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A Mesh Refinement Method for Ax = XBx 

By Stephen F. McCornick* 

Abstact. The aim of this paper is to introduce a simple but efficient mesh refinement 
strategy for use with inverse iteration for finding one or a few solutions of an ordinary or 
partial differential eigenproblem of the form Ax = XBx. The focus is upon the case where A 
and B are symmetric and B is positive definite, although the approaches have a very broad 
application. A discussion of the combined use of mesh refinement and a correction scheme 
multigrid technique is also provided. The methods are illustrated by numerical results from 
experiments with two-point boundary value problems. 

1. Introduction. There are presently several areas of activity surrounding the 
development of numerical techniques for solving the generalized eigenproblem 

(1) Ax = XBx, 
where A and B are n X n symmetric matrices and B is positive definite. A brief 
account of part of this history is given in [11] , with more recent results reported in 
[7] and [10]. See also [9] for the case B = I. Of special interest is the large sparse 
eigenproblem where n is very large and only a small percentage of the entries of A 
and B are nonzero. Of further interest are problems of this type where the pattern 
of the nonzero entries in both A and B prohibits direct triangular factorization. For 
such problems, linear equations involving A and B must generally be solved 
indirectly, that is, by iteration. 

Most problems of this latter type result from discretizing an infinite-dimensional 
eigenproblem, most notably from that of a partial differential operator. This is 
normally a major source of numerical difficulty for methods that attempt to solve 
(1) since it almost guarantees that the relative separation of the eigenvalues is 
pathologically small. Thus, even though only one or a few of the extreme eigenval- 
ues of (1) are usually needed in such cases, "factorization-free" iterative methods 
will often fail to provide a good approximation without performing an intolerable 
amount of computational work; cf., [4]. The limitation of these methods is to be 
expected, however, since they rely on model assumptions on (1) that do not take 
much account of the problem origin. In fact, few practical methods presently in use 
do. (See, however, [6] and [13].) Yet, taking this origin into account can lead to 
techniques that are remarkably efficient. A scheme of this type is the subject of this 
paper. 

The essence of the method described in the following sections is a combination 
of the techniques of mesh refinement, inverse iteration, and multigrid. On each grid 
in the progressive mesh refinement process, an outer loop inverse iteration equation 
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is posed which has the effect of linearizing the eigenvalue problem. This allows for 
the use of an inner loop correction scheme version of multigrid iteration [5], for 
example. Dramatic steps from coarse to finer grids are made with the approximate 
eigenvector(s) and corresponding eigenvalue(s) "passed" to the finer grid to act as 
an initial guess for one outer loop iteration. The process is terminated when the 
truncation error on the present finest grid is smaller than a prescribed tolerance. 

The mesh refinement process follows directly from earlier work (i.e., [1], [2], [8]) 
with Newton's method applied to nonlinear two-point boundary value problems. In 
fact, the eigenvalue problem can be recast as a nonlinear problem for which 
Newton's method reduces with some modification to RQI, the Rayleigh quotient 
iteration (cf., [11]). Some of this earlier work has its parallel in application to (1), 
although the present work is distinguished, as we shall see, by a difficulty with the 
Rayleigh quotient and an advantage of cubic convergence of RQI. 

A closely related approach, which has been considered quite generally in [6] and 
is presently being investigated from a practical standpoint by A. Brandt and others, 
is to apply FAS, the full approximation multigrid scheme (cf., [5]), directly to the 
eigenproblem by treating it as a nonlinear operator equation. Quite roughly 
speaking, this can be viewed as an application of an iterative method that has been 
linearized at each step for computability. Thus, the roles of inner and outer loop 
iteration are just the reverse of the approach of this paper, although the multigrid 
involvement somewhat confuses this interpretation. In any event, the FAS ap- 
proach is more complex and, at least for well-behaved problems, is probably a little 
less efficient. It is also, probably, somewhat harder to direct to the proper 
eigenvalue and is less amenable to modifications such as simultaneous iteration; 
cf., [7]. On the other hand, for problems that may benefit from adaptive refine- 
ment, the FAS approach should prove to be more versatile. 

After the preliminaries of Section 2, Section 3 contains a discussion of the mesh 
refinement process, which can be viewed as a scheme for defining RQI by moving 
progressively from coarse to finer grids. The suitability for solving the RQI defining 
equation by the correction scheme multigrid method, which is a grid cycling 
scheme, is discussed briefly in Section 4. In Section 5 we present a theoretical basis 
for a variational formulation of the mesh refinement. The last section illustrates the 
mesh refinement scheme as it applies numerically to two-point boundary value 
problems. 

2. Assumptions and Notations. We assume in this and the next section that LT and 
'M are mappings from some suitable function space C1 (Q) into another C2(9i), with 
C1(2) c 2(0) c C2(0) The function domain is 9 c Rd, where d is a positive 
integer. For each h in a nonempty indexing set % c R +, with n = n(h), we 
assume the existence of n x n matrices hA and hB that, together with LT and I, 
satisfy the following: 

Al. The spectrum of 

(2) Li x = XA3x, x i el (0) - {0}, 
consists of a discrete set of eigenvalues ordered, counting multiplicities, according to 

(3) X1 < X2 < X3 < X4 < ... A oo. 

(The case where A1 is multiple is discussed briefly in Section 3.) 
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A2. For each h in Y., hA and hB are symmetric and hB is positive definite. The 
eigenvalues of 

(4h) hAX = hBx, x E Rn {o}, 

are denoted by 

(5h) hAl 6 hX2 < ... < hXn. 

For compatibility, on R n let the B-inner product <x, Xy >h and induced B-norm II x II h 

denote suitable discrete approximations to the B-norm and B-inner product in 

C2(9). (For example, if 2 = Hd l[0, 1] and h = n-l/d, we may choose <X,Y>h = 

h dxT hBy.) With this inner product, a hB-orthonormal set of eigenvectors for (4h) 

is denoted by 

(6h) {hUl, hU2, . I hUn} 

A3. There exist cl, c2, H E R +, and a positive integer m such that 

(7) IhAl -AX < c,hm and IhX2 - X21 < c2hm 

for all h <H, h e 91. 
A4. Let h,, h2 E 9Z and write n, = n(h,) and n2 = n(h2). Denote by IJ,2 a 

mapping from R n I into R n2 that preserves eigenvector approximations for (4h,) and 

(4h2). Specifically, we assume that for all e > 0 there exists an H' = H'(e) so that, 
with any x E R l - {0} such that IIXII, = 1 and with y = Ih2(x)/ III2(x)h2 , we 
have 

(8) IIY h2Ulllh2 < |IX -h1Ullh1 + E, 

whenever h2 < h, < H', hl, h2 E 9.. [Note that when (4h) represents a variational 
discretization of (2) as in Section 5, then a natural embedding exists of each Rn 
into 6 (a), for which I,2 is essentially the identity and (8) is satisfied by setting e 
equal to the sum of the eigenvector truncation errors on grids h, and h2. For finite 
difference discretizations, (8) must also account for the interpolation error incurred 
in I,h2. Since this can be made negligible when Ih2 is chosen properly, we can 
roughly conclude that Y - h2Ul 

1h2 
x hU1Ul h2.] 

There are many examples of large, sparse eigenproblems that arise from a setting 
satisfying Al -A4 and where factorization of either A or B is undesirable. Often 
they are posed as partial differential eigenproblems such as those that arise in 
structural analysis (cf. [7]) and diffusion reaction modeling (cf. [4] and [13]). Note 
that all of the examples in Section 6 satisfy Al-A4. 

The mesh refinement technique described in the next section applies to a much 
broader class of eigenvalue problems than the symmetric case treated here, includ- 
ing cases where the operators (differential or otherwise) are unsymmetric or 
nonlinear or where A appears nonlinearly in (1). However, the method is discussed 
in the present simplified context because this simplicity highlights the essence of 
the technique and because many practical problems are of this type. 

3. Mesh Refinement. It is natural to attempt to find the smallest eigenvalue of (2) 
by choosing a grid sequence h, > h2 > ... > hp in 9L and performing some sort 
of iteration on each grid hi initialized with Ik,_ applied to the accepted solution 
from grid hi-1, i = 2, 3, ... , p. However, this would be worth doing only in 

connection with an iterative process that converges at least superlinearly since the 
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essential difficulty with such methods is in obtaining good starting guesses. It is 
therefore natural to consider mesh refinement in connection with RQI which, 
ignoring the normalization step, is given by 

(9) (hA - R(x(k)) hB)x(k+ 1) =hBx(k), k = O, 1, 2, ... 

where the Rayleigh quotient R(x) = <x, hAx>/<x, hBx>. (We postpone the 
discussion of how the linear equation in (9) is to be solved until Section 4.) This 
will usually fail to work because of the nature of R(x), that is, even though an 
approximate eigenvector on a given grid may be fairly accurate, the Rayleigh 
quotient is biased well upward by the large eigenvalues present in (4h). The result is 
that, even for very modest jumps to finer grids, the approximation by (9) will 
usually shift from the smallest eigenvector to successively higher ones as the 
refinement progresses. The key in avoiding this unacceptable behavior is to pass 
from grid h, to grid hi+, not only the approximate eigenvector but the approximate 
eigenvalue as well. Except for this simple but critically important step, the mesh 
refinement strategy is similar to the approach in [8]. We therefore omit any 
background except to state that the bases for the refinement process include: 

B1. for each i, compute an approximate smallest eigenvalue on grid h, to within 
the truncation error cIhr of ,; 

B2. attempt to design the refinement so that hi/hi-I is as small as possible 
(starting with i = p) yet insures that only one iteration in (9) is needed for each i; 
and 

B3. determine hp so that the accepted approximation to X I is within a 
prescribed tolerance (tol > 0) of A1. 

Simply stated, the preprocessing phase of the mesh refinement procedure begins 
by choosing initial coarse grids h, and h2 = h,/2 and examining the eigenvalues 

,k,Xj, i,j = 1, 2, in order to: approximate the truncation error expressions in (7); 
determinep and the final grid size hp so that 

cIhp' < tol 

(as dictated by B 1 and B3 above); choose as large an hp_- as is possible so that 
hp- I /hp is a power of 2 and so that the Rayleigh quotient of the first RQI iterate is 
within cl hpt of ,I1 (where RQI is initialized with the first grid hp -I approximation 
interpolated to grid hp); determine hp-2 in a similar manner with respect to hp- ; 
and proceed until h2 satisfies these criteria with respect to h3. The execution phase 
of the mesh refinement procedure then begins by interpolating the grid h2 ap- 
proximation (to h2ul) up to grid h3, to initialize one RQI, and continues by 
repeating this process until the grid hp approximation (to ,ul) is computed via one 
RQI. 

There are many possible and advisable steps that should be taken in a fully 
implemented procedure that insure that the approximation is to the extreme 
eigenvalue, that the truncation error estimate is accurate, and that the final 
approximation is suitable, for example. We comment briefly on a few of them as 
they arise in the following description of the mesh refinement procedure (m > 1, 
y > 0, and tol > 0 are assumed to be given): 



A MESH REFINEMENT METHOD FOR Ax = XBx 489 

Step 1. Choose h, E Y? and let h2 = 2hl. Compute (to machine precision) ,,j 
and h,uj and define the approximations to the truncation error coefficients in (7) by 

C? = YIh? -h2Xjhl m, i,j = 1,2. 

Comment 1. The quantity y > 0 may be considered as a fudge factor to insure 
that C > cj in (7). Note that for "monotonic" discretizations (for which, by 
definition, h, converges monotonically to Al as h -+ O ) we should choose y > 

2m/(2m - 1). 

The choice for h, should be made based upon some heuristics or by some 
specific knowledge of the problem (e.g., the number of zeros of ul). With the 
constraint that hJul is a sensible approximation to ul in this way, h, should be 
chosen so large as to guarantee that the computational effort expended in Step 1 is 
small compared to subsequent steps. (Note that it may be necessary to compute all 
of the eigenvalues of (4h,) and (4h2) to safely select the approximations for the two 

smallest. This will mandate a fairly large hi.) 
For Step 1, we have assumed m is known, but cl, c2 are not. If cl, c2 are known, 

the computation on grid h2 may be ignored. If m is known, a third grid h3 may be 
used to "fit" the parameters m, C1, C2 in (7) to the "data" kXJ, i = 1, 2, 3, j = 1, 2. 

Step 2. Perform a test to insure that the (computed) h2XI is close enough to X1 to 
act as a shift for RQI, namely, that 

Clh < 2 2 2 

If h2 is too large according to the test, reduce hI and repeat, beginning with Step 1. 
Comment 2. A simple general test is 

(3 c^1 + C2) h2m < ^A-2 (38I+c~~~~~~~~~~~~~~~~~~~~2)17h2X2 - 
2 

although knowledge of the problem setting (e.g., monotonicity as defined in 
Comment 1) may suggest a somewhat less stringent test. 

Step 3. Let p = 3 and determine the final mesh size h3 as the largest element of 
DL satisfying 

2 c' hpm < tol1. 

(If h3 > h2, output 2X I and h2ul and stop.) 
Comment 3. The final value of p is the number of grids determined in the 

refinement process. The determination of hp insures that an acceptable (see B1) 
approximation to XI is within tol of X1. 

Step 4. Letting i = 2 and q = c 2/m(h2 X - )-2//m, determine whether or not 

(10) qh <hi+ 1. 

If so, go to Step 6. Otherwise, go to Step 5. 
Comment 4. We have made a few simplifying but reasonable assumptions here. 

For example, we assume that eigenvector truncation error is not significantly 
changed by interpolation. Moreover, we assume that cl, c bound cl, c2 and that the 
eigenvalue truncation error on grid hi, i > 2, is negligible compared to X2 - XI. 
Fortunately, performance of the mesh refinement procedure is very unsensitive to 
such assumptions and, only for badly behaved problems, need they be reconsid- 
ered. 
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Step 5. Rename each h1, j = 3, 4,... ,p, by calling it hj+I (h3 becomes h4, h4 
becomes h5, etc.) and increment p by one. Now, determine as large an h3 as is 
possible so that h3/h4 is a power of 2 and so that (10) is satisfied with i = 2. Return 
to Step 4. 

Comment 5. When the loop in Steps 4-5 is completed, we have determined a grid 
sequence h,, h2, h3, . .. , hp, so that (10) is satisfied for each i = 1, 2, ... , p-1, so 
that k / k+I is a power of 2 for each i = 3, 4, ... ,p - 1, and so that the "jump" 
from grid k to kh+ 1 is as large as possible, i = p - 1, p - 2, .. . , 4. Incidentally, 
because of the cubic convergence of RQI, often in practice p = 3. Note that i = 2 
the first time through Step 6. 

Step 6. Let X(i) denote the Rayleigh quotient of the final approximation on grid hk 
and let x() denote the result of applying Ik'+1 to this approximate eigenvector. 
Perform one outerloop inverse iteration according to 

(11) (s,+ A - X (i) B)x(') = Bx(?). 

(This is not strictly RQI, although we refer to it as such for our convenience.) 
Comment 6. The computation of x(l) may be done either directly by a factoriza- 

tion scheme or indirectly by some iteration method; see Sections 4 and 6. Note that 
the mesh refinement process can thus be viewed as a means for linearizing the 
problem safely in the sense of providing an initial guess that requires only one 
linearization per grid. 

Step 7. Replace x(l) by x()/l IIx ()II 'h. 1. If i <p, increment i by one and go to Step 
6. Otherwise, output R(x(')) and x(l) and stop. 

Comment 7. Several tests may be required here to insure that the results are 
appropriate. For example, examination of the problem behavior may be observed 
on grid 2hp to insure that the truncation error estimates are acceptable and that x(l) 
on grid hp is sufficiently accurate. This is facilitated by using multigrid as the 
innerloop iteration but is expensive when other techniques are used to solve (1 1). 

The assumption in (3), that X1 is simple, is not strictly necessary, although for 
multiple X1 we can expect that the discretization in effect splits X1 into two or more 
very close eigenvalues. Thus, the mesh refinement process will be confused in its 
determination of cl and c2, unless a precaution is taken to recognize the condition 
that 1XI _-hX21 is tending to zero. An alternative is to implement simultaneous 
iteration by carrying several vectors at once in order to approximate several of the 
lowest eigenvalues in (3). The Ritz steps should then be performed after each 
application of (11), although the solution process in connection with (11) must now 
account for several vectors together. In terms of the multigrid iteration, this will 
result in a conservative algorithm by requiring that the smoothing scheme account 
for all of the vectors at once. In terms of the mesh refinement process, (7) must 
then be modified to account for the subspace truncation error estimates which 
must then be incorporated into the algorithm. 

The mesh refinement strategy developed here is very efficient, but perhaps a 
greater attribute is the control that it provides in the solution process. Thus, as long 
as the target solution is even vaguely apparent on the coarest grid, this strategy 
allows for a complete examination of the coarse grid problem to direct the 
procedure on the finer grid to the proper target. It is probably best then to think of 
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this approach as a means of providing an acceptable starting guess for the fine grid 
iteration, a perennial problem for fast converging processes such as RQI. 

This mesh refinement strategy is independent of the way in which (11) is to be 
solved. Certainly for two-point boundary value problems, direct factorization is 
usually best. A numerical example in this connection is given in Section 6. But for 
more complex problems (e.g., d > 2), it is often more efficient to use a multigrid 
approach. It has been suggested [6] that multigrid methods for solving inverse 
iteration equations (first proposed in [13]) will be unacceptably slow because of the 
inherent numerical conditioning of the defining equations. However, multigrid 
methods are apparently insensitive to the condition of the linear system and in fact 
work remarkably well in application to (11), as we shall see in Section 6. 

4. The Multigrid Process. There have been several recent and essentially unsuc- 
cessful attempts to develop algorithms for solving (1) based upon defining outer- 
loop RQI and using an innerloop iterative scheme like conjugate gradients. Al- 
though such methods may need suitable modification to account for possible 
indefiniteness of the RQI defining matrix, the major difficulty with these methods 
is rather the matrix condition. These methods fail uniformly for most eigenprob- 
lems, especially those stemming from differential operators. The potential for 
success with the multigrid process (cf. [5] ) therefore lies in its insensitivity to the 
condition of the linear problem and its ability to solve most problems in O(n(h)) 
arithmetic operations. 

The correction scheme [5] is a slightly more efficient technique than FAS and 
other multigrid approaches since it makes use of the linearity of the differential 
operator. Moreover, it is computationally advantageous for the multigrid process in 
general if the operator is also positive definite or, more precisely, if the operator 
approximation on the coarsest grid used in the grid cycling scheme is nonnegative 
definite. This insures that the relaxation iterations do not inordinately magnify the 
error components in the eigenvectors belonging to negative eigenvalues and thus 
eliminates the need to change to a different and, perhaps, direct solution process on 
the coarsest grid. These two conditions, namely, linearity and coarse grid nonnega- 
tive definiteness, can be guaranteed by proper choice of the shifts in (11). 

Another important point is that the solution of (11) on grid hi 1 should proceed 
by first starting the multigrid iterations on grid hi/2 using the approximation 
interpolated from grid hi. The multigrid scheme would then progress in turn on 
grids 2-2hi, 2-3hi, and so forth, until grid hi,, is reached. Unless the solution is 
acceptable at this point, the cycling would then begin with the use of grids hi, 2- 'hi, 
2-2hi,. . . , hi,1. This suggests that the residual equation be solved by direct means 
on grid hi, provided it is not too fine. However, care should be taken here since the 
defining matrix on grid hi is now numerically singular and will result in a 
correction that will dominate the approximation on grid hi,+. One of several ways 
to avoid this behavior is to replace the shift by the Rayleigh quotient of the fine 
grid approximation, assuming that the relaxation sweeps have sufficiently damped 
out the higher eigenvalue contributions. In the experiments reported in Section 6, 
we succeeded by simply ignoring this problem. We were able to do this because the 
components that were magnified, because of the lack of positive definiteness, were 
very close to the eigenvectors being sought. For more complex problems, it is 
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suggested that the Rayleigh quotient be computed after a few relaxation sweeps on 
grid h,+1, that it be used as the new RQI shift, and that the grid hi correction be 
computed by a technique that does not require positive definiteness (e.g., by 
factorization). 

5. Theory for Variational Methods. The purpose of this section is to develop a 
theoretical footing for the mesh refinement process developed in Section 3. Since 
the method relies on estimates of upper bounds for 1,.Xl -, X1ll, then, unless 
rigorous bounds are known from analysis, a complete theory would require 
assumptions on the existence of positive lower bounds for these quantities. Indeed, 
without proper safeguards, accidentally small values of these quantities on coarse 
grids could easily trip up the refinement process. This is one reason for possibly 
implementing a conservative fudge factor in (10) or using more than two initial 
grids to improve the estimate for cl. Nevertheless, we will assume cl has been 
properly estimated and focus our attention on motivating the mesh transition 
expression depicted in (10). For simplicity, we assume a variational formulation of 
the discretization in (4h) with a setting somewhat more general than that described 
in Section 2. 

Suppose C: D(C) -* H and 9i: D(9J) -* H are selfadjoint linear operators with 
domains D(6i) c D(6@) that are dense subsets of the real separable Hilbert space 
H. Suppose also that S3 is positive definite on D(@). Assume that SI c S2 
c . . . c D(C) represents an infinite sequence of closed subspaces for which 

lim"O Sn-- Un l S_ is dense in H. We assume, for definiteness, that dim Sn = 
n. Let 6Yn: H -- Sn denote the canonical orthogonal projector of H onto Sn and 
write An = &n (C Yn and Bn = 6Yn ,, 6yn . Then the eigenvalues of 

(12) An x=AXBnx 

are real and may be written, counting multiplicities, as 

(13) Aln _<A 2n -< * * * -<1A 
The corresponding B-unit eigenvectors are written as 

(14) UInI U2nI .. I *,Unn . 

(By B-unit vectors we mean vectors of unit length in the inner-product <x, y > 
<fi3x,y>, x, y E D(ffi). The corresponding ffi-norm is given by IIxIk,= 
<ffx, x>1/2.) 

Suppose 6x = Xffix has a complete set of ffi-orthonormal eigenvectors 

(uP, u2 ... ) that correspond to the eigenvalues X1 < X2 ... (assuming, for 
simplicity, that the spectrum is bounded from below). Define 

en = Xln- X 

for 1 < i < n and note that our variational setting implies that en is a nonincreasing 
sequence of reals bounded from below by zero. We, naturally, assume that 

limnoo en = 0 and, further, that X1 is simple. We also require limnoo X2n = X2. Let 
m = X2-X1, mn = X2n-XIn, and R(x) = <Kx, x>/<fKix, x>, x E D(ffi). In what 
follows, note that R(x) = <6in Ix x>/<ffinx x>, whenever x E Sn. 

The first lemma provides an estimate for the error in x E Sn as an approxima- 
tion to uln in terms of the error R(x) - Xln. 
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LEMMA 1. Let n > 1 and x E Sn such that e R(x) - XIn < m,/2. Then 
<x, uIn>B #0 and 

(15) ~~~~~~x 2 
(15) || <X Uln>B. Uln|B. 

< 
mn-I 

Proof. Write x = <x, uln>B (u + 8h), where h E Sn, <BnUIn, h> = 0, and <Bnh, 
h> = 1. Then 82 iS the left side of the inequality in (15). This inequality now 
follows from the observation 

e = R(x) - Xln = ln +82 <An h> _ Xn 

2 <(An- xnBn)h, h> > n 82. 

The next lemma yields upper bounds for the error after one iteration of (11) 
performed on Sn. 

LEMMA 2. Let X satisfy 0 <X - Xn < mn/2. Given x in Sn such that <x, UIn>B #4 

0, let y E Sn be the solution to 

(16) (An - XBn)y = Bnx. 

We then have 

(17) R(y)-Aln < (A (X 
- + 

)2Mn 

(X2n - X)2+ 82(X - Xn) 

where 8 = IIX/<X, Ul>Bn- UIn1,B. 

Proof. We first assume 1 = 4, the identity on H, so that Bn = 6y n and 

Bn/ Sn = I /Sn. Assuming, without loss of generality, that X = 0 sO that XIn < 0 < 

x2n, then 

R(y) - =<Any, y> _ <A A,tx, A,+x>- 
I 

Y IY <An x, A+x> In 

where A"+ is the inverse of An/Sn. Hence, writing x = <x, uln>Bn(Uln + Sh), as in 
the proof of Lemma 1, we have 

(18) R(y)- = In<X Ath h > - 
n 

nAnth, A,nh> - Xln Kh, h> + 3 2X12,~,A~ 

The maximum of this quantity over unit h E {- u1}ln n Sn occurs as a zero of the 
gradient of the right-hand side of (18), considered as a function of this h. But this 
implies that h is the zero of a second-degree polynomial in A +. Hence, h must be a 
linear combination of at most two eigenvectors of A + and, therefore, A. Writing 
h = ajuin + ajujn where a72 + a2 = 1, i,j > 2, and setting a = a%2, we have 

R(y) - ln<2\2[(1 - x;')a + - - - 2] 
1(y-2 + -2[(A-2 - X2)a + X-2 

for some i, j > 2 and 0 < a < 1. We must now maximize this expression over i, j, 
and a, which we first do for a. Noting that the right-hand side is simply a quotient 
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of two linear terms in a, the maximum over a must occur either at a = 0 or at 
a = 1. Thus, 

(19) R(y) -ln < max I2n - ln 
2'<i<n XQ + 32X2 

If we view X. as an arbitrary real in the interval [X2n, Xnn], then the maximum in (19) 

is attained at either Xnn, X2n, or Xln ?+ V,2 i82 . The latter are the zeros of the 
derivative of the right-hand side, considered as a function of A,. But 

X1l ? Inf_782 < X2, So the maximum in (19) is attained at i = 2 and (17) now 
follows. 

The case for general @ rests on establishing (17) by performing a Choleski 
factorization of Bl/Sn and transforming (12) into a symmetric eigenproblem with 

B/lSn becoming the identity. This is straightforward and is therefore omitted. E 

THEOREM 1. Let N be given so that 

ek < m,1/2 
for all 1, k > N. Suppose, for a given k > N, that an x E Sk has been determined so 
that 

IXlk - R(x)l < ek 
Let I > k satisfy the transition condition 

(20) (2 ek)3M1 l 
(mi -2ek)3 + (2ek)3 

Then y, determined by (16) with n = k and X = R(x), satisfies 

l,XI - R(y)l < el- 

That is, one iteration is sufficient for convergence to XI to within the truncation error 

*l- 

Proof. With X = R(x), note that 

0 < X - X1I < X - XI< X - Xlk + Xlk -X < 2ck. 

Hence, by Lemma 1, viewing x as an element of 8 yields 

Kx, u< >B X - 
1 

B, Ml - 2Ck 

Hence, by Lemma 2, 

R(y) - XI< ( <m 
- 

)(2 1 m (2e )3m/ 

(m,1 - 2 ek)2 + ( 12C, )(2k)2 (mn, - 2ck )3 + (2 ek)3 

The theorem follows from this and (20). C1 
Remark 1. For sufficiently large N, the expression in (20) is essentially the same 

as 
(2ek)3 

M2 2 n El 
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With ek = clhk, this is just the mesh refinement transition condition depicted in 
(10). 

Remark 2. The theory of this section can be applied to A,., i > 1, with a few 
obvious modifications. 

Remark 3. There are several special contexts to which the general assumptions of 
this section apply, such as eigenproblems for integral operators (cf. [31) and 
differential operators (cf. [61). 

6. Numerical Results. In this section, we report on the results of experiments with 
the methods presented here applied to four specific examples: two two-point 
boundary value eigenproblems (d = 1) and two partial differential eigenproblems 
(d = 2). Note that B = I in each case. Since the performance of these methods is 
invariant under similarity transformations, it is sufficient, from a numerical point 
of view, to test these problems with B = 1. That is, a Choleski decomposition of 

hB = hLhLT can be used to transform the case in which hB is not the identity to 
one in which it is. The numerical performance of the methods of this paper is 
invariant under such a transformation. Note that this viewpoint is in the same spirit 
as that in using only diagonal matrices (cf. [121) to test the Lanczos process. The 
first two examples are the following two-point boundary value eigenproblems: 

El. (Simple Harmonic Motion Equation). 

-x" = AXx, 

x(O) = x(l) = 0, 

x2(t) dt= 1, 

(actual A1 2 7T29.8969044). 

E2. (Mathieu's Equation). 

- x" + 20X 2 cos(277t)x = AXw2x, 

x(O) = x(l) = 0, 

f x2(t) dt= 1, 

(actual A1- 13.9365525). 

To, in effect, ignore the special properties of these problems, we have imple- 
mented them in a rather naive way. For example, we discretized both by standard 
central differences on a uniform grid on [0, 1] (so that m = 2 in (7)), we made no 
use of any accelerating techniques such as extrapolation, and we restricted I,h2, 

h, > h2, to simple linear interpolation. We also focused on the computation of A1, 
although higher eigenvalues may be computed by these methods. All tests were 
done on a CYBER 172. 

The mesh refinement process was first implemented by solving for each RQI 
iterate on each grid directly by elimination. Table 1 depicts ,,A1 and h2AI (which 
are the computed values of h,A1 and h2AI, respectively, with h1 = 2-4 and h2 = 

2-), the estimate cl = 1621h,AI h2AlI, the predicted acceptable mesh size h3 for 
which h3Al - AI < tol/2 (here we use tol = 2 18), the approximation h3AI com- 
puted via one RQI on grid h3, and r = I- AIItol'. The erroneous digits in the 
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eigenvalue approximations are underlined. Note that success is indicated by the 
condition that r < 1. 

This choice of tol( 3.8 x 10-6) was made for convenience in our tests. Note 
that the relative error in each X1 is therefore less than 5 x Io-7. 

Convergence on the fine grid was achieved, as expected, for each problem by the 
first RQI iterate. In our experiments, we were actually able to do much better than 
is indicated. In fact, we were able to jump from grid h = 2 -2 to h2 = 2- 14 for both 
problems without incurring the need for additional RQI steps. This is not surpris- 
ing since the analysis of RQI is naturally pessimistic, but it can be fortunate since it 
will tend to counteract the errors in determining an acceptable value for c1. 

TABLE 1. Mesh Refinement/ Elimination 

Example h1| X h2X I | h X r = XAI - X1ItoP' 

El 9.838 9.8617 6 2-"1 9.8696026 .47 

E2 -14.022 -13.9575 16 2-12 -13.9365538 .33 

TABLE 2. Mesh Refinement/Multigrid 

(with coarse grid elimination) 

Example No. of - Xtol' 
ECycles hX r = li3X 1 1 

El 0 9.8696027 .45 

E2 0 -13,9365482 1.13 

1 -13.9365496 .76 

The next set of experiments involved the same technique as before, except that 
the problem on grid h3 was solved by a fixed correction scheme multigrid method 
[5]. Thus, the only difference between these and the first set of tests was that the 
direct process of solving for the RQI iterate on grid h3 was replaced by multigrid 
cycles initiated on grid h2/2. (The multigrid scheme was of fixed type in that the 
cycling was predetermined to move progressively from grid h2 to h3 and back. In 
progressing to grid h3, three Gauss-Seidel relaxation sweeps were used while one 
was used in the return to grid h2. Although this is a fairly primitive multigrid 
scheme, it serves to illustrate the performance of methods of this type.) Each time 
the multigrid iteration arrived at grid h3, the Rayleigh quotient of the iterate was 
computed and compared to the true X1 for test purposes to determine performance. 
(Of course, a computable convergence criteria is necessary in practice. A safe test is 
to compute the norm of the gradient of R(x) which can be used to bound the error 
in x.) 

Table 2 depicts the results of tests on both equations. The cycle count was 
initially set to zero when the multigrid iteration first arrived at grid h3 and was 
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incremented by one each time it returned from coarse grid cycling. Note the 
remarkable success of this scheme especially for equation El. In fact, this suggests 
that combined mesh refinement multigrid iteration will solve most eigenvalue 
problems to which it applies in an equivalent of just a few fine grid matrix 
multiplies, regardless of whether or not 1 = J. This is underscored by the fact 
that a relatively major expense in producing an acceptable eigenvalue by this 
approach is in the computation of the Rayleigh quotient of the fine grid approxi- 
mation. 

The last two examples are two-dimensional partial differential boundary value 
eigenproblems: 

E3. (Helmholtz Equation in the Unit Circle). 

-lAx = Ax in Q = {(s, t): s2 + t2 1), 

x=0 onaS2= {(s,t): s2+ t2= 1, 

JJx(s, t) ds dt = 1, 

(actual X1 5.78306). 

E4. (Helmholtz Equation in an Egg-Shaped Region). 

-Ax = Xx in Q = {(s, t): s2 + t2 < 1, t < } U {(s, t): 4S2 + t2 < 4, t > 0}, 

x = 0 on a ={(s, t): s2+ t2= 1, t < O} U {(s, t): 4S2 + t2 = 4, t > O}, 

f J x(s, t) ds dt = 1, 

(actual XA 4.2080). 

The tests with these examples were with multigrid only. The tol values were 
chosen to reflect different criteria of accuracy so that the eigenproblem for E4 is 
larger and produces greater accuracy. In each case, h = 2 1 so that h2 = 2 2 
Note that the performance, as expected, is similar to that of the method applied to 
the one-dimensional examples El and E2. 

These examples are typical of the behavior we have observed in experiments with 
the mesh refinement/multigrid process. In all of the tests we have run, the 
eigenvalue approximation was acceptable after one multigrid cycle from the finest 
grid. In most cases, it was acceptable even before the cycle. 

TABLE 3. Mesh Refinement/Multigrid 

(with coarse grid elimination) 

Example h,Xl h2| {i e tol h3 Cycles {h3X r = Ih3Xl - 

E3 5.439 5.681 1.3 10-2 2-4 0 -5.778 .5 
E4 4.0162 4.1524 .73 10-3 2-5 0 -4.2071 .9 
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