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A Method of Calculation of Lifting Flows 
Around Two-Dimensional Corner-Shaped Bodies 

By M. Djaoua 

Abstact. We study the flow problem of a perfect fluid around a two-dimensional corner- 
shaped body. By adding a singular function to the basis, we obtain better accuracy for the 
velocities, and we determine the lift with precision. 

Introduction. In this paper, we study the flow problem of an incompressible 
inviscible fluid around a two-dimensional corner-shaped body. 

Generally, one uses the potential function of such a flow, which is the solution of 
an exterior Neumann problem. Considering this solution as a single layer potential, 
one then gets a Fredholm integral equation of the second kind on the boundary 
which can be solved by collocation methods. 

We shall use another approach. Let Q represent the interior region of the body, 
Q' the exterior one, and r its boundary. Then, the stream function of the 
perturbation flow, I, is the solution of the exterior Dirichlet problem 

A*t = O in O', 

{ =*O onr. 

40 is- 00, *I' being the stream function of the onset flow. This flow is usually 
uniform. 

We shall write the solution ' as a single layer potential with some additional 
terms. We shall obtain the single layer potential by solving a variational problem 
on the boundary, as Nedelec-Planchard did for the three-dimensional case and 
M. N. Le Roux for the two-dimensional one. 

The singularity of the solution near the corner and the Kutta-Joukowsky condi- 
tion give the other terms and the value of the lift of such a potential. 

1. Integral Equations for an Exterior Dimrchlet Problem. We are given the 
following problem: 

(.)( A= 0 in f', 

(1.1 = 10 onr, 

where Q' is the exterior domain of a corner-shaped body and r its boundary. 
Grisvard's results [1] allow us to define the Sobolev spaces on the boundary in 

quite the same way as Lions and Magenes [2] for e' boundaries. Furthermore, the 
spaces thus defined have properties which are quite similar to those of classical 
Sobolev spaces [3]. 
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Given 410 in the space H 112(r), let us consider a function u of H '(02), with 
compact support, such that u = 410 on r. Problem (1.1) can then be written 

A( - u) = -Au in Q', 
t (4 - u) = O onr. 

The variational formulation of this problem is 

(1.2) f grad(4/ - u). grad+=-f grad u* grad+, 

for all 4 in some space of functions which vanish at the boundary. 
The bilinear form in (1.2) is unfortunately not coercive in the space Ho(9) 

Ho(') = V" E L2(2'); au L2(2'); uij = 01. 

We then have to choose a smaller space by regularizing the behavior of the 
functions at infinity. 

Then we consider the weighted Sobolev space, introduced by M. N. Le Roux [4], 

(1.3) W I(SI') =(x2; (I - )E L2(02'); aA E L2(g,), i = 1, 2}, (1.3) W(~i2')= jj'~p(l + Log p) 8x, 

where the weight p is given by p = (1 + r2)'12. Since the functions of W'(I') and 
H I(Q') coincide locally, it makes sense to define 

Wo'(Q) = {41 E W'(Q'); 4 = 0 on r). 
PROPOSITION 1.1. Problem (1.1) has a unique solution in the space W'(i'). 

Proof. Using a Hardy inequality, one can prove [ 5] that the expression 

I/2 
(1.4) II II = ( grad 4i12 

is a norm on WoJ(Q'), equivalent to the "natural norm" of W'(i'), which is 

114'II = ( _ _ _ _ _ _ 

2 2 
a p 2 

1 2 

( p(l + Log P) L2(S2) I I IaXi L2(Y)J 

The bilinear form (1.2) is then coercive on Wo2'), and by the Lax-Milgram 
theorem, we obtain the existence and uniqueness of the solution. El 

We shall now consider the same problem for the interior domain: 

(1 { ~~~~~~A4/ = 0 in S2, 
1.5) J+= OninQ, 

t 
1 = 410 on r. 

It is well known that this problem has a unique solution in the space H '(Q). 
Joining the solutions of Problems (1.1) and (1.5), we obtain a function 41 which, 

since it is continuous at the boundary, belongs to the space 

(1.6) W'(R2) = 4{; I - EE L 2(R2); a2 E L -2(R), i = 1, 21 
p(l + Log p) 8x, - f 

Any function 4 being given in the space 6D (R2) of smooth functions with 
compact support, we have 

KA4/ 4> = -fR2 grad 4 , grad 4, 
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where < , *> represents the duality pairing between 6D '(R2) and 6D (R12). By using 
Green's formulas in Q and Q' [3], we obtain 

f|2 grad4/.gradk = ( an lint an Iext kIn) 
We denote by [a34/an] the jump of the normal derivative of the solution across the 
boundary. Since 6D (R2) is dense in W'(R2) [4], the equation is exact for all 4 in 
W'(R2). It is then valid for the constants which are elements of W'(R2). Thus 
[a34/an] has the following property: 

([an ) 

where <, > represents the duality pairing between H -l/ 2(r) and H l/2(r). Finally, 
[a34/an] is in the space 

(1.7) H- '/2(r) = {v E H-1/2(r); <v, l I> = 0). 

LEMMA 1.1. For any given v in Ho- l/2(r), the problem 

Find 41 such that 

(1.8) f 
grad4. grad4 = <v, kIr>, Vk e W'(R2) 

has a unique solution in W'(R2)/R. 

Proof. It is a very easy consequence of the coercivity of the bilinear form on the 
space W'(R2)/R [4]. 0I 

Moreover, if v is very regular and if it satisfies <v, 1 = 0, the solution of (1.8) 
is given by 

(1.9) O(x) = -2 J v(y)Loglx - yl dyy + C. 

In order to solve our initial problem, it is then sufficient to know the value of v, 
which determines 4 as the sum of a single layer potential and a constant. 

The symmetry of the left-hand side of (1.8) leads to the following theorem (proof 
in [4]): 

THEOREM 1.1. The expression (1.9) is an isomorphism of the space H7 '/2(IF) onto 
K/R, where K = {4i E Wl(R2); A4/ = 0 in Q and Q'}. This isomorphism is associa- 
ted with the following variational problem which is coercive in Ho -/2(r): 

Find v E HCo '/2(r) such that 

(1.10) a(v, v') = - v(x)v'(y) Loglx - yl dy&dyy = <v', 4'o> 

for allyv' E H /2(r). 

The left-hand side of (1.1O) is a bilinear symmetric form on H0 '/2(r) x Ho 1/2(r), 
and the expression 

/ j,. ~~~~~~~~~~1/2 
liv vI ( 2J J v(x)v(y) Loglx -yl dyxdyy 

is a norm on H0 '/2(r), equivalent to its definition norm. OI 
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Remark 1.1. The solution 4, found in this paragraph is the stream function of a 
nonlifting flow, since <v, 1Ir> which is a multiple of the lift, is set to be zero. 
Nevertheless, it can also be interpreted as the electric potential in R2, in the 
presence of the conductor Q; v then represents the electric charge on r. El 

Remark 1.2. This approach to exterior problems, which leads to integral equa- 
tions of the first kind and, by integration, to variational problems on the boundary, 
was first introduced by Nedelec-Planchard [5] for a three-dimensional Dirichlet 
problem. 5 

2. Approximation of the Nonlifting Flow. Theorem 1.1 shows that it is sufficient to 
calculate the solution of Problem (1.10) to obtain the stream function 4, by 
Formula (1.9). 

Since we want to use a finite element method to approximate the variational and 
coercive problem (1.10), we are interested in the regularity of the solution of this 
problem, or, which is the same, of the initial problem. 

2.1. Some Regularity Results. Regularity properties of the solution are local. 
Suppose %0 is given in a "more regular" space-say H3/2(r). Then the solution 4' of 
Problem (1.1) will locally behave as a H2(Q') function, except in the vicinity of the 
singular parts of the boundary. 

It is then sufficient to consider the following interior problem: 
(2.1) AAi = O in Q, 

where Q represents a corner-shaped bounded domain in R2. The corner is assumed 
to be linear, and the angle is set to be o, where w is a real number, greater than v 

and less than 2iT (if w < so, which means Q is convex, and if 40 Ee H3/2(r), then p is 
in H (S2)). 

We have then Grisvard's fundamental theorem [1]: 

THEOREM 2.1. Assume %Po E H3/2(r). Then, the solution of Problem (2.1) has the 
form 

ar= al sin ( ) + + 
where (r, 0) are polar coordinates with origin at the vertex of the corner, and 

E E 2(g) 

Remark 2.1. If 4'o is more regular-say in Hs+3/2(r), s > O, the solution 4 of 
Problem (2.1) can be written as the sum of a regular function 4) (in Hs+2(a)) and 
some singular functions, whose number and form are perfectly known [1]. 

FIGURE 1 
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We know that the integral formulation is obtained by combining both exterior 
and interior problems 

(2.2) A%~(P =o0 in 0 and Q', 
(2.2) 41' = 41o on F. 

Assume that the interior angle is acute and 410 is in H 3/2(F). The solution of 
Problem (2.2) will be such that 

41' Ee H2(g2), 411, = ar'10 sin(-B) + 4 near the corner, 

where 4 is a function of H2(g2') and ,B = 2 - a. 
The solution v of Problem (1.10), which is the jump of the normal derivative of 

41, will then be written in the following way near the corner: 

an t an ext = an an int an ext 

Since the corner is supposed to be linear, we have 

a r lo sin ) r(l/8)-l1 sin = 

Let vo be a distribution in Ho- 1/2(F) such that vo = r(l/O)- 1 in the vicinity of the 
corner. Thus, v = A - vo + V, where V E H 1/2(r) n HCo 1/2(F. 

2.2. The Discrete Problem. Let n be an integer and consider (n + 1) points on the 
boundary F, (An) = + I+l such that 

A I = An+ I = vertex of the corner. 

The points (Ai)i= 1, n are assumed to be distinct. 
We denote by Fi the arc AiAi+I and by Fih the associated chord with length hi. 

Let h be the maximum of (hi)i=,., and ho their minimum. We assume that 

h/ho < c; c positive constant. Then we define the space 

Wh {wh: whr, = ci, i = 1, * , n; f Whdyh = 0), c, constant, 

where rh = U7= l and 

(2.3) Vh = Wh D{vO). 

The approximate problem set in the so defined space Vh then takes the form 

Find vh E Vh such that 

(2.4) a|(v, v 2) r Af fVh(X)V h(y)LoglX - yIdYh(x)dyh(y) 

=|Vh UOh d'yh 9 
rh 

where uoh is an approximation of uo, defined on rh. 
Since Vh is not included in Ho- 1/2(r), but in H- 1/2(rh)' we need two mappings 

rh: Vh-* H/(r) Ph : _ Ho l/2(r) 
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The parametrization of Fi being given by 

Fi(t) = 
- 

hf(tj t e [ O, 1], 

we have the following parametrization of the approximate arc F,,,, in local coordi- 
nates: 

Fih(t) = { Ohi' t e[0, 1]. 

We then define 

rhWh = Who F,h o Fi' for all wh E Wh 

PhW dt| =(Wh o Fih o Fi )h for all wh E Wh. 

We then extend these definitions to all vh E Vh by setting, since vo has its support 
in the common part of the boundary to F and r^h 

rhVO = PhVO = VO- 

LEMMA 2. 1. For any Vh in Vh, we have the following inequalities: 

(2.5) CllrhVhIL2(r) < lVhIL2(r,,) '< C21rhVh|L2(r)g 

(2.6) CjIlPhVhIL2(r) < l hIL2(r,,) < C2 |Ph hIL2(r)g 

with c1, C2, cl, C > 0. 

Proof. We have 

I Vh12IVh I Yh 
- 

| lVh ? d E 
|i d L2Cr, - ih(t)12 dt dt. 

__1 i=1 0Id 

But 

dF,h _ ( hi ad dFi (h 
dt - 0, dt f'(t). 

Since 0 is the first order interpolate of fi, there exist two constants a, and a2 such 
that 

dfi dF a dFE 

gP^thlL2(r) ~ = v ih <,() FZd 

a1 dt dt 
n n I di 

IrhvhIL2(r) f f Ivh? I2 dFt dt. 

Then, with the previous inequalities, we obtain (2.5). In the same way 

d,h2 

II = S~ _ IV 2 dt 

IPhVhIL 2r __1 f 

h 
ih, J')I 2 dxi 

dt 

dF~ 

-l:(~ Vh 0 fih (t) 12 d idFh dt. 
_= dE, dt 

dt 
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Since 

dFi dFI dFi 
adt dt dt' 

we get 

aI|vhI|L2(rf) < I PhVh I L (r) < a2vhI L2(rf) 

Thus, we derive (2.6). OI 

LEMMA 2.2. For all vh E Vh, the following inequalities, called inverse inequalities, 
hold: 

(2.7) llthllHs(r^) < hS_t llIhIIH'(rA), -1 < t < s < 0. 

Proof (A. Bamberger, personal communication). Let us prove (2.7) for t=-1 
and s = 0. Thus, we obtain all the other cases by interpolation. We have 

(2.8) 11h11H-1(rA)= max Vh4I' 

*IEE-H'(I'h) II"'II11'Ah 

Let us construct a particular function I, which will of course minimize the 
right-hand side of (2.8). Let us set 

'I,rIIh i 

We shall then choose i, such that 

* C- E Ho (Fih) (i.e.: Ji(Ai) = I,(Ai+, ) = 0), 

*iVh = f (Vh)2, 
rh rlh 

* | d -i = 0 foranyv E Ho(rih) such that f v Vh = O. 
r,h dx dx rih 

Such a choice is possible (and unique). Since *i E'e Hol(rih), we have, for h small 

enough, 

1JiI1H1(r,A) < cl*il%,. (c constant). 

Thus, 

E f (Vh)2 

. r,h( d )2 1/2 

and 

(f (Vhd ) 

1h1-(r h) N d* X 2t 

i = I rih dx 
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Let us now consider the function 9i, the solution of the following problem: 

0,i E Ho(Fih) 

(Pi) d29i 

dx2 Vh on rfh. 

One can easily see that 0i verifies 

| di *dv = for any v e Ho(Fih) such that V Vh =0. 
"ihdxd 

Tlhus, *i = X1O, with 

Vrh r( dx) 
We then have 

Vh Vhh 

IIVhII2If r) N(hv~2 2 IIVhII2IfIr)>C (Tv) 

Suppose now that we could prove 

(2.9) h N 

Thus, 

IIVhII2H-1(rh) ,- ch2 (f -v >ch L2)h 

E |VhA 

and we get (2.7). 
Let us then prove (2.9). 
One can first notice that 

X = IlVhII / 11g,f,2/IIO I, 

But, since 0i is the solution of Problem (Pi), 

Oil ,trih Vho=ih V l 
ih 

Vh| Vh . 0 

Ih l afilih 0 fr rHo'(hih) Io1 (r( 

On the other hand, 

fVh f dOi dO 

IIVhIIH-1(r,h) = max = max dx I5l0rlh- 



LIFTING FLOWS AROUND CORNER-SHAPED BODIES 413 

Thus 

IlVhllor,, IlVhIIoFr, 
Ci 1x S < C2 

Now, by using the mapping given by x = (x - xi)/hi and by defining the 
functions 9i and 4 by 

Oi(') = 0i(x), Vh(X) = Vh(X), 

we are led to the following problem: 

d 6 = h; Vh9 x fE ]0, 1 [, 
(P) dV2h 

00() = Oi(l) = . 

We can then easily derive that 

b.=h2 1lh L1N.1 

I oi IHo(0, 1) 

Let us consider the general problem 

{- 2 = F(x), x E (O, 1), 

u(O) = u(1) = 0, 

and denote by R(F) the quantity 

1}IF 112 2( 1 

=IUIF(O, 1) 

We obtain 

(2.10) = 1-R(th). 

We suppose now that h, = h for any i = 1, ... , N. The calculations proceed in a 
similar fashion in the case where this equality does not hold. Thus, 

Vh(X) = vh(Xi + hx), x E ]0, 1[. 

Since vh = w, + v0 (we can suppose that ao = 1), 

Vh(X) = Vi + (Xi + hx)^ 1, x E ], 1[. 

Let us define the vector space 

i= { gi; gi = a + b(ih + hx)Y', a, b E R). 

We also have 

i= { g,; gi = a + b(i + x)"', a, b E R}, 

which means that Ji is independent of h. Hence 

R(t3h) < R(R) = max R(gi). 

One can prove that J,, for n =# 0, can be identified to the space 

in = { gn; gn = a + bDn}, 
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where Dn is defined by 

D()=(n + 1)'-(n +x)- 
(n + _np- 

Dn is a convex function and the sequence { D,j} is a convergent sequence in 

CI[O, 1], and Dn -* 1 - x uniformly on [0, 1]. 

D 

n 

Let us define function D by D(x) = 1 - x. Thus, the subspace ' "converges" and 
its limit is 

= {g;g = a + b-D,a,b ER). 

For any function G of L2(0, 1), we are now led to consider the quantity 

R*(G) = max R(a + bG). 
(a, b)ER2 

We can prove that, for a sequence { Gnj in L2(0, 1) such that G, -* G in L2(0, 1), 
we have R*(Gn) - R*(G). Thus, for h small enough, we shall have R*(4f) < co for 
i # 0 and, for i = 0, R*(%0) = cl. We can deduce R*(4f) 6 c = max(co, cl). By 
(2.10), we then obtain X. < c/kh2, which was the desired result. [1 

Remark. We also have, by a similar proof, 

(2.11) IlPhVhIIH2(r) < lPhVhIIH(r)9 -1< t < s < 0. I 
hs-t 

LEMMA 2.3. For all Vh in the space Vh, the following inequalities hold: 

(2.12) | Ph-Vh rhvhIL 2(r) < ch 2 IvhIL2(r), 

(2.13) IIPhVh - rhvhIIH-1/2(r) < ch /2I vhIH- I/2(r)- 

Proof. Inequality (2.19) is obtained as in [6], since vh is an element of L2(rh). To 
obtain (2.13), we note that 

I IPhVh - rhVhIIH-/2(r) < IPhVh - rhVhIL2(r) < ch 2vhIL2(rh). 

Using the inverse inequality (2.7) with s = 0 and t = -2, we get 

IlPhVh - rhvhII H-1/2(r) < ch 2"/2IIvhH-1/2(rh) LE 

PROPOSITION 2.1. Assuming the boundary is smooth enough out of the singular 
point, and Vh, vh are two elements of Vh, we have 

(2.14) I a( ph vh , ph vh) - ah (v, vh) I < ch 2 VhIL 2(r) I vhI L2(r)- 
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Proof. Using the definitions of Ph and of the bilinear forms a(., .) and ah(, ) 

we get 

a(phvh,p Phv) ah(Vh, Vh) = - I f Vh(F h(t))Vh(Fjh(S)) 

IF,(t) - Fj(s)I dF, dJ? 
*Log [F() F l|dih | dh |dtds. .Lo 

ih(t) 
- 

?jh(S)I dt ~ dtds 

By M. N. Le Roux [6], we know that 

|IF(t) - j(t)| 
LgIfih(t) - Fjh(S)I 

c2 

thus 

|a(phvh,phvhv) - ah(vh, vh)I < ch 2 rh Vh L2(r)I rh V L2(r). 

By using inequality (2.5), we then obtain (2.14). E 

THEOREM 2.2. ELLIPTICITY OF THE APPROXIMATE PROBLEM. For h small enough, 
there exists a positive constant /3 such that 

(2.15) ah(vh, Vh) > J IIPhVhI Fl-l/2(r). 

This result leads to the existence and uniqueness (by the Lax-Milgram theorem) 
of the approximate solution, which we can "compare" with the exact solution by 
using the mappings defined above. 

Proof of Theorem 2.2. By using (2.14), we have 

ah(vh, vh) > a(phvh,PhVh) - ch 2IVhI L2(r). 

Since the bilinear form a(., *) is coercive, one gets 

a(ph vh, phvh) > aIIPhvhIIH - I/2(r). 

Thus, by (2.6), 

ah(vh, Vh) > a, IIPhvhII H-/2(F) - ch 2 Ph vh 2 
- 1/2(r). 

Using now the inverse inequality (2.1 1), we get 

ah(vh, vh) > (a1 - ch3/2)Ilph Vhll 21-/2(r), 

so, for h small enough, 

ah(vh, Vh) > I3IIphvhIIlH-1/2(r). 

2.3. Error Estimates. 

THEOREM 2.3. Let v be the solution of the exact problem and Vh the solution of the 
approximate problem. Then, the following estimate holds: 

(2.16) liv - PhVhIIH-I/2(r) < C{ 'Inf [liv PhV1IIH-1/2(r) + h Iv^IL2(rh)] 

X + || 4O - rh4Oh II H/2(r)}. 
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Proof. Let vh E Vh, and let us use (2.15). We obtain 

f3IPh(Vh - Vh)I2 < a(Vh Vh,, Vh Vh, 

ah(vh - Vh, Vh - vh) 

- ah (vh, Vh - vh) - a(v, phvh - PhVh) + a(v - phv, Phvh - Phvh) 

+ a(phv,h PhVh 
- 

PhVh) - ah(Vh, Vh - Vh 

Using the Estimates (2.11) and (2.14), and since v and vh are the solutions of the 
continuous problem and of the discrete problem, we derive 

II Ph (Hh - Vh)IIH-I/2(r) < IK< Oh' Vh - Vh - <K4O PhVh PhVh>I 

+ MII|v - PhhIIH-1/2(r)IIPhVh -P'hIIH-1/2(r) 

+ ch 3/2 |vL2(Fh)IIPh(Vh - 1h)IIH-I/2(r). 

Thus, 

II PhVh- PhVaIIH- /2(r) < C v PhVIIH-1/2(r) + h3/21 VhL2(r*) 

+ IKPoh' Vh I><4o,phVh PhLh>I } 

Il|PhVh PhVh ||H- l2r 

The problem is then to estimate, for any xh E Vh, the expression 

<POhI Xh> - <Ko,PhXh>> 

|| PhXhII H - 1/2(r) 

1Oh7 Xh > _ <%POSPhXh > l= |_(rhOh - 4'O)(Fi(t))PhXh(Fi(t)) dFt dt 
-~dt 

= 2 | (rhOh - 'PO) PhXh dy; 

thus 

K4'oh, Xh> - K4oPhXh>I < C4INO - rh4OhIIHI/2(F)IIPhXhIIH-1/2(r). 

It follows that 

IIPhVh - PhVhIH -/2(F) 

? C{I - |VPhVh IIH -1/2(r) + h3/2 Vh, L2(rh) + II1'o - rh4/ hIHI/2(r)}, 

and 

ll h phhl <1 c inf H 1 1V Ptl /2(r) + h3/21 Vh, 2(r,)] + |/2 r+ | 
liv -PhVhI ? ~ Enf Vliv 

- PhVhII + ' IL2(') + IINO - rh%POhIIH/()} 

which ends the proof. [1] 
Remark 2.2. This result can easily be extended to the case of 

M 

Vh = 
WhEI- {fv} 

where {v1}11 M are the M first singularities, and wh is a space of polynomials 
over r^h If rh is a union of p-polynomial arcs, we have the estimate 
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lIV - PhVhIIH-I1/2(r) < c{ inf [lII V - Ph VhII + hP +'/'IVh L 2(F,)] (Vh (E- Vh 

+ ll 40- rh 4Oh II H1/2(r)} - 

Thus, we gain precision by fitting the boundary better. 
In order to bound each one of the quantities appearing in the right-hand side of 

(2.16), we shall use the following result of M. N. Le Roux [6]. 

LEMMA 2.4. Let Sh denote the orthogonal projection from L2(J') on Wh. Then, we 

obtain the following inequality 

(2.17) IIW - ShWIIH-1/2(r) < ch +1/2 IIwIIH(F) 

for 0 < s < 1 and w E HS(r). 

THEOREM 2.4. Let v be the solution of Problem (1.10) and vh be the solution of 
Problem (2.4); then, 

(2.18) IIV -PhVhIIH- /2(r) < cth+/ ||IIwIIH|(r) + h 3/2(aOvOlL2(r) + IWIL2(r)) 

+ 114|o - rhiOhIIH 1/2(r)} 

for-2 < s < 1 and V = aovo + w. 

Proof. By Theorem 2.3, we have the estimate 

IIV - PhVhIIH -1/2() < C Inf [lIV - PhVhIIH-1/2(r) + h3/21v#,dL2(rh)] 
V~E- Vh 

+ 114o - rh 4Oh II} 

Let us choose a particular vh in the following way: v can be written as v = aovo + 
w. Thus, S,Wh E rh Wh and there exists some wh E Wh such that ShW = rhwh. We 
then consider 

Vh = aovo + Wh, 

li V - PhVhIl H- 1/2(r) < I I W - Ph Wh I I H - /2(r) 

< 11W - ShWIlH-1/2(r) + IIrhWh - PhWhIlH-1/2(r). 

But 

IIW - ShWIIH- I/2(r) < chs+ 1/211 WI I H,(r) (by Lemma 2.4), 

llrhWh - PhWhIIH-1/2(r) < ch3/21WhIL2(rh) < ch 3/2WI 2(r), 

since wh E= Wh [6] and rhwh = ShW. Thus 

IIV - phVhIIH-1/2(r) < chs+l/211WIIH,(r) + h3/21wIL2(r). 

On the other hand, 

'vhIL2(jh) < IaovO I L2(rF) + IWhIL2(rh) < aovolL2(r) + IWIL 2(r), 

since rhwh = shw. We can then obtain 

IIV - PhVhllH-1/2(r) < c h s+/2I WII H(r) + h 3/2(aovolL2(r) + IWIL2(J)) 

+ II40 - rh4iOhIIH I/2(r)}. E 
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THEOREM 2.5. For all x such that d(x, r) > 3 > 0 and for h small enough, the 
following estimates hold, for 0 < s < 1, 

{h2(IavI2r 
J4i(X) - 'Ph(X)I d(x, r) h JaOvoIL2(r) + IWIL2(T)) + II4'o - rh41OhIIL2(r) 

(2.19) ( ) 

+ hs+IWIH,(F) + h 1/2114/0 - rh4OhIIHI/2(r)), 

IDa p(x) - Da4h(x)| 

(2.20) < c {h2(IaovolL2(r) + IWIL2(F)) + hs+lIIWIIH,(r) 
d(x, r)Ja 

+ II4'o - rh4/OhI IL2(r) + h 1/211 o - rh4OhIIH 1/2(j7) 

Proof. First, we shall bound lv - PhVh II H-l(r): 

liv - PhVhIIH-I(F) = SUP Ky -PhVh, k> 
|| VE H I (r) I411IH'(r) 

Since the singular function vo E L2(r), the mapping 

A: v > -2 | v(y)Loglx - yl dy(y) 

defines an isomorphism from LO2(r) = L2(r) n Hf ?/2(r) onto H'(r)/R. There- 
fore, 

<Kv - Phvh, Ag>J 

li | V-Ph VhII l H -Il(g) E L2(r) g1 I1 IL2(r) 

c sup |a(v - Phvh, g)I 

gEE L2(r) 11 gIL2(r) 

Let shg be the projection of g on rh Wh. Then, shg = rhGh, Gh e Wh; thus, 

a(v - PhVh, g) = a(v - phVh, g - phGh) + a(v - phvh,phGh). 

By using (2.13), we get for the first term 

Ia(v - phvh, g - phGh)I < ch 1/2 11V- PhVhIIH-1/2(r)II gIIL2(r). 

The second term can be written 

a(v - phvh,ph Gh) = <Ko,PhGh> <-KOhl Gh> + ah(vh, Gh) - a(phvh,phGh) 

= <K'0 - rh4/Oh,PhGh> + ah(vh, Gh) - a(phvh,PhGh). 

Thus, by using (2.14), we obtain 

Ia(v - PhVh,h pGO)I < I I'!o - rh4JOh II L2(F)lI GhII L2(I'h) + ch211 VhII L2(rh)I IGhII L2(r1) 

Then 

|IV - PhVhIIH-I(r) 

(2.21) ? c{h1/211v - PhVhIIH-1/2(r) + II'!o - rh !'ohIIL2(r) + h2IIvhIIL2(i')}. 

We can now wnite 
v = aovo + W, vh = aOh VO + Wh, 

4i(X) - 'Ph(X) = w(y)Loglx - y y + 2v wh(Y)LogJX - yl dyh(Y) 

- + (ao-aoh)f vO(y)LogJx - yI dy(y). 
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By an easy computation using replacement of variables (defined by functions F, 
and Fih), we obtain 

+(X) -h(X) = -+f(v - phvh)(y)Loglx - yl dy(y) 

I nlX - Fih (t)l dFih d 

27r __ w(Fih(t))Log x - Fi(t)i dt 

Using the fact that d(x, r) > a > 0, we get 

lX - Fih(t)l ____I 

L Ix - F(t)l | d(x, r) 
and 

1 I X lx- F.(t) I dFih ch2 
- ~ Wh(Fih(t))Log dt ?,IWI () 277 __J 0' lx -Fi(t)l dt d(x, r)IWIL() 

On the other hand, 

2- (V - phVh)(y) Loglx - yldy(y) < lIV - PhvhllHI(F) llLoglx Y111H'(F), 

and 

IlLoglx - YIIIH'r I d( F)' 

by the Taylor formula. 
Regrouping all these results and using (2.21), we obtain 

I+(X) - h(x)l < d(x1 F) {hlWlHl(r) + h 1/2llo - rh4/OhllHI/2(F) 

+ 114o - rh4OhllL2(F) + h2(laovolL2(r) + IWIL2(r))}, 
which is the Estimate (2.19). 

(2.20) is obtained in the same way, by remarking that 

grad +k(x) = Afr v(y) - ' dy(y), 

2v i~x - y 

grad ohh(x) = 
I 

Xv(y) -y12 dyh(y) C 

Remark 2.3. By a better fitting of the boundary (by piecewise p-polynomial 
functions), if we use the approximation space Vh = Wh (D { v,}, with a suffi- 
cient number of singular functions and if Wh is the space of piecewise k-poly- 
nomial functions over r we obtain an order of error in hP+l + hk+2. The optimal 
error is then obtained whenp = k + 1 (in our case,p = 1, k = 0). 

Remark 2.4. We have no error estimates in the vicinity of the boundary. That is 
because grad 4 is discontinuous at the points of F, while grad 4Ah is discontinuous at 
the points of rh. 

3. Approximation of the Lifting Flow. The stream function 4 of the flow is the 
solution of the following problem: 

{ A4= 0 in 2', 

4,=4,o onr. 
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Since the lift is nonzero, the behavior of the stream function is logarithmic at 

infinity. We can then try to solve this problem in a space allowing such a behavior. 

First, we prolong 4' to Q by the solution of the interior problem, and we try to 

solve simultaneously both problems 

(3.1) ,{ = 0 in Qand', 

(3.1) iJ,~~41= iJ, on r. 

The following space, introduced by Giroire [7], allows logarithmic behaviors 

WI I(R2) = ( U E 6X '(R2); ,2 E L2(R2), (1 + r2)1/2 a E L2(R2), i 1 

l-1(R) = 
u E 6i '(R 2)E;( r+r ax E= 

1 

In Section 1, we solved Problem (3.1) in the space W'(R2) by integral equations. 

But in the space WI 1(R2), Problem (3.1) has an infinity of solutions. One of them is 

the (unique) solution which is in W1(R2). Let us denote it by APL. 

We consider now the particular function 4, defined by 

+(x) = - I Loglx - yl dy(y). 

4 is not in W'(R2). Let 4 be the unique solution, in W1(R2), of the problem 

(A=o 0 in andQ', 

(3.2) =) on r. 

o-4 is a nonzero function of Wl ,(R2). The following result, due to Giroire [7], 

enables us to find all the solutions of Problem (3.1): 

THEOREM 3.1. Each solution 4' of Problem (3.1), in the space Wl (R), can be 

written as follows: 

(3.3) 4 = 4'L + 4 -). 

The problem is then to determine the value of A corresponding to the physical 

solution of the lifting flow problem. 
By the regularity results of Theorem 2.1, we know that 

4'L =arl/asin +4L inQ', 

a 
= br'l' sin + re in Q', 

where aiqr is the exterior angle and i4L, ;reg E H2 ,(Q'). 4) is regular (i.e., in H,2 (Q') 

and H2(Q)), since we have [a4/an] = 1. (3.3) then takes the following form: 

0 
(3.4) ' = 4L + X(4 - reg) + (a - Xb)rl/a sin - Q. a 

On the other hand, 4' E H2(g2), since the interior angle is less than sr. 

The existence of the singular part in (3.4) leads to infinite velocities near the 

corner (the velocity behaves as r(l/a)-1), which are not physically feasible. The 

well-known Kutta-Joukowsky condition can then be stated as follows: 

THEOREM 3.2. There exists a unique flow, determined by the value of its lift, which 

leads to a finite velocity at the corner. 
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The proof of this theorem can be found in the Appendix. 
This result means that b # 0 and A = a/b. The first way to calculate the 

solution is to solve both Problems (3.1) and (3.2) in Wl(R2), deduce the value of A, 
and then, by (3.4), the solution 41 of the lifting flow problem. 

But, in order to avoid division by b (which can be small) and to solve one 
problem instead of two, we shall use another way. 

Let us consider the jump of the normal derivative of the solution 

[ n J [an j [ a ] an] 

We know that [ao/an] = 1, and that 

[ al][ a E] 1/2or) 

We then have [a4l/an] = v + X, where we denote by v the quantity [a4iL/anl - 

A[a;/an]. v is then the unique solution of the integral equation problem, in 
H -1/2(r), 

- v(x)v'(y)Loglx - yl dyXdyy = <v', 'P0 - X4>. 

We use the discretization introduced in Subsection 2.2. The discrete problem can 
be written as follows: 

t Find vh E Vh such that 

(3.5) + f f h(X)Vh(y)Loglx - yldyh(x)dYh(y) 

<= KVh {POh -XA+>, VVh E ^Vh 

Since Vh = {vo} E Wh, let us denote by {vi)i .1 . n- a basis of Wh, 

n-I 

Vh = aOvO + E aivi. 
i-1 

By writing (3.5) for each element of the basis of Vh (i.e., for each vj, j = 0, 1, . . ., 
n - 1), we have 

n-I 

(3.6) E aiah(Vi, vj) + A<v1, 4> = <v;, 4/Oh>' forj = 0, 1, . .. , n - 1. 
i=O 

The discrete problem is then a linear system of n equations with n + 1 unknowns, 
since A is unknown. But, by the Kutta-Joukowsky condition, we know that ao has 
to vanish since a nonvanishing ao would lead to infinite velocities at the corner. By 
setting ao = 0, we get a linear system of n equations with n unknowns, but we lose 
the symmetry of the problem. 

Remark 3.1. The flow studied in this paper is the perturbation flow. The stream 
function of the total flow A'T iS then 

4AT = 'P + 4P.. 

The tangential component of the velocity (which represents the entire velocity since 
the normal component has to vanish at the boundary) is given by the normal 
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derivative of the stream function. Let us denote it by u: 

=ap00 a%b a% + a+] + a%int 
an an an [an. an' 

where 4bint iS the stream function of the interior flow. %bint is the solution of the 
following problem: 

A%b = 0 inQ9, 

%b+ = -%b w on r. 

We have then %bint = -ltoo in Q, because of the uniqueness of the interior Dirichlet 
problem. Thus, 

+1Iu = -I 
an [an] an' [anj 

The jump of the normal derivative of the stream function is the velocity of the flow. 
This very important result shows that, by this method, we compute both the 

velocity of the flow and its lift, by solving a unique problem. 

4. Some Numerical Results. The greatest numerical difficulties arise in the 
calculation of the first row (and first column) matrix coefficients. These coeffi- 
cients, which depend on the singular basic function vo, lead to the calculation of 
the following integrals: 

(4.1) f Logls - tI dt. 
AB 

(4.2) L t(l/G)-lLogls - tI dt. 
AB 

These integrals have to be calculated as precisely as possible, even exactly if 
possible, since we have to integrate these quantities over a segment a second time. 
We also note that the error estimates we obtained in Section 2 assume that there is 
no error in the computation of the coefficients. 

The details of these calculations can be found in [3]. Let us just say that we use 
an analytic calculation when it can be performed (for (4.1)), and a very precise 
numerical integration-with mesh refinements-otherwise. These calculations con- 
stitute the greatest part of the computational time. 

We first solved numerically our problem in a domain 2 for which the boundary 
r was constructed by connecting smoothly two segments making an angle with a 
circular arc. 
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The solution 'P0 being given on the boundary r, we cannot generally know the 
exact solution anywhere else. We have no error estimates on the boundary. 

Estimates (2.19) and (2.20), and a previous work [8], allow us to think that the 
greatest imprecision will affect the computed values on the boundary. 

Thus, we compare the exact values and the computed ones on some points of the 
boundary, and we compare as well the exact values and the values computed 
without the use of a singular basis function. In this last case, the error is much 
worse on the corner point than on the other points. By using the singular basis 
function, we bring the value of the error on the corner point near its value on the 
other points. 

TABLE 4.1 
Angle of 18 degrees 

with the singular without the singular 
basis function basis function 

Nb. of F. E. in the error on average error on average 
discretization the corner error the corner error 

15 3.3% 0.5% 14.6% 1.6% 
25 1.3% 0.17% 10.6% 0.75% 
50 2.5% 0.1% 7.5% 0.26% 

The improvement due to the introduction of a singular basis function is then 
very important on the corner. This can be easily seen for an angle of 9 degrees: the 
error with 8 Finite Elements using a singular basis function is the same as that with 
100 Finite Elements without using the singular basis function. 

TABLE 4.2 
Angle of 9 degrees. Error on the corner point 

Nb. of F. E. with sing. without sing. 
basis funct. basis funct. 

8 5% 19.4% 
15 0.5% 15% 
25 0.71% 10.5% 
50 0.58% 7.8% 
100 0.43% 5% 

The second type of domain is a Karmann-Trefftz one, obtained by transforming 
a circle by a conformal mapping. Trivial harmonic solutions of exterior problems 
are given by logarithms. Their transformation by a conformal mapping leads to 
singular solutions. 

The use of the singular basis function greatly improves the computed solution; 
see Table 4.3. 
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TABLE 4.3 

Karmann- Trefftz profile with interior angle of 9 degrees 

solution with solution without 
sing. basis funct. sing. basis funct. 

error on the 5.3% 24.6% 
corner point 
error on the 0.76% 4.1% 
next point 

average 0.7% 2.6% 
error 

In conclusion, we can say that this method gives a precision which is comparable 
near or far from the corner. 

The numerical results show very important improvements near the corner. These 
improvements are more important when the corner is sharp, which is the case of 
the physical problem. Therefore, it is worthwhile to carry on these numerical tests. 

Appendix. Proof of Theorem 3.2. We obtain the desired result if we prove that 
2 H (S'), (i.e., that b : 0). 

By denoting (F = O- , we notice that (F is a solution of the following problem, 
in the space W ('I(Q), 

(P) {A4D = 0 innO', 
() = O onr. 

By applying Theorem 3.1, we can easily see that all the solutions in WI I(Q), of 
Problem (P), are multiples of 4. Actually, if (F, is a solution of (P), Theorem 3.1 
shows that D = (L + X(F, where (L is the solution of (P) in Wo(') Thus, L-0 

and (DI = XFD. 
If we consider now the unit circle y and its exterior domain w', we have the 

function p defined by p(z) = Loglzl, which is a solution of the problem 

(p) 
A~~~{lP = in w', 

(P) t~~~~~~~~P = O on y. 

p is the real part of the holomorphic function q(z) = Log z. 
There exists a conformal mapping H from the exterior domain w' onto the 

exterior domain 2'. Moreover, we can expand H1 at the vicinity of the corner 
(z = 0) in the following way [9]: 

H 

H'- (z) =1+ alzzl/a + . ,with a, =#0. 
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The function 13(z) = 1o H -'(z) is a holomorphic function. Its real part is then 
harmonic and vanishes on the boundary r, since q vanishes on y. Then 

4> = Re(13) 

is a solution of Problem (P), in the space W-I ('). Thus, = ?AX, X # 0. We can 
even assume that 1 = (. Thus, 

( = Re(q o H l(z)) = Re(Log(l + a zl/a + 

(D = Re(a,z1I/a + 

The singularity coefficient of the function does not vanish since a, # 0. Theorem 
3.2 is then proved. O 
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