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Discontinuous Galerkin Methods for 
Ordinary Differential Equations* 

By M. Delfour, W. Hager and F. Trochu 

Abstract. A class of Galerkin methods derived from discontinuous piecewise polynomial 
spaces is analyzed. For polynomials of degree k, these methods lead to a family of one-step 
schemes generating approximations up to order 2k + 2 for the solution of an ordinary 
differential equation. 

1. Introduction. We study Galerkin approximations to ordinary differential 
equations using discontinuous, piecewise polynomial spaces. These schemes gener- 
alize a method proposed by Lesaint and Raviart [19]. The value of the approxima- 
tion at tj, a point of discontinuity in the approximating polynomial x(*), is given by 
an average across the jump: ajx(tj-) + (1 - aj)x(tj+). The case aj = 1 is related to 
the scheme of Lesaint and Raviart while, for piecewise constant approximation, the 
values aj = 0, 2 and 1 correspond, respectively, to Euler's explicit, improved, and 
implicit schemes. 

For linear equations and piecewise polynomials of degree k, we prove supercon- 
vergence of order 2k + 1 when the aj lie in specified intervals. Experimentally, the 
same convergence rate is observed for nonlinear problems; and, moreover, for 
exceptional a., the rate increases to 2k + 2. The estimates of Lesaint and Raviart 
were based upon results of Butcher [6]-[9] and Crouzeix [11] for implicit Runge- 
Kutta methods. This strategy for estimating the error seems to fail when aj =# 0 or 
1, and our approach is to view the bilinear form associated with the Galerkin 
problem as continuous with respect to mesh-dependent norms and then to study 
stability in these norms. This strategy is also used by Babuska and Osborn [3] for 
second order boundary value problems and Babuska, Osborn, and Pitkaranta [4] 
for some mixed methods applied to fourth order elliptic equations. 

Galerkin approximations to differential equations using continuous piecewise 
polynomials are studied by Hulme [17], [18] and other references are found in his 
bibliography. Note, however, that these continuous approximations have order 2k 
at the mesh points instead of 2k + 1. Another discontinuous scheme with order 
2k + 2 is studied by Delfour and Dubeau [13]. Applications of discontinuous 
methods are given by Lesaint and Raviart [19], Delfour and Trochu [14], Delfour 
[12], and Wellford and Oden [20], [22], [23], [24]. 
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2. The Method. Consider the initial value problem 

(2.1) | x(t) = f(x(t), t), t E[O, T], 

( x(O) = xO, 

where x: [0, T] -* R' and f: R' X [0, T] -* R'. Assuming a solution exists, it is 
approximated using a discontinuous piecewise polynomial space. First, let us 
describe the space. 

Given an integer N > 0, define h = T/N, tm = mh, and Jm = (tin, tin). Let 
Pk[a, b] denote the set of polynomials defined on (a, b), with degree at most k, and 
11h be the discontinuous piecewise polynomial space defined as follows: v E 11h if 
and only if v restricted to Jm lies in the n-fold Cartesian product 

(Pk[Ztm-, tm])n = Pk[tm-,1 tin] X . . . XPk[tm1, ti] 

for each m. The uniform mesh was introduced solely to simplify the exposition; the 
Galerkin scheme and analysis applies to grids for which the ratio between the 
biggest and the smallest mesh spacing is bounded uniformly in N. 

Next, we formulate the Galerkin scheme. The dot product between vectors in Rn 
is denoted y * z and the L2[tmi, tin] inner product is defined by 

(v, W)m = t v(t). w(t) dt. 

Consider the problem: Find x E 11h and x(O-) and x(T+) e Rn such that 

(2.2) { x, * v(t, ) = ._ v(t7- = x (t,_ I1) + (x, i)j + (f(x), v)j, 

for all v C Pk[t1i, tj] and j = 1, 2, . .. , N, where f(x) denotes the map tF 
f(x(t), t), a = {ao, al, . .. , aN } is a given set of scalars, and xa E (R n)N+l is the 

vector with components 

(2.3) e = ajx(tj-) + (I - aj)x(t+ ). 

Since the solution to (2.2) consists of both a piecewise polynomial and vectors 
x(O-) and x(T+) E R", it is convenient to regard the elements of 11h as defined on 
[O-, T +] with (x(O-), x(T +)) and (x(O+), x(T -)) possibly different. 

In general, (2.2) is equivalent to n[N(k + 1) + 1] equations in n[N(k + 1) + 2] 
unknowns. To reduce the number of unknowns by n, we restrict ourselves to the 
following cases: 

(1) ao= O and a1j i I forj = 1, . . ., N, or 
(2) aN = land aj =# 0 forj = 0, . . ., N-1. 

In case (1), the unknown x(O-) disappears, giving us modified Runge-Kutta 
schemes (see Proposition 3.1); in case (2), x(T+) disappears and the schemes are 
generally implicit over the entire region [0-, T] (see Appendix 2). 

3. Numerical Implementation. To simplify the discussion in this section, we 
assume that n = 1. In solving (2.2), inner products are evaluated using (k + 1)- 
point quadrature. It is assumed that the abscissae {O, ... , k} c [0, 1] and associ- 
ated weights { ao, . . . , ak, are chosen so that 

f'p(t) dt= k ajp() 
i=O 
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for allp E p2k- 1[, 1]. Define the polynomials 
k t _ 

m(A )= W i, 1j <m <k, 
j=1 ~ 
j=#m 

vmt = Om fmt) dt, I < m < k, 

k t _j 

4m()= 0 < m < k, 
j=0 im- j=O m ( 

and 

lrm(t) = {|74'm ( h ) t E J., 
O, elsewhere; 

cjm and vim are defined in a similar fashion. Expanding x e 11h in terms of the 
basis {'kjmn} we have 

N k 

x(t) = z z Xjm4j1m(t)' 
j=1 m=O 

where 

Xjm = X(tim), tjm = tj- + hem. 

PROPOSITION 3.1. Assume that ao = 0 and aj 1z I for j = 1, . . ., N. If inner 
products are evaluated by quadrature, (2.2) is equivalent to the following system: 

k 

(3. 1a) j> _ IJ + h E aimf(xjm, tjm) + b, zj_ I = O,. , k, 
m=0 

k 

(3.1b) xJa = xJa I + h E amf(xjm, tjm), 
m=0 

where 

alm = am[z((Z)am + a,lvi(jm)], vO O, 
k 

a - -z 4ij(?)vi((m) ai t 
(3.2) i= 

bl= 7T(,) 

a. 
zi 

J 
l } Xio 

- 
x(tj-)], 

and 'n is the Legendre polynomial of degree k, translated and scaled to [0, 1], with 
normalization w(O) = 1. 

Proof. Inserting v = vjl into (2.2), we get 

(3.3) 0 = v(O)xJL1 + (x, t4)j + (f(x), v1l)1 

for 1 < I < k. Since the quadrature formula is exact for elements of p2k- 1, 

v,(0) = f 41(t) dt = a, + aooj(0), 
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and 

(x, '6A* = -h (x, ) = -[ao0l(tO)xjo + a,xj,]. 
But, a, =# 0 so (3.3) becomes: 

ao aa (3.4) xj y -a, t()jo j_j ] + a, (f(x), vj,)j. 

Recalling that ff is orthogonal to 4, and mp, E p2k- 1, 

0 = (s, ', ) = ao0v(QO),(#0) + ajv(t,), 
where (, ) denotes the L2[O, 1] inner product. Hence, (3.4) can be expressed as 

(3.5) = xJL1 + ( ) xo ] + (f(X), 

Now, by the definition of zj and (2.3), we have 

a j [_ X(t- = x(t+ ) - xa 
(3.6) k 

= m(o)[X jm - Xa] 

m=0 

Substituting for xjm using (3.5) gives us 
k 

'T(W) _XXa__pmo 
(3.7) Yi % 

TM(o) m1jo j_1) E am (f(X), Vjm)j + zi 

Since 7T E pk and g7(O) = 1, 
k 

1 = gT(0) = I T(Wm)4/m(O). 
m=0 

Hence (3.7) reduces to the following: 
k Ipm (0) 

(3.8) = _1 7o 
am VX Vjm)j + z>_ 

Combining (3.5) and (3.8), 

(3.9) Xfl = x + 7T(OI)[ 
M (O) (f(x), Vjm)j + zj-] + I(f(x), vi')i 

for 1 < 1 < k. Finally, inserting v = 1 in (2.2) yields 

(3.10) Xja = + (f(x), I)j. 

If inner products are evaluated by quadrature, (3.8)-(3.10) become (3.1). - 
Remark 3.2. In general, (3.1 a) is a nonlinear system of k + 1 equations in the 

k + 1 unknownsy, = Xjl, 1 = 0, . .. , k, which has the form 

y = g(y). 
If there exists a constant X > 0 such that 

tfAX, t) - A(Y, t)l < Xlx - Yi 
for all x, y E R and t E [0, T], then, for h sufficiently small, g is a contraction on 
R k,+1 and the successive substitutions 

(3.11) Y+= g(y1) 
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converge to the solution of (3.1 a). An initial guess is generated by extrapolating 
forward to the interval Jj, the polynomial computed on the previous mesh interval. 
This gives us 

k 

(3.12) y = 
m=O 

where cim = 4Pm(I + 4,). 
If a column or a row of the matrix A = [a,m] vanishes, one of the unknowns is 

computed explicitly, and we are left with k equations. The first row is zero if 
40 = 0, and we have 

(3.13) xjo= xjaI+ bzj-1. 
The last colunm is zero when (k = 1, and, moreover, 

k-i 

(3.14) Xjk = XJa I + h E ak,,f(Xjm, tjm) + bkZl-I 
m=O 

These values for 40 and (k are produced by Gauss-Radau quadrature. For Gauss- 
Lobatto quadrature, 40 = 0 and (k = 1; hence, both xjo and Xjk are explicitly 
determined, and we are left with k-I equations. If aj = 0 for all j, these 
Gauss-Radau and Gauss-Lobatto schemes reduce to those studied by Butcher [8]. 

When 0 = 0, the computations associated with the interval Jj proceed as 
follows: 

(1) Evaluate xjo with (3.13). 
(2) Compute {xjl, . .. , xjk using the successive approximations (3.11) and the 

initial guess (3.12). 
(3) Evaluate xja and zj by (3.1b) and (3.2), respectively. 

For 4k = 1, the computations become: 
(1) Compute {xjo,... I X1,k -} using successive substitutions on the first k 

equations in (3. la). 
(2) Evaluate Xjk, xja, and zj by (3.14), (3. lb), and (3.2), respectively. 
Remark 3.3. If aj = 1 for some j, the expression for Zj involves the factor 1/0. 

However, making the new definition 

1-a. 
z 

a[j xja -x(ti+)] 

we obtain a system similar to (3.1) that is valid when a1j #& 0,1 = 0, .. , N. In the 
special case aj = 1, j = 0, ... , N, the new system is equivalent to (3.1), but with 
the blzj - term replaced by zero, XT normalized so that ff(1) = 1, and 

k 

am = 1 - E 4i(I)vi(em)a7' 
i=1 

Remark 3.4. Let ao = 0. As aj for j > 1 approaches - oo, the piecewise poly- 
nomial satisfying (2.2) becomes continuous. Solving for x(tj+) from (2.3), 

x(tjQ) = [xj - aojx(ty)]/ (1 - aj). 
Now take the limit as aj approaches - oo. By (3.1), both xia and x(tQ-) are 
independent of aj, and hence x(t+) = x(t@-) in the limit. On the other hand, 

xj- X 7# x(tj) in general. 
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For the limiting scheme, the computation of the approximating polynomial and 

{xj- ) essentially uncouples. We sum over j in (2.2), and integrate by parts to 
obtain 

(3.15) (x -f(x), v) = 0 

for all v E IIh with v continuous on [0, T] and v(T) = 0. When x E Ilh iS 

continuous and x(O+) = xo, (3.15) gives us kN equations in the same number of 
unknowns. After computing x, the {xj-}) is evaluated using (3.lb). 

4. Nodal Error. The analysis of piecewise constant approximations, which follows 
conventional arguments, is given in Appendix 2. For k = 0 and ao = 0, the scheme 
is unstable unless aj < 2 I < j < N. The value aj =2 corresponds to the second 
order Euler improved scheme while the choice aj < gives first order convergence. 
Henceforth, it is assumed that k > 1, and we make the simplifying assumption that 

(4.1) f(x, t) = A(t)x + b(t), 

where A(t) is an n X n matrix, and the elements of A and b have square-integrable 
derivatives through order k on [0, T]. Our results, however, extend to the general 
nonlinear case. This section examines the error at the nodes. 

Notation. The following spaces of functions f: (a, b) -* Rn are utilized: 

L2[a, b]: Square-integrable functions. 
L0[a, b]: Essentially bounded functions. 

Hk[a, b]: Functions with derivatives through order k 
in L2[a, b]. 

C[a, b]: Continuous functions. 

For x E L[ tj 1, tj], let lixi.,j denote the essential supremum of Ix(t)l over t E J 
where is the Euclidean norm, and for x E Hk[t_ 1, t], define 

k 

il12,j (X(i), X(o). 
i-O 

We also define the norms 

11 * I00* = maxtil * II0 j:j = 1,... ,N} 

and 
N 

* 11I = 1 11 112 
j*1 

The zero subscript on 11 0 Ilo is often dropped; that is, 11 *11=11 *lo. Finally, for any 
I > 0, I * I00 denotes the sup norm on R', and MT is the transpose of the matrix M. 

Letting x* denote the solution to (2.1) and assuming the existence of a solution 
xh to (2.2), we have 

THEOREM 4.1. There exists a constant c, independent of h and a, such that 

(4.2) I(xh - X*)Ilo, < chkllxh - x*11. 

Proof. Observe that x = x* satisfies (2.2); subtracting relation (2.2) with x = xh 
from the same relation with x = x* gives us the following expression for the error 
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e = x* -xh: 

( ej*v (tj e) = e,_ I v(tQ,_1) + (e, v +ATv), 

forj = 1, 2,... , N, and v E ]h. Summing (4.3) overj = 1, 2,.. , m, yields 
m 

(4.4) eam * V(t; ) = (e, V +A Tv)i 
j=l 

for all v E ILh n C[O, T]. Let w E Hk+l[O, T] satisfy the relation 

(4.5) * +ATw =O, on [ 0, TI, 

W(tm) = em. 

By Lemma 4.2 below, 
IIWII k+ I m 

where c denotes a generic constant throughout this paper. 
Now let us recall, from Ciarlet [10] or Strang and Fix [21], that there exists an 

interpolation operator I: L2[0, T] -- IIh such that 

(4.6) llw - 11ls < chm-sllWllm, 

whenever k + 1 > m >s and llwllm < o; moreover, if k and m > 1, w' can be 
chosen so that 

[wI(ti+) =W(t+), 

lw'(ti-) =W(ti-), 

j = O, . . . , N. Hence, for the solution of (4.5), w' E C[O, T], and, by (4.6), 

(4.7) llw - wIlll < chk llw||k+l < chk le%l. 

Combining (4.5) and (4.7) leads to 

(4.8) II*' + A Tw'll = II*' - w +A <(w - w)II 6 chkIe |l. 

Finally, inserting v = w' in (4.4), applying the Schwarz inequality, and utilizing 
(4.8) completes the proof. E] 

Although Theorem 4.1 applies to any a, it does not guarantee convergence since 
the L2 error in xh may diverge. Also note that Theorem 4.1 holds for k = 0: just set 
v = e% in (4.4). 

LEMMA 4.2. Suppose that glj E Hk(Jm) for m = 1, 2, . .. , N, and v E H'[0, T] 
satisfies the equation 
(4.9) v+ATV = g 

almost everywhere on [0, T]. Then there exists a constant c, independent of g and 
s E [0, T], such that 

IIVIIk+1 < C{|V(S)| + 11gIIk}. 

Proof. Differentiate (4.9) k times to express V(k+1) in terms of {v, g, 
4(),... , g(k)}, then replace v using the identity 

v(t) = 4(t, s)v(s) + ft 4(t, a)g(a) da, 

where 4 is the fundamental matrix associated with -A T. r 
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5. L2 Error. In analyzing the L2 error, we utilize the following bilinear form 
N-I 

(5.1) B (x, v) = (x, v + A Tv) + , xj' * 8vj - eN 
- v(t; ) 

j=O 

where (*, *) denotes the L2[0, 1] inner product and 

6v1 = V(t,+) - V(tr ). 

Assuming f is given by (4.1), the Galerkin problem (2.2) is equivalent to the 
following: Find x E rIh such that 

(5.2) B(x, v) + (b, v) + x? v(O-) = 0 

for all v E 1h. Introducing the norms 
N 

IIXI12 = IIX112 + E x5e 
j- 

and 
N-1 

IIVIV2 = hiT +ATV112 + Iv(tK)12 + |v| 
j=O 

observe that IB(x, v)l < llxllxllvll v. 
The error llx* - xh lIx is now estimated. Define the balls 

BX = {x c Rh: IIXIIX = 1) and By = {v E nh: IllVly = 1 

and the parameter 

(5.3) yh = inf sup B(x, v). 
x E=Bx vE=-B, 

By Babuska [1], [2] or Brezzi [5], we have 

THEOREM 5.1. If yh > 0, there exists xh C 1h satisfying (2.2) and 

IIX* - XhlIx < (i + ?)IIX* _ WhiiX 

for all wh E rjh. 

Supposing that yh is bounded away from zero uniformly in h, let us substitute 
wh = x', the interpolant of x*, to get 

IIx* - xhIIx < cllx* -x'11 = cllx* - x'Il < chk+IIIx*Ilk+l. 

Since IIx* - xh I||X > IIx* - xhII, it follows that IIx* - xhll = O(hk+l). The re- 
mainder of this section addresses the problem of estimating yh. 

Notice that llxllx consists of terms involving Ixal and llxll. As we shall see, the 
estimation of yh reduces to the companion cases: Ixal/llxll small or IxrI/!lxll large. 
Let us begin with the first situation. Define the subspace 

nlh = {X E 11h: Xa = 0), 

let 11h,k- 1 C nh be the subset of piecewise polynomials with degree at most k - 1, 
and let VP denote the L2 projection into Hh,k- 1. 
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LEMMA 5.2. If there are ,B and y, independent of h, such that one of the following 
conditions hold: 

(1) aO = ? -oo < ,8 (j < Y , or 

(2)aN = 1, o >3 j> Y >4, 

for j = 1, 2, ... , N - 1, then there exists IL > 0 (independent of h) such that 

,IlIxll < 11 Xll S lIxIl for all x E Rho. 

Proof. Since 'Y is an L2 projection, lIPxll < llxll. Now letp denote the Legendre 
polynomial of degree k, translated and scaled to the interval [ tj 1, tj] and normal- 
ized so thatp(tj) = 1. Hence, for any x E HI', there exists cj E Rn such that 

(5.4) x(t) = ('9Px)(t) + cjp(t), t E J1. 

Recalling thatp(tj 1) = (_ I)k, cj is evaluated: 

c,, = (-1)k[xIk(t1) - X(t + 

And substituting into (5.4) gives us 

(5.5) IIXIIOO,j < Ix(tQ+1)l + 2116Y xlI 0I,j, 
since P li J = 1. Squaring (5.5) and utilizing the relation 

ab < (,qa2 + '1-lb2)/2 71 > O0 

we have 
IIxI12I, (1 + q)IX(t,1)12 + 4(1 + 7 - ))l'YxI2I . 

Summing overj = 1, ... , N yields 
N N N 

I56 IIXI1200,j < (I + 71) I JX(t,.+ 1)12 + 4(l + 71-1) E l g EX112 
j=l j=1 j.1 

Now suppose that x E llo; as noted earlier, the assumption aO = 0 implies that 
xg = x(O+). Since xa = 0, we see that x(O+) = 0, and, moreover, by (2.3), x(t+) = 

pjx(tQ-), where pj = a -l(aj-1) for j = 1, 2, ..., N- 1. Since A/(1 -A) is a 
monotone function of X < 1, A/(1 - X) < 1 for X < 2 and, furthermore, both the 
parameter 

p-=_maximum { I,B/ (0 ,- 1) IY/ (y - 01) 
is < 1, and Ipjl < p forj = 1, ... , N - 1. Combining these observations gives us 

N N N-1 
(57)~ ~ J X(t,.+1)12 6 p2 1 JX(t.-)1 p2 IX2 (5.7) j j_1)12 < p2 IIXI2 

j51 j=2 j-1 

Hence, by (5.6) and (5.7), 
N N 

(5.8) [1 - (1 + q)p2] , IIXI12 j < 4(1 + q-') , IIYxIIX0,1 
j-1 i-i 

Since p < 1, let us choose q so small that (1 + iq)p2 < 1. Recalling that there exist 
Cl, c2 > 0 (independent of h) such that 

N 

11lXI2 < h I 
IIXI120 'j X112lx2 

for all x E nh (5.8) completes the proof when ao = 0. The proof for aN = 1 is 
almost identical. [] 
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Applying this lemma gives us 

THEOREM 5.3. Under the hypotheses of Lemma 5.2, there exist positive constants c1, 
C2, and h such that 

sup{B(x, v): v E By) > cIIIXII - c2hI/21Xal 
for all x El nhand O <h <h. 

Proof. Given x E nh, let z E1 nh be the continuous, piecewise linear polynomial 
satisfying z(tj) = XJ for 0 < j < N, and define y = (x - z) E rh. By the triangle 
inequality, 

(5.9) IB(x, v)l > IB(y, v)I - IB(z, v)l. 
If v E H'[0, T], v(T) = 0, and v(O-) = v(O+), 

IB(z, v)l = l(z, v +A Tv)l < lIzIl IIvII v. 
Since z is piecewise linear, 

IIZJII j < max{Ixja | XJxj1l}) 
Therefore, lizil < 2h 1/2lxa 1, and we have 

(5.10) IB(z,v)l < 2h1/2lxal Ivi V. 
Let w E H '[0, T] satisfy the equation 

w+A Tw = 'Yy, a.e. on [0, T], 

w(T-) = 0, 

where 'Y denotes the L2 projection defined above. By (4.6), 

||w - w'IIl < ch klWllk+1, 

and, by Lemma 4.2 and the fact that the polynomials composing 6' y have degree at 
most k - 1, 

IIWIIk+1 < CII3YIlk = CllylYlk-l- 

Moreover, the mesh uniformity implies that 

11 PYIl k-I < ch ||k116Y11, 

the so-called inverse condition. Combining these relations, we get 

(5.11) llw - w'll, < chll'Pyll < chilyll- 

Now, by the definition of w and Lemma 5.2, 

1IwI v1 11= 1YII > ilyIl 

Hence, we have 

(5.12) 1l 11 v< llwll v + lw - w'll v < (1 + ch)llyll, 
> lIwII v - llw - w'l (it - ch)JJyJJ. 

Again, by Lemma 5.2, 

(5.13) B(y, w) = (y, gYy) = (6Py, gy) > pL211y112 
and, from (5.11), 

(5.14) IB(y, w' - w)l < cllw' - wJ1,11yll < chIIyII2. 
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Inserting v = w' into (5.9), dividing by IIwl iv, and utilizing (5.10) and (5.12)- 
(5.14) yields for h sufficiently small: 

(5.15) sup B(x, v) > (2- ch)jjyjj - 2h1/2lxal. 
vEBV 

On the other hand, 

(5.16) IIYII > llxI - lIIZl > llxII -2h1/2lXal. 

Relations (5.15) and (5.16) complete the proof. O 
Next, let us study the case where Ixal/llxll is large, and the following lemma is 

helpful. 

LEMMA 5.4. Given u E (R n)N, suppose that v: [0, T] -* Rn satisfies the following 
relations: 

I +ATv = 0 on (tj- 1t), j = 1, 2, . . ., N, 

Ivi = U1, j = 1, 2, ..., N-1, 

v(T =-UN' 

Then there exists a constant c > 0 (independent of h and u) such that I v Im < 

ch-'/21uI, whenever 0 < m < k + 1. 

Proof. Define the function w: [0, T] RI as follows: 
N 

(5.17) w(t) = v(t) + E u1, t E (tj-,, tj), j =1...,N. 
l=j 

Observe that w belongs to H'[0, T] and satisfies the identities 

[w(T-) = 0, 

1*(t) + A(t) [w(t) - u1] = 0, t e j, tj),j = 1, ... , N. 
1-j 

Applying Lemma 4.2 with s = T, we get, for 0 S m < k + 1, 

N N' 2 N 2 N 

IIWI12 <C E h <cNE J gWgm SC hE lull < c Y. luil j 1 N2 lj2. 
j51 l.j j--1 j .1 

Combining this with (5.17) gives us 

N N 25 1/2 Nr 1/2 

llvIlm < llwilm + {~ h( E lull) 1cN/2{ IlUiI2} o 

THEOREM 5.5. There exist positive constants c , C2, and hsuch that, for any x e 1h 

andO<h (h, 

sup{B(x, v): v E Bv) > CIlxal - c2h1/211XII. 

Proof. Given x E H1h, let w satisfy the following relations: 

I +A Tw = 0 on (t-,, t), j = 1, . .., N, 

Ow1 = x5a j= O, ...,N- 1, 

w(T ) = -XaN 
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Since (w' - w) E C[O, T], w'(T-) = w(T-), and w'(0-) = w(O-), 

llw' - wll v = II(*' - w) + A T(W' - w)II 
(5.18) < cl|w - wll, < chkllwllk+l S Chk-/21xal, 

where the last inequality comes from Lemma 5.4. Therefore, we have 

(5.19) IB(x, w')l = IB(x, w) + B(x, w' - w)l 

> -x | l-XII IlwI - WIIV> JX1a2 - chk-1/2XIII Iexa 

by (5.18). Similarly, (5.18) gives us 

(5.20) llw'II v S llwIl v + llw - w'l| v = IxaI + llw - wf || v < (1 + ch k/2)lxaI 

and 

(5.21) IIwIIIv > (1 - chk-1/2)Ixa. 

Dividing (5.19) by Iw'l I v and utilizing the inequalities (5.20) and (5.21), the proof is 
complete. OII 

Combining Theorems 5.3 and 5.5, we have 

COROLLARY 5.6. Under the hypotheses of Lemma 5.2, yh is uniformly bounded away 
from zero for h sufficiently small. 

Proof. Adding the inequalities in Theorems 5.3 and 5.5, we conclude that there 
exist positive scalars cl, c2, and h such that 

sup B(x, v) > 2(c - c2h /2)[IIXII + IXaI] 
veBV 

for all 0 < h S h and x E Bx. Setting q = minimum{h, c,/4c2} gives us 

sup B(x, v) > cl[lIIxl + Ixai] 
vEBv 

for all 0<h S q. But forxE Bx, llxll + Ixal > 1; therefore, yh >c, forh suffi- 
ciently small. OII 

Combining Theorem 4.1, Corollary 5.6, and the remark below Theorem 5.1, we 
have 

THEOREM 5.7. If there are /3 and y independent of h such that one of the following 
conditions hold: 

(1) aO = ?, -oo <#, < aj SY< 2,or 

(2) aN = 1, o > /3 I a1 > Y 
forj = 1, 2, ..., N-1, then 

K(xh 
_ X*)Ol = O(h2k+1) and llxh - x*11 = O(hk+1). 

Remark 5.8. If ao = 0, the assumption aj S is necessary for the convergence of 
the Galerkin scheme. For aj > 2' we detected numerical instability and divergence, 
while for the marginal cases aj = or a1 = -oo and Gauss-Legendre quadrature, 
the convergence rates observed in numerical experiments with k < 3 are reported 
in the following table. 
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TABLE A. Observed convergence rates for k S 3 and o = 0. 

k even odd 

ac. 1/2 -x 1/2 -x 

llx h.X* I k+ I k k k+ I 

|(Xh-E*)(1j. 2k+2 2k 2k 2k+2 

Similarly, if aN = 1, the scheme is unstable for a. < j = j O ..., N-1. 

Remark 5.9. We have tested our scheme on the following problems with -oo < a 
< I and observed the same convergence rates established by Theorem 5.7: 

(i) X*(t) = t e [0, 1], x(O) = 1. 

(ii) Xi(t) = -lOx(t), t E [0, 1], x(O) = 1. 

(iii) X(t) = X(t)2, t E [0, .5], x(O) = 1. 

(iv) X(t) = -2tX(t)2, t E [0, 1], x(O) 1. 

Appendix 1. Examples. 
TABLE B. Integration schemes for k = 1, o = 0 and ct, < 'h. 

Legendre Radau? Radau' Lobatto 

m 0 0 I 0 1 0 

6 6 3 3 1 0 

1 1 1 ~ ~ ~ ~ ~ ~ ~~~~3 31 1 am 2 2 4 4 4 4 2 2 

b.n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Im I) 2 2I 

3 3 

ao. 0 ____ 0 0 0 

a, _2 ___~F I I II 0 6 6 0313 

I- \/F I + V~3 1 3 0 
2 2 2 2 

Co,~~~~~~~ X X -~~~~~~~~~~~ 2 

C -Vn i3 5+ - x x x x 

An "x" is placed in row c,m if xjl is evaluated explicitly and the associated 
extrapolation coefficient is not needed. 
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TABLE C. Integration schemes for k = 2,a0 = 0 and c1i < M. 

Legendre Radau? 

m 0 1 2 0 1 2 

10 2 10 10 10 

5 8 5 1 16+ '/6 16-A/F 
m 18 18 18 9 36 36 

2 1 2 1 2 +3~ 2 -3x7,6 
5 2 5 25 25 

ao. -V- 7 - 2VBFl 0 0 0 aom 60 15 60 

a,. 
4 ,4+B 1 4- 9+\/F 24+ 6 168-73 6 

24 6 24 75 120 600 

7+2VT5 4+ VI5 7 9- 6 168+73x/F 24- V6 
2m 60 15 60 75 600 120 

m(i) 5- Ji5 2 5+ 1 2-3 x/ 2 + 3 _ 6_ 

13-3VI5 4 15-20 10 - !P 

10- VT 5 17 10+ F/B 10-2\/F 8- 13\/F 17x/6-22 
cm 3 3 3 3 6 6 

C2. 10+ 15 20 +44 13 +3 V5 10 +32 ' _ 22 + 17 /6 8 + 1.3 A 3 3 3 3 6 6 
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TABLE D. Integration schemes for k = 2, ao = 0 and a, ? ?. 

Radau' Lobatto 

m 0 1 2 0 1 2 

10 10 2 

am 164- vF6 4 + V/ 6 1 1 2 1 
36 36 9 6 2 

b. -_2 + 3 
m_ 

_ 2 + 3 V 6 I 1 
25 25 2 

aom 
2 4 24- 6 24- 11 iF6 0 0 0 0 

120 24+V20 4- - 

a2m 6+ 0 0 1 0 

41m0) 0 0 1 0 0 1 

Com - 16-76 2-3\,6 10-2/V6 x x x 
6 6 3 

Cim 2 + 3 2+3F - 16+7V\ 10+2 ,6 1 3 3 

C2m X X X X X X 
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TABLE E. Convergence rates for k = land 2, a =0 and a1 < S . 

Ilxh -x*1 ih_* 

3 ~~~~2 2 2 2 

Gauss-Legendre 1 2 2 2 3 4 

Gauss-Radau 1 2 2 2 3 3 

Gauss-Lobatto 1 2 2 2 2 2 

Gauss-Legendre 3 3 2 6 5 4 

Gauss-Radau 3 3 2 5 5 4 

Gauss-Lobatto 3 3 2 4 4 4 

Integration schemes derived from Gauss quadrature with k 1 and aj = 1, 
j = 0, . . . , N, are listed below. In all cases, the convergence rates are 3 and 2 for 
I(xh - x*)a 10 and llxh - x*II, respectively, except that I(xh - x*1O O= O(h2) for 
Gauss-Lobatto quadrature. 

TABLE F. Integration schemes for k = land a, =1. 

m 0 1 

1 
-__F 

aom3 3 6 

Gauss-Legendre 

6 

ao. -- 

Gauss-Radau? 

5 1 

1o 2 -12 

Gauss-Radau' 

3 1 

aom -2 

Gauss-Lobatto 

a,1 
1 
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Appendix 2. Piecewise Constant Approximation. Let us consider the case k = 0. 
Given x E IH', let xm denote the value of x on Jm. Hence, with a0 = 0 and aj = p 

for] = 1, 2, ... , N, (2.2) becomes the following: 

(Al) 1 1-8)(x2 - x) = fl(XI), 

0 1-)(xj+ lxi) + (XjXj l) = j(x) j=2,..,N 

where 

(A2) f (xj) = ftj f(xj, t) dt. 

The choices /3 = 0 and 1/2 are related to Euler's explicit and improved methods, 
respectively. 

Recall that (Al) is convergent if the zeros of the following characteristic equation 
are less than or equal to one in magnitude: 

(l- 3)X2 + (2,83- I)X -f = 0. 

Since the zeros are 1 and 13/1, - 1, we see that (Al) is convergent for /3 S 1/2. 
Similarly, there is divergence for ,/ > 1/2. Also recall that if (Al) is convergent, its 
rate is determined by the local truncation error. Expanding f in a Taylor series 
about (xj, tj), it follows that the scheme is first order for /3 < 1/2. 

Now let us consider the error in the a-averaged variable 

8j lxj + (1-,]x+, j = 11 . .. I N, 
Xia 0l1~ 1A8Ti+1 

for ,/ = 1/2. Adding (Al) to the same equation, but withj replaced by (i + 1), and 
expanding f in a Taylor series about (xj, tj), we obtain 

Xja+ = xya_I + 2hf(xja, tj) + 0(h3), /3 = 1/2. 

Deleting the 0(h3) term gives us Euler's improved method, a second order scheme. 
Hence xj' is correct to second order. As noted above, the Gauss-Legendre quadra- 
ture formula 

fo1 
|p(t) di _ p(l1/2) 

for (A2) preserves the second order convergence of xi'. For /8 < 1/2, the order 
drops to one. 

If aN = land aj = /3, j = 0, .. ., N-1, (2.2) is equivalent to 

[/3xo + (1 - /3)x1 = XO, 
(A3) 0 (-,0)(xi+ I- xi) + ,lXx - xi-,) = fi(xi), j = 1, . . . , N -1, 

L /(XN - XN-I) = fN(XN). 

For /3 = 1, this gives us Euler's implicit method, which is implicit over each mesh 
interval; but for /3 # 1, (Al) is implicit over [0, T]. Similar to the case a0 = 0, the 
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convergence rate for xa is 2 if ,B = 1/2, and 1 for /3 > 1/2; the scheme diverges 
when /3 < 1/2. 
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