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A Method of Calculation of Lifting Flows
Around Two-Dimensional Corner-Shaped Bodies

By M. Djaoua

Abstract. We study the flow problem of a perfect fluid around a two-dimensional corner-
shaped body. By adding a singular function to the basis, we obtain better accuracy for the
velocities, and we determine the lift with precision.

Introduction. In this paper, we study the flow problem of an incompressible
inviscible fluid around a two-dimensional corner-shaped body.

Generally, one uses the potential function of such a flow, which is the solution of
an exterior Neumann problem. Considering this solution as a single layer potential,
one then gets a Fredholm integral equation of the second kind on the boundary
which can be solved by collocation methods.

We shall use another approach. Let © represent the interior region of the body,
' the exterior one, and I' its boundary. Then, the stream function of the
perturbation flow, ¥, is the solution of the exterior Dirichlet problem

AV =0 in,
{ ¥=v¥, onl.
Yo is — ¥, ¥ being the stream function of the onset flow. This flow is usually
uniform.

We shall write the solution ¥ as a single layer potential with some additional
terms. We shall obtain the single layer potential by solving a variational problem
on the boundary, as Nedelec-Planchard did for the three-dimensional case and
M. N. Le Roux for the two-dimensional one.

The singularity of the solution near the corner and the Kutta-Joukowsky condi-
tion give the other terms and the value of the lift of such a potential.

1. Integral Equations for an Exterior Dirichlet Problem. We are given the
following problem:
[A¢ =0 in®,

(1.1) v=v, onT,

where €’ is the exterior domain of a corner-shaped body and T its boundary.

Grisvard’s results [1] allow us to define the Sobolev spaces on the boundary in
quite the same way as Lions and Magenes [2] for C* boundaries. Furthermore, the
spaces thus defined have properties which are quite similar to those of classical
Sobolev spaces [3].
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Given y, in the space H'/%T), let us consider a function u of H'(®), with
compact support, such that u = y, on I'. Problem (1.1) can then be written

[A(¢ —u)=-Au in,

(—u)=0 onT.
The variational formulation of this problem is
(1.2) f grad(y — u) - grad ¢ = —f grad u - grad ¢,
@ o

for all ¢ in some space of functions which vanish at the boundary.
The bilinear form in (1.2) is unfortunately not coercive in the space Hy():

du
); o
We then have to choose a smaller space by regularizing the behavior of the

functions at infinity.
Then we consider the weighted Sobolev space, introduced by M. N. Le Roux [4],

HN() = {u € L € LAX); ulp = 0].

(13) Wl(ﬂ,) = {lll, ;)—(—l_-l-_‘llfo—gp—) (S Lz(ﬂl); g—i (S Lz(ﬂ'),i = 1, 2},

where the weight p is given by p = (1 + r%)!'/2 Since the functions of W!(®) and
H () coincide locally, it makes sense to define

Wo(@)={y€ W' (@);¢=00nT}.
PROPOSITION 1.1. Problem (1.1) has a unique solution in the space W'(').

Proof. Using a Hardy inequality, one can prove [ 5] that the expression

1/2
(14) i = ( f lerad vP)
o
is a norm on W,('), equivalent to the “natural norm” of W ('), which is
2 2 1/2
191wy = ('—‘P—— > |2 ) .
p(1 + Log p) L) =1 ax; L)

The bilinear form (1.2) is then coercive on Wy(2), and by the Lax-Milgram
theorem, we obtain the existence and uniqueness of the solution. []
We shall now consider the same problem for the interior domain:

Ay =0 in{,
(1.5) {4/ =y, onT.
It is well known that this problem has a unique solution in the space H ().

Joining the solutions of Problems (1.1) and (1.5), we obtain a function y which,
since it is continuous at the boundary, belongs to the space

L6) W!(R? ={ N S
(1.6) (RY) = {¢ (1% Logp)

Any function ¢ being given in the space D (R?) of smooth functions with
compact support, we have

Ay, ¢y = _fnz grad ¢ - grad ¢,

€ L*(R?); g—f € LYR?,i =1, 2}.
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where ( -, ) represents the duality pairing between D ’(R2) and ) (R?). By using
Green’s formulas in £ and £’ [3], we obtain

9 0
LZ grad ¢ - grad ¢ = <8_:I: e a—ﬁ ext ¢|r>~

We denote by [dy/0n] the jump of the normal derivative of the solution across the
boundary. Since 9 (R?) is dense in W'(R?) [4], the equation is exact for all ¢ in
WIR?). It is then valid for the constants which are elements of W'(R?). Thus
[y /0n] has the following property:

BER

where { , > represents the duality pairing between H ~'/%T') and H '/*(T). Finally,
[3y /9n] is in the space

(1.7) Hy ') = {v € H™XT); <v, 1|y = 0}.

LemMA 1.1. For any given v in Hy 12T, the problem
Find y such that

[ grad y - grad ¢ = <o, ¢|r>, Vo € W'(R?)
R2

has a unique solution in W'(R?) /R.

(1.8)

Proof. It is a very easy consequence of the coercivity of the bilinear form on the
space W!(RY)/R[4]. O
Moreover, if v is very regular and if it satisfies (v, 1|r> = 0, the solution of (1.8)
is given by
1
(1.9) ¥(x) = =5 [ o()Loglx = ¥l dy, + C.

T

In order to solve our initial problem, it is then sufficient to know the value of o,
which determines ¢ as the sum of a single layer potential and a constant.

The symmetry of the left-hand side of (1.8) leads to the following theorem (proof
in [4]):

THEOREM 1.1. The expression (1.9) is an isomorphism of the space Ho_l/ XT) onto
K /R, where K = {y € W'\(R?); Ay = 0in Q and @'}. This isomorphism is associa-
ted with the following variational problem which is coercive in Hy "/*(T):

Find v € Hy "/*(T') such that
N — _1__ ’ _ —_ ’
(L10) 1l 0) =5 [ [ o(x)o'(y) Loglx = | dv.dy, = <o’ 4>

for all v’ € Hy V/%(T).

The left-hand side of (1.10) is a bilinear symmetric form on Ho'l/ XT) x Hy /D),
and the expression

ol = (=55 [, f o200 Loglx — 1 ety

is a norm on Hy '/X(T), equivalent to its definition norm. []
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Remark 1.1. The solution ¢ found in this paragraph is the stream function of a
nonlifting flow, since {v, 1|r>, which is a multiple of the lift, is set to be zero.
Nevertheless, it can also be interpreted as the electric potential in R? in the
presence of the conductor {; v then represents the electric chargeon I'. [

Remark 1.2. This approach to exterior problems, which leads to integral equa-
tions of the first kind and, by integration, to variational problems on the boundary,
was first introduced by Nedelec-Planchard [5] for a three-dimensional Dirichlet
problem. []

2. Approximation of the Nonlifting Flow. Theorem 1.1 shows that it is sufficient to
calculate the solution of Problem (1.10) to obtain the stream function ¢ by
Formula (1.9).

Since we want to use a finite element method to approximate the variational and
coercive problem (1.10), we are interested in the regularity of the solution of this
problem, or, which is the same, of the initial problem.

2.1. Some Regularity Results. Regularity properties of the solution are local.
Suppose Yy, is given in a “more regular” space-say H>/*}T). Then the solution ¢ of
Problem (1.1) will locally behave as a H%(2’) function, except in the vicinity of the
singular parts of the boundary.

It is then sufficient to consider the following interior problem:

Ay =0 inQ,
@.1) [ A
where Q represents a corner-shaped bounded domain in R2. The corner is assumed
to be linear, and the angle is set to be w, where w is a real number, greater than =
and less than 2 (if w < o, which means @ is convex, and if y, € H¥*(T), then ¢ is
in H%()).
We have then Grisvard’s fundamental theorem [1]:

THEOREM 2.1. Assume {, € H 3/XT). Then, the solution of Problem (2.1) has the
Jorm

¥ =ar"/® sin(-—ﬂ-g) + ¢,
w
where (r, 8) are polar coordinates with origin at the vertex of the corner, and
¢ € HXQ).

Remark 2.1. If {, is more regular—say in H s+3/2T), s > 0, the solution ¢ of
Problem (2.1) can be written as the sum of a regular function ¢ (in H***)) and
some singular functions, whose number and form are perfectly known [1].

FIGURE 1
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We know that the integral formulation is obtained by combining both exterior

and interior problems

AYy=0 inQand

2. ’
(2.2) { y=1q, onl.

Assume that the interior angle is acute and v, is in H 3/YT). The solution of
Problem (2.2) will be such that

Yo € HAQ), Y|g = ar'/f sin(%) + ¢ near the corner,

where ¢ is a function of H((Q)and 8 =2 — a.
The solution v of Problem (1.10), which is the jump of the normal derivative of
Y, will then be written in the following way near the corner:

W W 0 e, O | N
U= On i e’“_—aan(r Smﬁ +8n|in' on

ext’

Since the corner is supposed to be linear, we have

%(r'/ﬂ sin %) = r/B-1
Let v, be a distribution in Hy '/%T) such that v, = r/#~1 in the vicinity of the
corner. Thus,v = 4 - v, + V, where V € H () N Ho_l/ ).

2.2. The Discrete Problem. Let n be an integer and consider (n + 1) points on the
boundary I', (4,),—, . ,+1> such that

.....

A, = A,,, = vertex of the corner.

The points (4,),, ..., are assumed to be distinct.

We denote by T'; the arc 4,4, ,, and by T';, the associated chord with length A,
Let h be the maximum of (h);_, .  , and h, their minimum. We assume that
h/hy < c; c positive constant. Then we define the space

W, = {w,,: Whlr, = Ci=1,...,m; j; wydy, = 0}, ¢, constant,

where ', = U7_, I, and

(23) Vi = W, ® {v,}.

The approximate problem set in the so defined space V), then takes the form
Find v, € V,, such that

(2.4) J (0w 04) = _% ];hj;h (%) v, (¥)Log|x — yldv,(x)dy,(»)

= f O UondYy
T

h

where uy, is an approximation of ug, defined on T',,.
Since V,, is not included in Hy '/%(T), but in H; '/%T,), we need two mappings

r: V> H VYY),  p,:V,— Hy YX(T).
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The parametrization of I'; being given by
t-h

F(1) = {f.(t)i,’ t€[0,1],

we have the following parametrization of the approximate arc I'y, in local coordi-
nates:

Fy(t) = [:)'h"’ 1 €[0,1].

We then define

ryw, = wy, o F o F! forallw, € W,
dF

Pl == |= (W, © Fyy o F~')-h forallw, € W,.

We then extend these definitions to all v, € V), by setting, since v, has its support
in the common part of the boundary to I and T,

Tho = Ppo = Vo
LeEMMA 2.1. For any v, in V), we have the following inequalities:
(2.5) 1wl 2y < lowl 2,y < calrutnl L2y
(2.6) il Puval L2y < 0wl ) < €3] Pavnl 2y,
with c,, ¢,, ¢}, ¢; > 0.

Proof. We have

1 i
lonfiar,y = 2 f lo,* dy, = gl j(; |04 © Fip ——|dt
But
dF,| _ (B
ar | {o, } [f(,)

Since 0 is the first order interpolate of f;, there exist two constants a; and a, such
that

dE;| _| 4Fa
| g ' dr

|’h'—’h|1}(r) 2 f|"h'~’h|2 dy(x) = 2 f oy © thlz

i=1

dr;
?| ar ’

——| dt.

Then, with the previous inequalities, we obtain (2.5). In the same way

ldﬂh ?
- dt
| Phoal 2y = 2 f|'~’h° in ° il(x)|2 2 d

i=1 ,

= i f m(t)|2j‘d_;hl dF'h

2 dF,| |"dt
@
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Since

dF| | 4Fa
dt dt

o) a

dF,
dt "

we get
2 2
a2,y < | Pasl 2y < @gloylar,)-
Thus, we derive (2.6). []

LeMMA 2.2. For all v, € V,, the following inequalities, called inverse inequalities,
hold:

c
(2.7) lloull gor,y < h_s_—,”'—’h”m(r,,), -1<1<s<0.
Proof (A. Bamberger, personal communication). Let us prove (2.7) for 1 = -1

and s = 0. Thus, we obtain all the other cases by interpolation. We have

2.38) J, ¥

h

loall gr-1(r,) = max .
@) veu'\r, Y,

Let us construct a particular function ¥, which will of course minimize the
right-hand side of (2.8). Let us set
¥p, = ¥.
We shall then choose ¥, such that
", € Hy(Ty) (e ¥(4) = ¥,(4,,,) =0),

: j;m Y0, = fr,,,(vh)z’

d‘I’j dv - 1 -
. R 0 forany v € H,(T';,) such that flim v-v, = 0.
Such a choice is possible (and unique). Since ¥, € H{(T,,), we have, for h small
enough,

Il e,y < c|\I',.|,,r“ (c constant).

Thus,
N
3 [ @
losll gr-1¢r,y = € : = 7
N d‘I’i 2 /
(igl '/llih( dx ) )
and
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Let us now consider the function 8, the solution of the following problem:

8, € Hy(Ty)
(P) d%, onT
—— =0y -
dxz h ih

One can easily see that 6, verifies

dﬂi dv 1 =
. = 0 for any v € Hy(T';,) such that fl‘a. v-v, =0.

Thus, ¥, = A6, with

= i/ fr(%)
f, %) ()

Ty

oul-iry > e— -, .
s N |4 = ([ )

T dx

We then have

i=1
Suppose now that we could prove
(2.9) A< e

Thus,

2
”vh”H"(I‘,,) 2c

2
/)
h? ( > ch?||ogl| o),

and we get (2.7).
Let us then prove (2.9).
One can first notice that

= 2 2
A= ||'—’h||o,r,,,/||0i||1,r,,,-

But, since , is the solution of Problem (P,),

68, = J_ o0

ih

r ‘Dh . 0i j;‘ D’l . 0
10].r, = 75 < max i < cl|ogll -1
il,r, |0i|1,1‘,,, 0 € HiT) |0|1,r‘,.,, hll H =Y (Ty)
On the other hand,
f v, 0 db; .
2 o &
0ull gr-1ry = max = max —F—— < |0r..
#ILHHTw) seniTy 19lir, sericy 19hr, e
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Thus
lloallo,r,, lloallo,r,
N 0fg—m— 2,
! ||°h||—|,r,,, N 2 ”Dh”—l,l‘,,,
Now, by using the mapping given by £ = (x — x;)/h; and by defining the

functions 6, and &, by

6(%) = 6(x), (%) = v,(x),
we are led to the following problem:

_ d2éi
(P) dx?
6,0) = 6,1) = 0.

We can then easily derive that

= m%, *€]0,1],

}\i = K2 ”611”21,2(0, 1)
|0i|211€',(0, 1)
Let us consider the general problem
d*u
(Q) - E = F(x), x € (0, 1),
u(0) = u(1) =0,

and denote by R(F) the quantity

r(F) = 1o
|“|2115(0, 1)
We obtain
1 o
(2.10) A= ER(v,,).
1
We suppose now that b, = h foranyi = 1, ..., N. The calculations proceed in a

similar fashion in the case where this equality does not hold. Thus,
(x) = v(x; + hx), x €]0, 1.
Since v, = w; + v, (We can suppose that g, = 1),
(x) =0 + (x, + hx)""", x €]o, 1].
Let us define the vector space
9, ={g:g=a+ b(ih + hx)’"',a, b € R}.
We also have
§,={gsg=a+bli+x) " abeR}
which means that 9, is independent of 4. Hence
R(,) < R(%) = max R(g,).
One can prove that 9, for n # 0, can be identified to the space
5 = {8 8 =a+ bD,},
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where D, is defined by
_(n+ ) '~ (n+x)!
(n+1y ' =n?

D, is a convex function and the sequence {D,} is a convergent sequence in
CY0, 1], and D, - 1 — x uniformly on [0, 1].

1;

Dn(x)

1

Let us define function D by D(x) = 1 — x. Thus, the subspace 9, “converges” and
its limit is
$={g;g=a+b-D,a,beER}
For any function G of L%(0, 1), we are now led to consider the quantity

R*(G) = max R(a+ bG).
(a, b)ER?

We can prove that, for a sequence {G,} in L*0, 1) such that G, — G in L0, 1),
we have R*(G,) — R*(G). Thus, for h small enough, we shall have R*(9;) < ¢, for
i # 0 and, for i = 0, R*(9,) = ¢, We can deduce R*(Y;) < ¢ = max(c, c,;). By
(2.10), we then obtain A, < ¢/h?2, which was the desired result. []

Remark. We also have, by a similar proof,

c
(2.11) | Phoull ey < F”Ph"h”m(r)’ -1<1<s<0. O

LEMMA 2.3. For all v, in the space V), the following inequalities hold:
(2.12) | Puon = ratsl 2y < Ch2|°h|1.2(r),
(2.13) | non — nuoull -1y < ch® 2|0y g-12ry-

Proof. Inequality (2.19) is obtained as in [6], since v, is an element of LXT,). To
obtain (2.13), we note that

2
1 Paos — TaOull -2y < |PwOx = mh0nl iy < 7|0y ey
Using the inverse inequality (2.7) with s = 0 and 7 = -1, we get

2—-1/2
I Pan = Tu0ull -1y < B> V2|0l y-1ar,y- O

PROPOSITION 2.1. Assuming the boundary is smooth enough out of the singular
point, and v,, v, are two elements of V,, we have

(2.14) |a(Prvs, Pror) — @ (4, v3)| < Chzlvhle(I‘)lvllale(I‘)'
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Proof. Using the definitions of p, and of the bilinear forms a(-, -) and a,(-, *),
we get

, , 1 &
a(pyoy, Pyvy) — ay(vy, v;) = 5 >

fol fo " o (Fu(0)eh(Eps)

ij=1
F(t) — E(s)| |dF, | |dF,
Log |Fi(1) — F(s)| | | 25m | deds
|Fo(8) — Fy(s)| | @t || ds

By M. N. Le Roux [6], we know that
F.(t) — F(t
¢ |Fi(2) — F(1)| <ot
|F(2) — Fy(s)|
thus
|a(pyon PhOR) — a4y, 0)] < Ch2|"h'-’h|Lz(r)|’h0;.|L2(r)-

By using inequality (2.5), we then obtain (2.14). [

THEOREM 2.2. ELLIPTICITY OF THE APPROXIMATE PROBLEM. For h small enough,
there exists a positive constant B such that

(2.15) a,(vy, 0,) > Bl Pyl 312

This result leads to the existence and uniqueness (by the Lax-Milgram theorem)
of the approximate solution, which we can “compare” with the exact solution by
using the mappings defined above.

Proof of Theorem 2.2. By using (2.14), we have

a,(05 0,) > a(P40y, P40R) — k|0 oy
Since the bilinear form a(-, -) is coercive, one gets
a(pyos, Pr0y) > a1||Ph'-’h||3r'/2(r)~
Thus, by (2.6),
a,(vy, 1) > a|||PhUh||2H-'/2(r) - Chzlphvhlil"/z(l‘)'
Using now the inverse inequality (2.11), we get
a, (v, v;) > (al - Ch3/2)||Ph'-’h||12r'/2(I‘)’
so, for A small enough,
a,(vy, 0,) > Bllpyoullfi-ae O
2.3. Error Estimates.
THEOREM 2.3. Let v be the solution of the exact problem and v, the solution of the

approximate problem. Then, the following estimate holds:

- — Do 3/2
(2.16) o = Puoull -1y < C{ Ogg{,h[llv Putill -y + B 0p ey |

X +|¢o — ’h%h”ﬂ'/z(r)} .
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Proof. Let v, € V), and let us use (2.15). We obtain
Bl pu(vy — Ui’.)”2 < a,(v, — v;, v, — vy),
a,(v, — vy, v, — ;)
= a,(v,, v, — v;) — a(v, Prt, — Pyvy) + a(v — PhUhs PU, — P40y)
+ a( pyvs, PyOy — Py0R) — a, (v, v, — 0}).

Using the Estimates (2.11) and (2.14), and since v and v, are the solutions of the
continuous problem and of the discrete problem, we derive

Bl pu(vy — v;n)”il"/’(l") < |<‘P0h’ Op — v — <‘P0’Ph”h -thi'n>|
+ M ||v — oyl g2l Pror — PRl -2y

+Ch3/2|°;.|L’(r,,)||Ph(Uh - ”;.)||H-'/1(r)~
Thus,

’ ’ 3/2| .
| Pnos — Pavall -1y < C{"U — Posllg-ny + R / oAl L2cr,)

+ [<Wom s — 2> — {¥o P — Prop)| }
| Pron — PrOll -1y

The problem is then to estimate, for any x, € V,, the expression

<o Xn> — {do PrXn)|

| PAXnll 7172y

i j(;l (rdon — ‘Po)(F}(t))Phxh(F}(t))'%l at

i=1

2 fr (raon — Vo) * Py dv;

[<Wons %> — {do» PuXp)|

i=1
thus

[<ons %) — b PaXn)| < ¢l — ol mrrayll Prxall g -12¢)-
It follows that

| Pron — PrOwll a1
< cfllo = puopll g-vay + B¥2|0h| paryy + o — robonll ey )
and
lo = prosll < c{ o;lilelth[“U — Pathll oy + B0 ey ] + b0 — rh%h”m,,(r)},

which ends the proof. [
Remark 2.2. This result can easily be extended to the case of

M
Vi = Whﬂ__a] {v)s

where {v;},., .. a are the M first singularities, and w, is a space of polynomials
over I',. If T, is a union of p-polynomial arcs, we have the estimate
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0 = Putnll g-vay < c{ inf [llo = pyill + B+ 2l0j oy ]
VRLEV,

+lYo — ’h‘l’o;.”n'/z(r)}-

Thus, we gain precision by fitting the boundary better.
In order to bound each one of the quantities appearing in the right-hand side of
(2.16), we shall use the following result of M. N. Le Roux [6].

LEMMA 2.4. Let s, denote the orthogonal projection from LXT) on W,. Then, we
obtain the following inequality

(2.17) W = Wil g2y < ch** Wil grory
for 0 <s < 1landw € H*().

THEOREM 2.4. Let v be the solution of Problem (1.10) and v, be the solution of
Problem (2.4); then,

@ 18) = PuOill g2y < C{h”l/z”WHm(r) + h3/2(|ao°o|1}(r) + |W|L2(r))

+1¥o — mudonll a2y}

for =3 <s < 1andv=ay,+ w.

Proof. By Theorem 2.3, we have the estimate
3/2|,./
lo = Pavall g -12y < C{ o;’I‘IEIth[Ilv = PuOill g2y + A / |°h|L2(I‘,,)]

+l1¥o = radonll}-

Let us choose a particular v, in the following way: v can be written as v = ggv, +
w. Thus, s,w, € r, W, and there exists some w, € W, such that s,w = r,w,. We
then consider

v, = agy + W,
lo = Puoall -2y < W = PuWill -2y
< |lw = Wl g-va@y + 15Wh = PuWall -1
But
1w = sywll g2y < ch** V2wl oy (by Lemma 2.4),
Iraws = PaWall -2y < €h*2lwy| e,y < b2 W] 2oy
since w, € W, [6] and r,w, = s,w. Thus
lo = Pyopll 12y < Ch”l/2||w||us(r) + h3/2|W|L2(r)-
On the other hand,
[oal e,y < lagvol ar,y + Wil e,y < laovol Ly + W L2y
since r,w, = s,w. We can then obtain
lo = Proull g-ray < C{h”l/z”W”m(r) + h3/2(|aovo|1}(r) + Wl 2ry)
+l¥o — ’h%h”u'/z(r)}- O
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THEOREM 2.5. For all x such that d(x,T) > 6 > 0 and for h small enough, the
following estimates hold, for 0 <s < 1,

[¥(x) — ()| < d(): T {F*(lagvol 12y + W] 2y + o — mutbonll L2y

(2.19)
+h W ey + Bl — bonll vy >
[D%Y(x) — DYy(x)|

(2.20) < ¢ 2 X s+1
S d(x, l")l"| {h (Iagvol 2y + Wl a@y) + B* (Wl oy

+1¥o — m¥oull 2y + Ry — ’h%h||11'/2(r)}~
Proof. First, we shall bound ||v — p,v,ll g- 11y
{0 = Pyt )
lo = putull oy = sup  ~— =5
sEH\(D) ”4’"1{'([‘)
Since the singular function v, € L*T), the mapping

1
4:0— 5 [ o(y)Loglx = ¥l dr(»)

defines an isomorphism from LXT) = L¥T) n Hy *T) onto H'(T)/R. There-
fore,

[<v = P40y, 48|

lo = Paosll g-1ay < ¢ sup

gELg(r) " g" LX)
a(v — p,v,,

<ec sup la(v — pyoy 8)|
ge L) ” g”L’(I‘)

Let s,g be the projection of g on r, W,,. Then, 5,8 = r,G,, G, € W,; thus,
a(v — PnOps g) =a(v - Pny> 8 — PhGh) + a(v — Dy, PvGy)-
By using (2.13), we get for the first term
la(v — pyvy, & — PG| < Chl/z"” = Puoull -2l 81l L2y
The second term can be written
a(v = puoy, PrGy) = ¥ PrGy> — dow G> + ay(vy, G,) — a( P04, P, Gy)
= Yo = w¥on PnGs> + a4(vy, Gy) — a(p,vy, P4 Gy)-
Thus, by using (2.14), we obtain
|a(v = Pyoy, PG| < Yo — rwonll 2@ll Gl 2,y + Ch2||Uh||L2(r,,)||Gh||L2(r,,)~
Then
lo — Paoall -1
(2.21) < {hl/2 _ + _ + A2
S¢ lo = Prosll g-12@y + 1Yo — radonll 2y ||Uh||L2(r,,)}~

We can now write
v = agoy + W, U, = Qg0 + Wy,

40) = () = 5 [ () Loglx =l dy, + 5 [ w(3)Loglx — y1 ()

- -2-1;(a0 - aOh)-l;* vo(y)Log|x — y| dy(y)-
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By an easy computation using replacement of variables (defined by functions F;
and F,), we obtain

V) = () = =37 [ (0 = P00 Lolx = ] dr(»)

() th
= -5 wy(F,,(1))Log E %\ dt.

;gl f h( h( )) | F(t)l
Using the fact that d(x, I') > § > 0, we get

lx - F;h(t)l 2 1

— | <

|L°g =Rl | <" a5 D
and
l B xh(t)l Ch2
3 2 f wh( h(t))L g I F(t)l dt = d(x, r) ”WllLZ(r).

On the other hand,

—2—; fr (v = pyo,)(») Log|x —

and

<o - PhUh”H-'(r)”LOglx = Yl ey

c

[[Log|x — ¥l ey < -d(x—,l“)-’

by the Taylor formula.
Regrouping all these results and using (2.21), we obtain

[W(x) — ()| < d(x, F) {h”l Wl grory + hl/z”% = Ioull w2y

+ w0 — ronll 2y + A2(|agvol 12y + |W|L’(F))}’
which is the Estimate (2.19).
(2.20) is obtained in the same way, by remarking that

grad ¢(x) = f (y)| |2 (),

grad ¢,(x) = = f ()= I’ dy(y). O

|x

Remark 2.3. By a better fitting of the boundary (by piecewise p-polynomial
functions), if we use the approximation space V, = W, @1, {v,}, with a suffi-
cient number of singular functions and if W, is the space of piecewise k-poly-
nomial functions over I';, we obtain an order of error in #**! + h**2, The optimal
error is then obtained whenp = k + 1 (in our case,p = 1, k = 0).

Remark 2.4. We have no error estimates in the vicinity of the boundary. That is
because grad i is discontinuous at the points of I', while grad i, is discontinuous at
the points of T,.

3. Approximation of the Lifting Flow. The stream function ¢ of the flow is the
solution of the following problem:
Ay =0 in@,
Yy=4q, onl.
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Since the lift is nonzero, the behavior of the stream function is logarithmic at
infinity. We can then try to solve this problem in a space allowing such a behavior.

First, we prolong ¢ to & by the solution of the interior problem, and we try to
solve simultaneously both problems
G.1) Ay=0 inQand Q,

y=1¢, onl.

The following space, introduced by Giroire [7], allows logarithmic behaviors
1/2 Ju

u 2(m2 2\—1/2 OU 2R2) i —
1+r2€L(R),(l+r) ax,.EL(R)" 1,2}.

W (R?) = { e D'(®RY);

In Section 1, we solved Problem (3.1) in the space W'(R?) by integral equations.
But in the space W! ,(R?), Problem (3.1) has an infinity of solutions. One of them is
the (unique) solution which is in W'(R?). Let us denote it by ;.

We consider now the particular function ¢, defined by

1
#(x) = ~3.. [ Loglx — »|dv(»).
¢ is not in W!(R?). Let ¢ be the unique solution, in W '(R?), of the problem

(2) {é¢= 0 inQand ),
¢=¢ onl.

¢ — ¢ is a nonzero function of w! (R?. The following result, due to Giroire [7],
enables us to find all the solutions of Problem (3.1):

THEOREM 3.1. Each solution  of Problem (3.1), in the space W! (R, can be
written as follows:

(3.3) Y=y, + o~ 9)

The problem is then to determine the value of A corresponding to the physical
solution of the lifting flow problem.
By the regularity results of Theorem 2.1, we know that

= arV/® sin£+¢ in @,
L a T
- Y s
é = br'/ sin — + ey in @,

where ar is the exterior angle and ¢,, é,eg € H2(Q). ¢ is regular (ie.,in HZ(Q)
and H*(Q)), since we have [0¢/0n] = 1. (3.3) then takes the following form:

(3.9) Y= ¢, + N — breg) + (@ — AD)r'/*sin % inQ.

On the other hand, y € H?(R), since the interior angle is less than 7.

The existence of the singular part in (3.4) leads to infinite velocities near the
corner (the velocity behaves as r'/®~1), which are not physically feasible. The
well-known Kutta-Joukowsky condition can then be stated as follows:

THEOREM 3.2. There exists a unique flow, determined by the value of its lift, which
leads to a finite velocity at the corner.
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The proof of this theorem can be found in the Appendix.

This result means that b % 0 and A = a/b. The first way to calculate the
solution is to solve both Problems (3.1) and (3.2) in W!(R?), deduce the value of A,
and then, by (3.4), the solution ¢ of the lifting flow problem.

But, in order to avoid division by b (which can be small) and to solve one
problem instead of two, we shall use another way.

Let us consider the jump of the normal derivative of the solution

W W, 3¢ 3;1;
EIRE R
We know that [d¢/0n] = 1, and that

[} (8] <o

We then have [dy/dn] = v + A, where we denote by v the quantity [0y, /dn] —
Ad¢/dn]. v is then the unique solution of the integral equation problem, in
Hg V/A(T),

! : o v —
= 57 S [ o) () Loglx = | dv,dy, = (o', 4o = A0).

We use the discretization introduced in Subsection 2.2. The discrete problem can
be written as follows:

Find v, € V,, such that

1
(3.5) 30 L. [ en()0i()Loglx = ylav,(x)dny(»)
= (v Yor — AP, Yy, E V.

Since V,, = {v,} @D W, let us denote by {v;},., ... ,_, a basis of W,

.....

j=1

By writing (3.5) for each element of the basis of ¥V, (i.e., foreach v;, j=0,1,...,
n — 1), we have

n—1
(3.6) Y aa,(v, 1) + Xy, ¢ = v, ¥, forj=0,1,...,n—1
i=0

The discrete problem is then a linear system of n equations with n + 1 unknowns,
since A is unknown. But, by the Kutta-Joukowsky condition, we know that a, has
to vanish since a nonvanishing a; would lead to infinite velocities at the corner. By
setting a, = 0, we get a linear system of » equations with » unknowns, but we lose
the symmetry of the problem.

Remark 3.1. The flow studied in this paper is the perturbation flow. The stream
function of the total flow ¢ is then

\pT = \p + Ipoo‘
The tangential component of the velocity (which represents the entire velocity since
the normal component has to vanish at the boundary) is given by the normal



422 M. DJAOUA

derivative of the stream function. Let us denote it by u:

“= Ton +8n_ on +[5]+ on ’

where v, is the stream function of the interior flow. y,,, is the solution of the
following problem:

AYy=0 inQ,
¢y=-y, onl.

We have then y;,, = -y, in Q, because of the uniqueness of the interior Dirichlet
problem. Thus,

_ e (W] Wy _[3¥
“= on +[E]— on’ “‘[5]’
The jump of the normal derivative of the stream function is the velocity of the flow.
This very important result shows that, by this method, we compute both the

velocity of the flow and its lift, by solving a unique problem.

4. Some Numerical Results. The greatest numerical difficulties arise in the
calculation of the first row (and first column) matrix coefficients. These coeffi-
cients, which depend on the singular basic function vy, lead to the calculation of
the following integrals:

4.1 f Log|s — 1] dt.
4B
(4.2) f t1/0=1Log|s — ¢| dt.
AB

These integrals have to be calculated as precisely as possible, even exactly if
possible, since we have to integrate these quantities over a segment a second time.
We also note that the error estimates we obtained in Section 2 assume that there is
no error in the computation of the coefficients.

The details of these calculations can be found in [3]. Let us just say that we use
an analytic calculation when it can be performed (for (4.1)), and a very precise
numerical integration—with mesh refinements—otherwise. These calculations con-
stitute the greatest part of the computational time.

We first solved numerically our problem in a domain £ for which the boundary
I" was constructed by connecting smoothly two segments making an angle with a
circular arc.
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The solution Y, being given on the boundary I', we cannot generally know the
exact solution anywhere else. We have no error estimates on the boundary.

Estimates (2.19) and (2.20), and a previous work [8], allow us to think that the
greatest imprecision will affect the computed values on the boundary.

Thus, we compare the exact values and the computed ones on some points of the
boundary, and we compare as well the exact values and the values computed
without the use of a singular basis function. In this last case, the error is much
worse on the corner point than on the other points. By using the singular basis
function, we bring the value of the error on the corner point near its value on the
other points.

TABLE 4.1
Angle of 18 degrees
with the singular without the singular
basis function basis function
Nb. of F. E. in the error on average error on average

discretization the corner error the corner error

15 3.3% 0.5% 14.6% 1.6%
25 1.3% 0.17% 10.6% 0.75%
50 2.5% 0.1% 7.5% 0.26%

The improvement due to the introduction of a singular basis function is then
very important on the corner. This can be easily seen for an angle of 9 degrees: the
error with 8 Finite Elements using a singular basis function is the same as that with
100 Finite Elements without using the singular basis function.

TABLE 4.2
Angle of 9 degrees. Error on the corner point
Nb. of F. E. wif.h sing. withf)nt sing.
basis funct. basis funct.
8 5% 19.4%
15 0.5% 15%
25 0.71% 10.5%
50 0.58% 7.8%
100 0.43% 5%

The second type of domain is a Karmann-Trefftz one, obtained by transforming
a circle by a conformal mapping. Trivial harmonic solutions of exterior problems
are given by logarithms. Their transformation by a conformal mapping leads to
singular solutions.

The use of the singular basis function greatly improves the computed solution;
see Table 4.3.
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TABLE 4.3
Karmann-Trefftz profile with interior angle of 9 degrees
solution with solution without
sing. basis funct. sing. basis funct.
error on the 5.3% 24.6%
corner point
error on the 0.76% 41%
next point
average
error 0.7% 2.6%

In conclusion, we can say that this method gives a precision which is comparable
near or far from the corner.

The numerical results show very important improvements near the corner. These
improvements are more important when the corner is sharp, which is the case of
the physical problem. Therefore, it is worthwhile to carry on these numerical tests.

Appendix. Proof of Theorem 3.2. We obtain the desired result if we prove that
¢ & H2Z(Q), (i.c., that b # 0).

By denoting ® = ¢ — &, we notice that ® is a solution of the following problem,
in the space W' (2),

(P) { i@ =OO in &/,
= onT.

By applying Theorem 3.1, we can easily see that all the solutions in W' ,(Q), of
Problem (P), are multiples of ®. Actually, if @, is a solution of (P), Theorem 3.1
shows that ®, = ®, + A®, where ®, is the solution of (P) in Wy(®). Thus, ®, =0
and @&, = AD.

If we consider now the unit circle y and its exterior domain «’, we have the
function p defined by p(z) = Log|z|, which is a solution of the problem

Ap=0 ind,
() { p=0 on y.
p is the real part of the holomorphic function n(z) = Log z.
There exists a conformal mapping H from the exterior domain ' onto the

exterior domain ’. Moreover, we can expand H ~! at the vicinity of the corner
(z = 0) in the following way [9]:

v P

H '(z)=1+a;z"*+ ..., witha, #0.
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The function B(z) = n o H !(z) is a holomorphic function. Its real part is then
harmonic and vanishes on the boundary T, since n vanishes on y. Then

® = Re( )

is a solution of Problem (P), in the space W! (). Thus, ® =A@, A # 0. We can
even assume that ® = ®. Thus,

® = Re(n  H '(z)) = Re(Log(1 + az"/* + ...)),
® = Re(az'/* + ...).

The singularity coefficient of the function does not vanish since a, # 0. Theorem
3.2 is then proved. [
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