 x 10-3 

Average -3 -4 -6 -6 
Accumulation 1.273 x 10 1.132 x 10 8.273 x 10 6.090 x 10 
Per Time Step 

***We thank Eli Turkel for suggesting this problem. 
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In Table I, we present a mesh refinement chart for the 2-2, 2-4, dissipative 4-4, 
and the nondissipative 4-4 schemes of this section. Table I shows a sequence of 
calculations with a constant CFL number P 

At A 
(5.7) v = x max ja(x)j = x 1 = 0.95; Ax = 27r/M, 

where the number of grid points is successively refined by a factor of 2. The 
relative L2-errors in Table I are computed at roughly the same physical time. 

3.0 

2.5 _ 

2.0 / 

1.5 

1.0 L 
-1.0L -2.4 -.8 X .8 214 40 

(a) Dissipative 4-4 

3.0 I X 

2.5 

2.0 

1.5 

1.0. 
-4.0 w-2.4 -.8 .8 2.4 4.0 

(b) Implicit 2-4 

3.0 x - X x 

2.5 F 3 

2.0 x t 

1.5 E E 

1 
4.0 - - . . . 

(c) Implicit 2-2 

FiGuRE3 3 
Solutions to the variable coefficient Problem (5.6) at t =92.76 (n = 600) 
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In Table II, we present error-accumulation data for the schemes in Table I. 
Table II shows the time history of the relative L2-error in a fixed mesh computation 
for n = 50, 100, 150, 200, 250, 300; Avt and Avx in this calculation are given by (5.7) 
with M = 39. In Figure 3, we plot the numerical solutions corresponding to 
n = 600 (t = 92.764) in Table II and compare them with the exact solution (5.6d). 
The exact solution is periodic in time with a period of 2,r, thus the results shown in 
Figure 3 correspond to 92.76/2r -t 14.8 periods of time. The relative L2-error used 
in Tables I and II is defined by 

(5.8) 1 Ax ( - )2 1 

where v; and wj are the numerical and exact solutions, respectively. 
We make the following observations regarding the data of the numerical experi- 

ments in Tables I and II and Figure 3: 
(1) Table I demonstrates that both the dissipative 4-4 (5.5) and the nondissipative 

4-4 ((5.4) with a24 = a4.4 = 1) schemes are fully fourth order accurate; a refine- 
ment by a factor of 2 reduces the error by a factor of approximately 16 = 24. Both 
schemes have the same quality of results, but the nondissipative 4-4 scheme is 
consistently better than the dissipative 4-4 scheme. 

(2) The 2-2 implicit scheme ((5.4) with X24 = a44 = 0) has very poor accuracy 
even for relatively fine meshes (such as 40 points for sin(2x + sin x), -'T < x < 7T). 

(3) The 2-4 scheme is about 10 times more accurate than the 2-2 scheme, but is 
much less accurate than the 4-4 schemes. To obtain an error of the order 104 in 
Table I, the 2-4 scheme uses M = 159, n = 160, while the 4-4 scheme achieves this 
accuracy with M = 39, n = 40. In this particular case, the 4-4 schemes are roughly 
12-14 times more computationally efficient than the 2-4 scheme. 

(4) Table II shows a linear accumulation of error for all schemes considered, thus 
indicating that even the nondissipative schemes are perfectly stable for this variable 
coefficient problem. In our opinion, the results in this table clearly demonstrate the 
usefulness of high order accuracy in long term fixed-mesh computations. 

VI. Nonlinear Problems. In this section we examine numerical solutions to 
nonlinear hyperbolic conservation laws (1.1) in both the scalar and the vector case. 
We consider the case where the 4-4 schemes are linearized around a solution of the 
one-step Lax-Wendroff scheme. In this case the nondissipative 4-4 scheme (3.5) 
takes the form 

(6.1a) v = V - + A 

(1 + 82/6 + -PA + X SAi)AVn 

(6.1b) X x2 
-2 -~-A(fn +1)3 +j-2 (A nSf A61). 

Similarly, the dissipative 4-4 scheme (4.3) with (4.1) takes the form 

(6.2a) v = V X + 2 8A 
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(6.2b) (1 6/6 + =A AVn -2 jPA(fn + f) + T2 8 (A nf n - A6h. 

As before, f = f + A(vn - 3), f = f(v), A = A(3). 
The choice of the one-step Lax-Wendroff scheme in (6.1) and (6.2) is the most 

natural one since its calculation involves terms which appear on the right-hand side 
of Eqs. (6. Ib) and (6.2b). This version of the 4-4 schemes uses two flux vector 
evaluations (fn and f) and two matrix function evaluations (A n and A). More 
efficient algorithms for (6.1) and (6.2), which use only one matrix and one flux 
vector evaluations, are possible (see Appendix A in [17]). 

The nonlinear case differs from the variable coefficient case in that both the 
dissipative 4-4 (6.2) and the nondissipative 4-4 (6.1) schemes have the same 
enlarged stencil of mesh points: 3 points at level n + 1 and 5 points at the 
"explicit" level n. Since the enlargement of the stencil in the nondissipative 4-4 
scheme is due to linearization and not to variation in space (as is evident upon 
comparing (6.1) with (5.4) and (3.3)), we expect it not to create major difficulties in 
practical applications of the scheme. 

We observe that both 4-4 schemes are in conservation form. This is self-evident 
from the fact that all terms except Avv in (6.1b) and (6.2b) have a 8 operator in 
front of them (note that ,AS = 8,u). This conservation form is of particular signifi- 
cance for the computation of shock waves, since it guarantees a correct propaga- 
tion of shock fronts; see [11]. 

Next, we describe some numerical experiments with the periodic nonlinear scalar 
problem 

(6.3a) wI + wwx =O, -so < x < so, t > O, 

with the initial data 

(6.3b) w(x, O) = d + sin x; d = const; -sT < x < so, 

and the periodic boundary condition 

(8.3c) W(-7T, t) = W(7T, t), t > 0. 

It is easy to see that for all values of d the solution to (6.3) is smooth up to t= 1, 
at which time a shock wave is formed. After formation this shock decays at a fast 
rate which is typical to periodic problems. (See Appendix B in [17] for a more 
detailed description of the solution to (6.3) and the semianalytic algorithm by 
which we compute it.) 

We first discuss the case d = 0 in (6.3b). Here, a stationary shock develops at 
t= 1 at the endpoints x = so and x = -'. Numerical experiments with the 2-2 

scheme (2.8a), the 2-4 scheme (2.8b) and the 4-4 schemes (6.1) and (6.2) show that 
in this case all schemes develop strong nonlinear instabilities after the formation of 
the shock. This nonlinear instability at stagnation points is well known for 
Lax-Wendroff type schemes, and is related to their lack of dissipation near zero 
eigenvalues; see [7], [12] and the references cited there. The occurrence of such 
nonlinear instabilities can be prevented by supplementing the scheme with a 
nonlinear dissipation term which does not vanish at stagnation points; see [12] and 
[6]. 
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TABLE III 

Mesh refinement chart-nonlinear problem (6.3) 

Eror DSIAIENONDISSIPATIVE 

F X;| | 22-2 (2.8a) RATIO 2-4 (2.8b) RATIO Di SS ATIV6E RATIO 4-4 (6.1) 
RATIO 

r ~ ~ ~ -- - -= - 

~~~~~~-3) -3 -3- 

5; 19 1.819 Y 10 _____ 4.936 x 10 
3 

2.125 x l 

3 ..... 2.439 x 10 _____ 

- 3.83 __ - _ _ 3_ _ 4.54 17.8 36.3 

10; 39 4.749 x 10 __ 1.087 x10 ___ 1.197 x 10 _____ 6.720 x 10 _____ 

- ____ _____ - --- ----- -- -- 4.03 - -- - - 4.23 - - - - - - 17.7 - - - - - 20.8 

20; 79 
1.178 x 10-3 ----- 2.572 x 10 

4 ..... 6.774 x 10o6 ..... 3.226 x 10 
6 ----- 

4.06 - ------ 4.11 - ? .- - - - 16.3 --- ------- - - --- 17.3 

40; 159 2.902 10X 

4 
6.263 x 10 4.027 10 1.860 X 10 

7 
--- 

We turn now to numerical experiments with d = 2 in (6.3). In this case the 
characteristic speed in (6.3) is always positive (the shock speed is 2) and we do not 
encounter nonlinear instabilities. In Table III, we present a mesh refinement chart 
for the 2-2 (2.8a), 2-4 (2.8b), dissipative 4-4 (6.2), and nondissipative 4-4 (6.1) 
schemes. Ax and At in this table are defined by 

(6.4) Ax = 27/M, Max1a(v)l = 0.95. 

The relative L2-errors (5.8) in this chart correspond to results at t z 0.51, at which 
the solution is still smooth. Table III clearly demonstrates the full fourth order 
accuracy of schemes (6.1) and (6.2). In Figures 4 and 5, we show numerical 
solutions of the dissipative 4-4 scheme (6.2), the 2-4 scheme (2.8b), and the one-step 
Lax-Wendroff scheme (6.la), and compare them with the exact solution. Ax and At 
in these calculations are given by (6.4) with M = 39. In Figure 4, we show these 
solutions at t = 1.25 (n = 25), a short time after the formation of the shock. In 
Figure 5, we show the results of these computations at t = 5.02 (n = 100), at which 
time the shock has decayed considerably. The solution of the 2-4 scheme (2.8b) in 
Figure 4(b) is oscillatory to the point of being meaningless. Similar results are 
obtained by other nondissipative schemes. 

Next, we describe numerical experiments with the following Riemann problem 
(shock tube) for the Eulerian equations of a polytropic gas: 

(6.5a) w(+f(w))=0, w (u|f(w)=uw+[P 

(6.5b) P = (y- 1)(E -pu2), 

(6.5c) w(x, 0) = W X 0 WL =l WR = 0.12 
WR, x >0 1~2.5J 10.25 J 
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Solutions to the npnlinear problem (6.3) at t = 1.25 (n = 25) 
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Solutions to the nonlinear problem (6.3) at t = 5.02 (n = 100) 
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Here, p, u, P, and E are the density, velocity, pressure and total energy respec- 
tively; m = pu is the momentum, A = 1.4. The exact solution of this Riemann 
problem consists of a shock propagating to the right, followed by a contact 
discontinuity, and a left propagating rarefaction wave. This exact solution is shown 
in Figures 6 and 7 by a continuous line. A more detailed analysis of the structure of 
the solution to this particular Riemann problem, as well as comparison of its 
numerical solution by various finite difference schemes, are available in a review 
paper by Sod [14]. In Figure 6, we show the solution of the dissipative 4-4 scheme 
(6.2); for sake of comparison we show in Figure 7 the solution of the one-step 
Lax-Wendroff scheme (6.1a). Both figures show the solution at t = 2.05 after 50 
time-steps with Ax = 0.1; At()" is determined at the beginning of each time-step by 

At 
max(I | + cjn) 

= 0.95, 

where c = (yP/p)"12 is the local sound speed. 

We make the following observations and remarks concerning the numerical 
solutions of the discontinuous weak solutions in Figures 5-8: 

(1) All numerical solutions in these figures produce correct propagation of 
discontinuities. 

(2) Nondissipative schemes cannot handle shock problems. In fact numerical 
solutions of the 2-2, 2-4, and 4-4 nondissipative schemes of this paper become 
unstable (in the sense of developing negative density and pressure) in the solution 
of the Riemann problem (6.5). 

(3) The 4-4 scheme produces sharp transition of discontinuities but with a long 
tail of post-shock oscillations. 

We conclude that the dissipative 4-4 scheme has sufficient dissipation to remain 
stable in the strongly nonlinear case but not enough to damp post-shock oscilla- 
tions in a satisfactory fashion. Some additional local dissipative mechanism is 
needed; such terms can be developed by hybridization techniques; see [5] and [2]. 

VII. Summary and Concluding Remarks. In this paper, the first in a series, we 
have presented a new implicit, compact, unconditionally stable, nondissipative, 4-4 
accurate scheme for the numerical solution of one-dimensional systems of hyper- 
bolic conservation laws. A more robust version of the basic scheme, which is 
dissipative and conditionally stable, was introduced for the solution of nonstiff 
strongly dynamic problems. These 4-4 accurate schemes take only about 25% more 
computing time per time-step per mesh point than the 2-4 accurate Beam and 
Warming scheme (2.8b). 

In this first paper, we have only explored some basic properties of the method- 
much more has to be done to make this 4-4 implicit scheme a viable computational 
tool. The immediate items to be investigated are: (1) stable and sufficiently 
accurate treatment of physically relevant boundary conditions, (2) better resolution 
of shock waves, and, most importantly, (3) efficient algorithms for multi-dimen- 
sional problems. 
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