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Type-Insensitive ODE Codes Based on 
Implicit A-Stable Formulas 

By L. F. Shampine 

Abstract. A special concept of stiffness is appropriate for implicit A-stable formulas. It is 
possible to recognize this kind of stiffness economically and reliably using information 
readily available during the integration of an ODE. Using this development, a variety of 
effective ODE solvers could be made insensitive to the type of problem, i.e. the code would 
automatically recognize and alter automatically its algorithm at any step depending on 
whether the problem is stiff there. 

1. Introduction. Codes for the numerical solution of the initial value problem for 
a system of ordinary differential equations (ODEs) are divided into two types. One 
type is intended for the solution of stiff problems and the other type for nonstiff 
problems. The first thing every user must do is to decide which type is appropriate 
to his problem. The decision is important. If the problem is at all stiff, it is 
prohibitively expensive to use a code intended for nonstiff problems. If the 
problem is not stiff, it is feasible to use a code intended for stiff problems. 
However, the cost is, relatively speaking, very high because such codes form 
Jacobians, form and factor iteration matrices, and solve linear systems. These are 
expensive operations not performed in codes for nonstiff problems. The storage 
required is also very high because of the matrices used. In addition, formulas in 
codes for stiff problems are often of comparatively low order, and the nonstiff 
problems are the ones which might well be solved to high accuracy. Worst of all, 
from the user's point of view, is that he has to get much more involved in the 
solution because stiff problems are simply harder. The most distasteful matters are 
the provision of a Jacobian and of structure information about the Jacobian. 

Naturally, the first question a user asks is how to recognize stiffness. Numerical 
analysts become evasive then because there is no simple answer. Stiffness depends 
on the formula used in the code as well as on the user's problem. It depends on the 
solution itself which is, of course, not available. Even a qualitative understanding 
of the solution behavior is not enough because stiffness depends on the equation 
too. It is typical that physical problems involve the solution of ODEs for a range of 
parameter values. Small changes of a parameter may change the overall type; see 
for example [1], [2]. Even if it were possible to provide the user with an answer 
adequate for current codes, this would still be unsatisfactory for the code developer 
because the type can, and ordinarily does, change in the course of the integration 
of a "stiff" problem. Almost all problems described as "stiff" have regions of sharp 
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change (boundary layers) in which the integration is relatively expensive but not 
stiff. From this sketch of the situation, it is fair to say that the most serious defect 
in current user interfaces to codes for the initial value problem for ODEs is this 
type decision required of the user. There are several possible remedies; in this 
paper we describe one way to provide type-insensitive codes. 

As we see it, there are certain minimum requirements for a truly type-insensitive 
code. If a problem is unequivocally nonstiff, we must avoid entirely the formation 
of Jacobians and its associated storage and matrix computations. If the problem is 
unequivocally stiff, we must use a method efficient for stiff problems. Of course, it 
would be desirable to use a method efficient for nonstiff problems when the 
problem is not stiff, but this is by no means essential. We are insisting that the 
worst inefficiencies be avoided, so if the method used is at all reasonable, the cost 
of solving these relatively cheap problems will be acceptable (or at least tolerable) 
to a great many users. In this paper we show how to achieve this minimum level of 
success and more. Most stiff problems will actually be solved more efficiently using 
our ideas, because we take advantage of portions of the integration which are not 
stiff. The solution of nonstiff problems will be reasonably efficient, although not in 
general comparable to that of the best codes for this specific task. However, we will 
describe how to solve the nonstiff portions about as well as possible, when we 
restrict ourselves to formulas of order two. Though limited in scope, this result 
could provide an extremely useful tool in contexts such as simulation languages 
where low order may be acceptable and an efficient type-insensitive code of 
obvious value. 

The theoretical results are interesting quite aside from their practical implica- 
tions. By restricting our attention to implicit A-stable (IA) formulas, we are able to 
characterize stiffness in a practical way. It turns out that one can recognize this 
kind of stiffness, which we term "IA-stiffness," economically and reliably using 
information readily available during the integration. This tidy development pro- 
vides the foundation for a subsequent paper reporting our investigation of formulas 
which are not A -stable. 

2. IA-Stiffness and its Recognition. The practical man frequently asks, "What is 
stiffness?" There is no simple answer. A little reflection about the theory and 
practice provides one reason-stiffness depends on the formula being considered as 
well as the problem. Implicit A-stable (IA) formulas are the object of this study. 
Although the word "implicit" may seem superfluous here, we insist on it, as well as 
"A-stable," so as to draw attention to the two attributes which are the foundation 
of our investigation. To remind the reader that we employ a special concept of 
stiffness, we shall speak of "IA-stiffness." 

It may be puzzling that one even mentions stiffness in connection with A-stable 
formulas. Insofar as we have noticed, no one has asked straight out, what is 
stiffness for an A-stable formula, but the question has been answered implicitly 
many times. To see this we must review the situation. The review will also serve to 
state a number of items we shall need later. First let us recall a few familiar 
examples from the family of Adams-Moulton (AM) formulas and the family of 
backward differentiation formulas (BDF). The formulas of order 1, AMI and 
BDF1, are the same formula, usually called the backward Euler formula. When 
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solving a system of differential equations, 

y =f(X,y), 
it is 

Yn+I =Yn + hf(Xn+ ,Yn+l). 

Here yn approximates y(xn) and xn + = xn + h. The AM formula of order 2 is 
better known as the trapezoidal rule, 

Yn+lI = Yn + 
h 

fo(Xn + IIYn + ) + f(Xn I YJ 

The BDF of order 2 with constant step size h is 

Yn+1 = 
2 

hf(Xn+ 1Yn+l) + 4Yn-I Yn- 1 

The formulas cited are implicit, as are all the common formulas intended for the 
solution of stiff problems. Suppressing the independent variable, we see that these 
formulas have the generic form 

(1) y = hyf(y) + 4, hy > O, 
for the algebraic equations to be solved at each step for their solution y*. Here y 
represents the new solution value, y comes from the formula, h is the step size, and 
4i lumps together previously computed quantities. Easy extensions of the form 
cover formulas with more complicated structure, such as implicit Runge-Kutta 
formulas. The standard way [3] of solving (1) is to approximate the Jacobian matrix 
at xn +II Yn +I by a matrix J and then to improve an approximate solution y m by 
solving 

(2a) y m+ I =t 7p + hyf(y m) + hyJ(y m+ y m), 

or, equivalently, 

(2b) (I - hyJ)(ym+l - yim) = ,i + hyf(ym) - y. 

The choice J = 0 is called simple, or functional, iteration. If J is nontrivial, a lot 
more work is involved. In the order of (typically) decreasing cost, an approximate 
Jacobian J must be formed, an iteration matrix I - hyJ must be formed and 
factored, and the systems of linear equations (2) must be solved. The iteration with 
J -# 0 is called a simplified Newton or, sometimes, quasi-Newton iteration. Because 
a change of step size alters the iteration matrix and so induces a relatively 
expensive matrix decomposition, codes for stiff problems make such changes only 
when they must and when a significant increase of step size is possible. Codes for 
nonstiff problems take advantage of even modest alterations of step size. 

The practical difficulty of stiffness is that a step size which would yield the 
desired accuracy must be severely restricted for other reasons, and so one has to 
work much harder than appears reasonable. With an implicit A -stable formula, the 
usual restriction on the step size to maintain absolute stability is not present. The 
only obvious restriction on the step size arises in the solution of the implicit 
formula. Simple iteration may require the step size to be severely restricted in order 
to get adequate convergence. In such a situation using a nontrivial approximation 
to the Jacobian in (2) may greatly ease this restriction. The simplified Newton 
iteration is much more expensive per step than simple iteration, but it can lead to 
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enormous increases in efficiency because the step size used can be so much larger. 
It is worth comment that how rapidly the true Jacobian changes along the solution, 
the accuracy of the approximation J, the way J is used, and the like may lead to 
other restrictions on the step size in order to secure adequate convergence. 

It is quite clear from previous use of the example formulas that people consider a 
problem to be nonstiff for them if convergence of simple iteration does not restrict 
unduly the step size, and stiff otherwise. The backward Euler formula is especially 
illuminating. In its guise as AM1, it is evaluated by simple iteration and used for 
nonstiff problems. In its guise as BDF1, it is evaluated by a simplified Newton 
method and used for stiff problems. The famous DIFSUB code of Gear [4] 
implements both the Adams-Moulton family and the BDF and makes precisely this 
distinction for this formula. 

For an implicit A-stable (IA) formula, we define the problem to be nonstiff at 
Xn+ Yn + if simple iteration works "satisfactorily" and otherwise stiff. This is in 
agreement with previous practice with such formulas. It is an unusually specific 
and practical definition for what we call IA-stiffness. 

With mild smoothness assumptions on f, the condition [5] for convergence of 
simple iteration for all starting guesses y in a neighborhood of a solution y* of (2) 
is that 

h-yp af (y*))< 1, 

where p(M) means the spectral radius of the matrix M. If this condition holds, 
there is a norm in which the iteration is contracting. The criterion is not at all 
realistic. Codes work with specific norms and must observe convergence which 
must be rapid. It is of no interest that a process will eventually converge if the code 
permits no more than three or four iterations, as is typical. The practical condition 
is that 

(3) hy af (Y*) < 1. 
ay 

The condition (3) must be modified to take into account certain other practical 
issues. For one thing, simple iteration is so much cheaper than a simplified Newton 
iteration and permits so much more rapid variation of step size that it is cost-effec- 
tive to reduce the step size h substantially to some Sh if necessary to secure 
adequate convergence. The condition (3) merely says that simple iteration will 
contract in a sufficiently small ball abouty*. In practice we must have pretty rapid 
convergence and so must require that it be at least as fast as a selected number r, 
e.g., 0.25. Thus, we ask if 

(4) max hy af < r <1 
11Y-Y 11<P ay 

for a ball of radius v containingy* andy?. We remark for later use that 

(5) L= max af 

is a Lipschitz constant for f on the ball. If (4) holds, we say the problem is locally 
nonstiff for the IA formula and otherwise it is stiff. 
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3. Changing Type from Stiff to Nonstiff. It has occurred to many people to use 
the norm of the Jacobian to decide if simple iteration is feasible. The trouble is that 
being able to make this decision is all but useless if one cannot decide when to 
switch back to a simplified Newton iteration. It is for this reason that the author 
has devoted his earlier research to the harder task. A way to accomplish this task 
for IA formulas is presented in the next section. Although deciding when to switch 
to simple iteration is relatively easy, it is not entirely straightforward. We are not 
aware of any previous discussion of the practical issues involved, so we take them 
up in this section. 

The first issue to be addressed is the matrix norm. To apply the condition (2.4), it 
is necessary that we select a matrix norm compatible with the vector norm being 
employed in the error control. It would be preferable to use the subordinate norm 
so that the condition will be sharp. To be practical, the matrix norm must be a 
cheap, simple computation. The only popular vector norms in current codes are 
(weighted) maximum, Euclidean, and RMS norms. The last is a constant multiple 
of the Euclidean norm, so there are really only two norms which concern us. The 
matrix norm subordinate to the maximum norm is-computationally convenient, but 
that for the Euclidean norm is impractical. The Frobenius matrix norm is a 
practical alternative compatible with the Euclidean vector norm. It has enjoyed 
some popularity in numerical linear algebra, but the fact that it can differ 
substantially from the desired subordinate norm is a serious disadvantage in this 
context. There are various arguments in favor of one vector norm or another, but 
none is convincing. Our preference is to work with the maximum norm and its 
subordinate matrix norm because of the advantages enjoyed by the matrix norm in 
this context. 

The condition (2.4) refers to the maximum value of the Jacobian on a ball 
containing the predicted solution at x, + 1. Our intention is to estimate this quantity 
by means of the approximation J, formed in the code for the iteration (2.2). At best 
one has a matrix obtained by evaluation of analytical expressions for the partial 
derivatives at a predicted solution Y2+i. Most current codes retain an iteration 
matrix as long as convergence is at a satisfactory rate. Only when a substantial 
increase of step size is possible do they form a new J and iteration matrix. A few 
codes may not form a new J even then, using instead the old J in the new iteration 
matrix. (We advocate this in [3].) The point here is that the argument for the partial 
derivatives may be a solution obtained at some time in the past. In addition many, 
if not most, problems are solved by numerical approximation of the partial 
derivatives. Thus, it may well be that we do not have a particularly good 
approximation to the desired Jacobian. A related difficulty is that the norm may 
vary from step to step. For example, if a pure relative error control is prescribed, 
the weights are the reciprocals of the solution components. Although these observa- 
tions should instill a sense of caution, the situation is not at all worrisome. An old J 
is used only when it is believed that the Jacobian is roughly constant along and 
near the solution. If evidence to the contrary, such as unsatisfactory convergence, is 
observed, a new J is formed. Thus, we expect that II J II be a reasonable approxima- 
tion to the size of the Jacobian on a ball about the predicted solution. It would be 
possible to recompute IIJII at each step should the norm change, but it hardly 
seems worth the effort, and we do not suggest it. 
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Computation of J is quite cheap for the maximum norm and advantage can 
be taken of a known sparsity of J. The cost is comparable to solving a linear 
system with a matrix already factored. As we suggest it, the norm is calculated 
every time a new J is formed and not at the formation of a new iteration matrix (a 
rather more frequent event if one saves J, as we advocate). One factorization of an 
iteration matrix costs as much as many norm computations. There is almost always 
an initial transient present for problems showing some stiffness and, anyway, one 
should start the integration with a step size small enough so that simple iteration 
works, so as to get on scale. The type of code we propose will take, then, at least 
one step with simple iteration which the usual code aimed at stiff problems will 
handle with a simplified Newton iteration. Avoiding the formation of the Jacobian, 
the factorization of the corresponding iteration matrix, and the solution of several 
linear systems will compensate for the extra overhead during the remainder of the 
integration of the test we propose. 

We want to make it easy to switch to simple iteration. Simple iteration is much 
cheaper and it is practical to adapt the step size to the solution much more 
precisely than when using a simplified Newton iteration. The scheme described in 
the next section for recognizing stiffness is cheap. There is an important reason for 
making it a lot easier to switch in one direction than the other. One would not 
expect the character of the problem to change frequently, but if one uses a simple 
threshold, one might possibly encounter a special correlation of problem and 
threshold which causes frequent switches. An asymmetry in switching controls the 
difficulty. We do not suggest forming a new approximate Jacobian J for a sharper 
test if, when using an old IIJ II, we should find that a switch is possible with the 
current step size. For the reasons outlined, a borderline case like this would be 
handled most efficiently by going to simple iteration. 

If one forms a new J and finds that simple iteration is possible, one switches and 
makes no use of this approximate Jacobian. Ideally, we would like to make the 
decision before forming the Jacobian; we do not see how to do this. We do 
advocate saving this J. Should it appear desirable to go back to a simplified 
Newton iteration, one must decide whether to form a new Jacobian or to use a 
stored J. If we retain the arguments Yk and xk at which the stored J was evaluated, 
or at least Ilykll and Xk, we can compare them to the current arguments. If the 
arguments have not changed much, it would appear reasonable to try using the 
stored J and otherwise to form a new J. This simple test will be especially valuable 
in avoiding troubles due to potentially frequent switches resulting from the use of 
the less than ideal formulas we take up in another paper. 

A final point is that the test proposed is rather sharp if the approximation to the 
Jacobian is current. It seems highly unlikely that one would make a "mistake" and 
so use Newton's method when simple iteration is feasible, unless IIJ II comes from a 
previous step. This cannot happen unless convergence is satisfactory, for otherwise 
a new approximate Jacobian would be formed. If convergence is satisfactory and 
our recommendation about retaining a copy of J is accepted, a change of step size 
would not be accompanied by formation of a new Jacobian. Thus, even if an 
isolated mistake is made, the code would solve the problem there in a relatively 
cheap way. 
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4. Changing Type from Nonstiff to Stiff. Recognizing when a problem has 
changed from nonstiff to stiff is much harder than recognizing a change in the 
reverse direction because much less information is available. For some years the 
author has investigated this matter for the most popular methods for solving 
nonstiff problems, the explicit Runge-Kutta and the Adams methods. The studies 
have had some success, but the schemes proposed have all been carefully described 
as deciding whether the reason for a code working too hard is stiffness. The goal, 
however, is a scheme so sensitive that information gathered in a single step would 
suffice. We describe here how to do this. The new element in this investigation is to 
ask what kind of formula, reasonable for nonstiff problems, makes the decision 
easy, as opposed to asking how to make the decision for specific formulas. The 
author worked out the basic idea some years ago for the BIOS code alluded to in 
[6]. The code development had to be interrupted before the new test was imple- 
mented. However, we did apply one tool in the recent study [7] of detecting large 
Lipschitz constants and stiffness in Adams and Runge-Kutta codes. We mention 
this background because it is important to understand what was different about the 
situation in BIOS. 

Although BIOS was intended for the solution of nonstiff problems, it was based 
on block implicit one-step formulas, which happen to be implicit A -stable formulas. 
The formulas were selected because of their suitability for constructing a variable 
order Runge-Kutta code, and no particular importance was attached to their 
stability properties nor to their being implicit. Naturally, in the context of their 
planned use, the implicit formulas were evaluated by simple iteration. We soon 
realized that with any IA formula we have two step sizes of interest. There is the 
largest step size which could achieve the desired local accuracy, hacc There is a step 
size hite, such that for h < hiter, simple iteration converges. IA-stiffness means that 
the code must use a step size smaller than that which would give the desired 
accuracy so as to make the cheap iteration for evaluating the formula converge. We 
thus define 

hacc = IA-stiffness index. 
hiter 

If the index is large, it is cost-effective to resort to a more expensive way of 
evaluating the formula which allows us to use a step size more nearly hacc. 

Because all modern differential equation solvers estimate haw' it appears that we 
need only deal with the restriction on the step size due to the iteration method. 
Quite the contrary. There is a fundamental difficulty with hacc. In our studies of 
explicit Runge-Kutta methods [8], [9] we avoided using hacc just because of this 
difficulty. We also avoided its use in a test for Adams codes [10], but more recently 
did try to use it in [7]. The difficulty is that in the presence of a finite absolute 
stability region, the step size estimated by the code as appropriate for producing 
the desired accuracy, hest, may be derived from a "rough" numerical solution 
contaminated by propagated error rather than from the underlying smooth true 
solution. In a subsequent paper dealing with formulas which are not A-stable, we 
shall have to discuss this fully. Here we simply note that it is only because we work 
with A -stable formulas that we can always approximate h - hCSt 
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Next, we consider how to estimate the restriction on the step size for the 
convergence of simple iteration. Here is where we use the implicitness of the 
formula to gather the information required. Suppose the code forms hest, For a 
number of reasons a step size h = 'hest is actually tried, where D is a known 
quantity which may depend on a variety of computed quantities. Starting with a 
predicted value y?, a sequence of iterates ym is formed by simple iteration as in 
(2.2a) with J = 0. If L is the Lipschitz constant of (2.5) on a ball about y* of radius 
v containingyo, we have 

m+2 _ 
ym+llI = IIhyf(ym+l) - hyf(ym)II 

< hyLIlym+l - ymll = chest yLIIym+1 - ymII. 

The step size hiter is defined by 

hiter yL = 1, 

so that h < hiter is the condition that the iteration contract in norm on the ball. 
These observations provide a computable lower bound for the IA-stiffness index: 

m +2 - m+ 1 yLh h h (1) 1 IIY -Y 11 _<_yL 
= est _ acc 

y 
M+1 - 

ym h~~iter hiter 

The lower bound for the stiffness index tells us the penalty paid for using simple 
iteration. If it is "large," we surely want to switch to the more expensive iteration 
scheme. What if the bound is not large? Does this mean the problem is not stiff? 
No, the fact that simple iteration will diverge for some near y* does not preclude 
it converging for other yo. Thus, it may happen that we get convergence when we 
had no right to expect it. 

There are several reasons why we might accept a step and not even have 
available the bound (1) on the IA-stiffness index. Some acceptance tests are 
described in [3], [11], [12]. A reliable and simple acceptance test based on the 
residual, which is recommended by Shampine [11] and by Williams [12], could 
accept y or y . A much less reliable test described in [3] could sometimes accept y. 
In such situations, the information needed to form the bound is simply not 
available. If yo or a subsequent iterate should be about as accurate as possible in 
the precision of the computer, the quantities IIym +I - ym may be roundoff errors 
only and we cannot form the bound reliably. (The residual test will terminate the 
iteration before forming such a quantity. With other acceptance tests, one can spot 
such a quantity easily and with reasonable reliability as we did in [7].) 

Thus, the index might not reveal the stiffness, the information might not be 
available to compute the index, or the information available to compute the index 
might not be reliable. This does not matter. Our object is to integrate the 
differential equation efficiently, not to determine stiffness per se. If we should 
evaluate the formula cheaply with simple iteration when we had no right to expect 
it, we can just enjoy our good fortune. Because we are using A-stable formulas, we 
need not worry about the integration remaining stable. This is a crucial issue with 
formulas which are not A -stable because of the effect on hest, but it is not an issue 
at all with the kind of formulas we study here. 
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To recapitulate, the fact that the formula is implicit A -stable is used in several 
ways: 

(i) stiffness in a practical sense is equivalent to the rapid divergence of simple 
iteration; 

(ii) hest -hacc; 
(iii) the integration remains stable if we make a "mistake" by accepting a step 

computed with simple iteration when simple iteration is not in general convergent 
for this step size; 

(iv) the step size restriction due to simple iteration can be estimated from 
available data. 

We have already said that we believe every integration should be started off with 
a step size small enough that simple iteration converge, so as to get on scale. If the 
problem never exhibits IA-stiffness, then the procedure described in this section 
will never call for the formation of a Jacobian and its attendant costs of storage 
and linear algebraic computations. Thus, if the problem is unequivocally nonstiff, it 
will be solved using simple iteration and algorithmic tactics appropriate to the type. 
If the problem is unequivocally stiff, a switch to a simplified Newton iteration will 
be made just as soon as the IA -stiffness is evident. 

5. Changing Formulas. There is no need to use the same formula for both stiff 
and nonstiff portions of the integration. What we want in a formula is a bit 
different in the two cases. A-stability is important to our way of recognizing 
stiffness when solving nonstiff problems, but damping at infinity is not important 
except when solving stiff problems. Accuracy is a critical matter for the solution of 
nonstiff problems, but it is of secondary importance for the solution of stiff 
problems. Changing formula at the same time one changes iteration method offers 
interesting possibilities for improved performance. To consider changing from one 
formula to another, we must be able to relate the truncation errors and the 
restrictions due to convergence of simple iteration for the two formulas so as to 
alter the step size appropriately. These questions are not germane to this paper and 
we are not going to take them up in general. However, to show what might be 
done, we will sketch an interesting possibility. 

Few people would disagree that if one is working at order two, the trapezoidal 
rule (AM2) is a very attractive formula for nonstiff problems and the BDF2 a very 
attractive formula for stiff problems. The AM2 is not strongly damped at infinity 
as the BDF2 is and so is not nearly as suitable for solving stiff problems. On the 
other hand, it is considerably more suitable for solving nonstiff problems. The 
truncation errors of the AM2 and the BDF2 are 

(1) 12h3Iy(3)(()J and Ih3ly(3)(v)j, 

respectively. This means that the AM2 could achieve the same accuracy as the 
BDF2 with a step size bigger by a factor of about 1.59. Furthermore, the conditions 
for the convergence of simple iteration are 

(2) 1 llhJll < 1 and 2llhJl < 1, 
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respectively. This means that simple iteration can be used with the AM2 at a step 
size bigger by a factor of about 1.33. 

We propose that one use the AM2 when simple iteration is feasible and the 
BDF2 when it is not. Because of the extremely simple relationships (1) and (2), we 
can at any time understand the effects of a change of formula and select an 
appropriate step size. It is easy to implement the two formulas in virtually identical 
fashion so that a change is very easy; compare, for example, the implementation of 
both in the DIFSUB code [4]. 

It is worth noting that Klopfenstein [13] has derived a second order formula, 
which we shall call K2, enjoying all the aforementioned properties of the BDF2. 
The condition for convergence of simple iteration is 

3 lhJIll < 1, 

and the truncation error is 

I h3y3() 

The former is slightly better than the BDF2 and the latter is significantly better. 
We would implement K2 rather than the BDF2 in a type-insensitive code. 

A code along the lines sketched would satisfy remarkably well the attributes one 
would hope for in a type-insensitive code. It is a pity that the order is only two, but 
there are important areas in which this would suffice. 

6. Some Applications. There is a considerable variety of formulas and procedures 
to which our ideas apply. We shall cite here some effective codes for stiff problems 
which, in principle, could be altered easily to make them type-insensitive. Unfor- 
tunately, a change to an existing code which is simple in concept is often 
surprisingly difficult in practice. Providing an alternative iteration method is only 
part of the task. To properly solve nonstiff problems, some basic tactics, such as 
those for adjustment of step size, must be different from those for solving stiff 
problems. Providing an alternative set of tactics implies a substantial software 
development effort. 

We shall not mention any specific one of the many codes based on the multistep 
formulas we have given as examples-BDF1, BDF2, AM2. Klopfenstein has a code 
STIFEQ which implements the interesting formula K2 described in Section 5. It 
needs no further comment. 

Hulme and Daniel [14] have implemented two families of fully implicit Runge- 
Kutta formulas in COLODE. The Legendre family is A-stable and the Radau 
family strongly A-stable. This code makes several Jacobian evaluations in each 
step, the number depending on the order of the formula selected. It estimates the 
local error by doubling, meaning that two steps of length h are taken and 
compared to one of length 2h. This implies two matrix factorizations at each step. 
As Hulme and Daniel properly point out, this code is extremely expensive in terms 
of Jacobian evaluations, storage, and overhead when applied to a nonstiff problem. 
Our ideas do away with all this expense and so make the code of acceptable 
efficiency for a nonstiff problem. Indeed, because Jacobian evaluations are made 
at every step, the decision about switching to simple iteration is sharper than it is in 
many codes. 
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Alexander [15] has implemented a number of semi-implicit Runge-Kutta meth- 
ods involving one to three stages. All the formulas are at least A -stable. The local 
error is estimated by doubling. It is clear that using simple iteration, when feasible, 
greatly reduces the cost. Norsett has derived a-scond order semi-implicit formula 
with internal error estimate. It has been implemented nicely so as to take account 
of sparse Jacobians by Houbak and Thomsen [16]. The formula has three stages 
with an overlap of one stage into the next step if the step is a success and the next 
step is of the same size. The formula is L-acceptable, hence our ideas apply. The 
gain is not as dramatic as in Alexander's code because of the more efficient error 
estimation scheme, but it is still just what is needed to make the formula practical 
for nonstiff problems. 

The idea of extrapolation is to solve a problem twice (or more) with the same 
formula using different step sizes and to combine the results to get a higher order 
result. Lindberg does this with the modified midpoint rule in his code IMPEX 2 

[17]. When simple iteration is feasible it is very advantageous because it avoids two 
matrix factorizations coming from the various integrations. Extrapolation has been 
rather successful for the solution of nonstiff problems, so it is possible that a 
type-insensitive version of IMPEX 2 might be pretty competitive for such prob- 
lems. 

Defect correction methods resemble extrapolation in some respects. More than 
one integration is done, but the problem is altered rather than the step size. 
Ueberhuber [18] does the integrations with the backward Euler method. Because of 
the low order of the basic formula, several integrations are normally done. 
Recognizing when simple iteration is feasible is of obvious importance to make the 
method practical for nonstiff problems. 

The examples cited show that quite a variety of effective codes for stiff problems 
could be altered to make them type-insensitive. It is not claimed that they would 
compete with the best codes for nonstiff problems, but they would be practical. 
Their performance on stiff problems would be improved, as they take advantage of 
a change of type in the course of the integration. It would be worth a lot to many 
users to have just one code for all their problems which would be efficient for 
expensive (stiff) problems and be of acceptable efficiency for relatively inexpensive 
(nonstiff) problems. 
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