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Uniqueness of the Optimal Nodes 
of Quadrature Formulae 

By Borislav D. Bojanov 

Abstract. We prove the uniqueness of the quadrature formula with minimal error in the 
space Wq [a, bJ, 1 < q < oo, of (b - a)-periodic differentiable functions among all quadra- 
tures with n free nodes (xk}l, a = xi < ... < x, < b, of fixed multiplicities {Pkl', 
respectively. As a corollary, we get that the equidistant nodes are optimal in Wq[a, bJ for 
I < q < oo if PI = ... = v". 

1. Introduction. Let 5Y be a given class of sufficiently smooth functions defined 
on the interval [a, b]. Suppose that the linear functional L(f) is defined on IF. We 
shall consider in this paper rules of the type 

n Pk- I 

(1.1) ~~L(f) I E ak,J.^)(xj) =: S(a, x; f) 
k=1 X=O 

with nodes 

X 
PI ... Vn 

) a 6 xl < . . . < Xn < b, 

and coefficients a = {akxA. Let R(a, x) := sup{IL(J) - S(a, x; P)1: f E IF} denote 
the error of the rule (1.1) in the class IF. 

Definition 1. The coefficients a(x) are said to be best for the nodes x if 

(1.2) 
R(a(x), x) = inf{ R(b, x): over all real b = {bkx}} 

=:R(x,, . * * , Xn). 

We shall refer to (1.1) as being a best rule if its coefficients {akA} are best for the 
nodes x. 

Definition 2. We call the nodes {Xkln optimal of type (v, ... , v") in the class IF if 
xl < . . . < xn and 

(1.3) R(xl, . .. , x") = inf{R(y1, . . . ,yn): a < y1 < . . yn < b}. 

The rule (1.1) with nodes x defined by (1.3) and coefficients a(x) is optimal of type 
(v1, P *. 

, 

The main purpose of this paper is to prove the uniqueness of the optimal nodes 
of arbitrary fixed type (v1, . .. , v") for L(J) = fb f(t) dt in the Sobolev spaces 
Wq[a, b], 1 < q < oo, 

'r[a, b] := {(b - a)-periodicf: f E C '-o0, oo), 
f(r - 1) locally abs. cont., lflr) llq < 0C),9 
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where 

(b 
IftI d 

I 
IllfIq := ( f(t)Iqdt for 1 < q < , 

IlfIS o supvrai{If(t)I: t E [a, b]}. 
The error R(a, x) of the rule (1.1) is defined in this case by 

R(a, x) = sup{IL(f) - S(a, x; f)I:f E W'-a, b], lIfr)lIq < 1) 

As an immediate consequence of our uniqueness theorem we get that the equidis- 
tant nodes are optimal of type (i1, . .. , V,) in Wq[a, b] for 1 < q < oo if the 
multiplicities {Pkv)' are equal. Considerable effort was expended, in the last years, 
on the proof of this intuitively obvious fact. It should be pointed out that particular 
cases of the consequence mentioned have been given by many authors, see [14], 
[18], [19], [10], [12]. Recently, Zensykbaev [20] showed the optimality of the 
equidistant nodes in the simple node case, i.e., when v1 = = =1 for 
1 Sq< oo. 

Using the well-known one-to-one correspondence between quadrature formulae 
and monosplines, one can restate our main result as a uniqueness theorem for the 
extremal problem IIMII -* inf, 1 <p < so, over all (b - a)-periodic monosplines 
of degree r with free knots {Xk )n of fixed multiplicities { pkvn, respectively. 

In Section 2 we present some results which characterize the best rule and may be 
used to calculate the best coefficients a(x). Section 3 contains our main uniqueness 
theorem. In order to facilitate the presentation of the results, we have deferred the 
proofs of all auxiliary lemmas to an appendix. 

2. Preliminaries. Throughout we will assume that the multiplicities {k I,j are 
natural numbers satisfying the inequalities 1 < Pk < r, k = 1,.. , n, n > 1. We 
shall write 

(2.1) ( 
.. Xn 

to indicate that x is a system of points {Xk)n of multiplicities {(Vk}n respectively, 
and such that a = x1 < ... 

<xn Kb. 
Given the points {Yk)nq a = y1 <Y2 < < y n < b, and (2.1) we define the 

function Ma(t) on [a, b] by 

r ~ ~ - n r-I r)! , A( r-i-;) Ma(t)=a(b - t)r "a (yk -t),7 r- (b - t 

(2.2) n , 
k- 1 (xk t-) 

k-2 A-o 
k 

(r - X- 1)!' 
where a is a parameter from [0, 1] and { ,A), {akA), are real numbers. In the 
following discussion we shall assume that Ma satisfies the boundary conditions 

(2.3) Myl(a +) = M (b-), j=0, ..., r- 1-l. 

Remark 1. It is best to think of Ma as being defined on a circle obtained by 
joining the endpoints a and b of the interval [a, b]. Then M. may be considered to 
be a periodic monospline of degree r with simple knots Y2, ... , Yn and multiple 
knots {Xk)n with corresponding multiplicities {Vk}n. 
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Iff E Wf[a, b], then integration by parts produces the identity 

l b Ma(t)fr)(t) dt = af f(t) dt + (1 - a) i f(Yk) 
a ~~ ~~a k=2 

(2.4) - P=1 

_ Ea E akXP"'(Xk)9 
k=1 X=O 

where {akx, k = 2, .. ., n, X = 0, . . ., vk - 1) are the same as in (2.2) and 

(2.5) a,, = (1)r X{M(r-I-X)(b _ - M(r--)( +)(a 

X= O ... P1-1. 

The relation (2.4) suggests a method of approximation of the functional 
n 

La(f) := aJ f(t) dt + (1 - a) 2 f(Yk) 
a k=2 

by a linear expression using the values {f(f(xk)1. Moreover, the error of this 
method at every f is given by 

(2.6) Ra (f) = Ma(t)J(r)(t) dt. 

It is clear that Ra(f) = 0 for every f E Wr[a, b] with f(r)(t) =_ 0, i.e., for f = const. 
Conversely, every linear method of the form La(J) P S(a, x; I) which is exact for 
each f = const has an error expression (2.6) with Ma(t) satisfying (2.3). This is a 
one-to-one correspondence between monosplines (2.2) and rules (1.1) which we 
shall use in the sequel. 

In the following we discuss the construction of the best rule for fixed x in the 
case - Wq[a, b], L = La. Since La(f) - S(a, x; f) = fb Ma(t)f(r)(t) dt, applica- 
tion of Holder's inequality shows that the extremal problem (1.2) is equivalent to 
the following one 

(2.7) IlMa lIp -- minimum, I/p + 1/q = 1, 

over all Ma satisfying (2.3). But (2.7) is a classical approximation problem in 
normed linear space (see [1, p. 17]). It has a unique solution for 1 <p < o. Let us 
denote it by Ma(x; t). The parameter p is fixed and so is not mentioned explicitly in 
the notation. 

The next theorem presents a characterization of the extremal element M.(x; t). 

THEOREM 1. Let 1 < p < oo and a E [0, 1]. Suppose that r and x are given. The 
function Ma(t) is a solution of the extremal problem (2.7) if and only if there exists a 
system of numbers {a, }7r-I such that 

F F,I)(a) = Fy)(b), j = O . . . r- 1, 
(2.8) Fa)(xk) = O, k =1,.. ., n,X =,. . ., Pk -1, 

lMy()(a +) = My()(b -) j 0 O . r ., r- I- 1, 

where 

Fa (X) = ( p- r- )1E (aj/ i!)x ' + | ( )!rt)-bt)t)r dt. F. (x = ( - 
O (a,/ i!) x + Lb 1) IM (t)IjpMa(t)dt 
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Proof. Suppose that 11 Ma jp is minimal. The first necessary conditions for mini- 
mum of lMalp give 

a = 0, k =2, . . .,n,X = 0, . . . vk - 19 
aakA ' 

- = 0 i = 0, ... , r - 1, 
af3i 

where 

b 
~~~r-vl-I 

=|IMa(t)IP dt + Xj[ Ma(/(b-) Ma(/(a +)] 
j=0 

and (A1) are Lagrange multipliers. Performing the differentiation we get 

I lbgM (X; tylp-2M (;t X t)+ d -P (X; t) ~~(Xk dt 
(2.9) (x- a) 0 

+ rXI- (~Y(xk l a ) =I O 

for k =2, ...,n, X = 0, ... , vk -1, and 

pf IMa(x; t)I"2Ma(x; t) (b ) dt + (-1) 
(2.10) -r 

- 
I (_ lyA (br-i-1-J! = 
j=0 

yj (r- i - 1-) 

for i = 0, ... r - 1, with the stipulation that t'll! = 0 for I < 0 and 

X,0:= f\ fori=0,...,r-v P-1, 
0 fori= r-vl,...,r-1. 

Let us set 

1 -P - 
(t a- 

I- 

pa(x t) 1 z (_ ly+l X.a)- P j=O r ) 

and define the function 

- X t)r7' IM(;tI2M(;tt 
(2.11) F.(x; x) = Pa(x; x) + |( IMx(x; t)IP-2Ma(x; t) dt. 

~a(r - 1)! 

The equations (2.9) and (2.10) show that 

F(a x)(X; xk) = O for k = 29 ... ., n, x = 09 ... ., Pk - 19 

F,')(x; b) = (- )r-i_i_/p, i = 0, ..., r - 1. 

Further, it is clear from the definition of FJ(x; .) that 

F'a)(x; a) = P,')(x; a) = (-1)r8iX-O/P i = 0, . . ., r - 1. 

Therefore 

F,')(x; a) = F,')(x; b), i = 0, .. ., r - 1, 
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and 

F,( -) (x; x,l) = O, X = O, ... * ,pi1 1 

So, we proved that the function (2.1 1) satisfies the required conditions. 
Now let us prove the sufficiency of the conditions (2.8). Suppose that the 

numbers {a,*)'- 1 and the function M.*(t) with coefficients { i,*)}, {ak*Xj satisfy the 
conditions (2.8). Let g(t) be an arbitrary (b - a)-periodic spline function of degree 
r - 1 with knots x = (x' I '`), i.e., g(t) has a representation of the form 

r-I (b-nri Pk' r-A 

(2.12) g()b~y t_ Ck (-X-k1)! gt) 
,=0 (r i ) k-A 1)! 

where { yi} and {ck;,} are real coefficients satisfying the conditions 

(2.13) g(C)(a +) =g(i)(b-), j-0,.. ., r-v -1. 

First we shall show that 

(2.14) 
b 

jM*(t)jP-2M*(t)g(t) dt = 0. 

Indeed, using (2.9) and (2.10), we get 

b IM*(t)lP-2M*(t)g(t) dt 
a 

+ ~~~ (b - a)r1JI 

i=O P [ i j=0 (r-i-1-j)! I 

n Pk k r-- 
{+1(xk a)r-X-1-j 

+ l2 r -I (- lyX - 
k=2 X=O P j.0 (r-X - Alj! 

r-llf r-I = ~- lg(i)(a +)- E g()(b-)E =0, 
P j= g -=O ) 

according to (2.13). The relation (2.14) is proved. Now suppose that Ma(t) is an 
arbitrary function of the form (2.2) with coefficients A,, ak;, satisfying the boundary 
conditions (2.3). Then 

fbIM*(t)lP dt = f jM*(t) 'p_M*(t)sign M*(t) dt 
a 

aaa 
t 

- f jMa*(t)P[ Ma*(t) - Ma(t) + Ma(t) ]sign M*t(t) dt 

fb 
| Ma(t)P-lMa(t)sign Ma*(t) dt 

S |bIM,*(t)jP- llM,(t)j dt. 

Applying Holder's inequality, we get 

L jM*(t)jP dt < (L jM*(t)j(I-l)q dt) liMalIp. 

Therefore, 11M*lip < JIM,,JI, which was to be shown. The theorem is proved. 
We conclude from Theorem 1 that the best coefficients {akx, k = 2, . . . n, 

A = 0, . .. -, Pk1) are the unique solution of the system (2.8). The rest of them 

a,x, A = O, ... ., V- 1, can be found by (2.5). 
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Let X be a (b - a)-periodic, integrable in [a, b], function which is positive almost 
everywhere in [a, b]. We shall refer to a function X obeying the above requirements 
as being a weight function. 

Definition 3. We call the function 
r-I bI y 

(2.15) S(x) = E (a,/i!)x' + t+ _ o(t)g(t) dt 

a (b - a)-periodic natural spline function of degree 2r - 1 with a weight w and 
knots x if 

(2.16) S(u)(a) = Su')(b), j = O, ... r -1, 

and g is a (b - a)-periodic spline of degree r - 1 with knots x. 
Denote by 6r- IQ(; x) the set of all such splines. As an immediate consequence 

of (2.6) and (2.14) we get 

COROLLARY 1. Let 1 < p < x, L = La and a E [0, 1]. Suppose that the coeffi- 
cients { ak/} are best for the nodes x. Then the rule (1.1) is exact for every 
S E 9Y2r-I (W; x) with @o(t) = IMa(x; t)j-2. 

Thus, if we want La(J) for some particular f, an alternative procedure is to 
operate with La on the natural spline Sf with weight IMa(x; t)p-2 that mterpolatesf 
at x. In the next theorem we show that such an interpolating spline exists. 

THEOREM 2. Suppose that the weight X and the nodes x (with v1 + * * + v, > 1) 
are given. Then, for every function f E C r-[a, b] there exists a unique spline 
S E 7r-I ,(W; x) which satisfies the interpolation conditions 

(2.17) S(X)(Xk) = ...)(Xk), k = 1, .. ., n, X=O, = . - 1. 

Proof. Evidently, the conditions (2.17), together with (2.13) and (2.16), form a 
linear system of Iv2 + * + * + 'n + 2r equations with v2 + * + * + 'n + 2r un- 
knowns: {ai}r-7, {yi}r-', {ck;, k = 2,.. , n, X = 0, . . Pk - 1). Denote by 
A(Q; x) the determinant of this system of equations ordered as follows: (2.16), 
(2.17), (2.13). The theorem will be proved if it can be shown that A(Q; x) # 0 or, 
which is equivalent, that the corresponding homogeneous system has only a trivial 
solution. To prove this, let SO E 't2r ,-I(W; x) be a spline which satisfies the 
homogeneous system. Consider the integral 

a := J W(t)go(t) dt = go(t)SO?r)(t) dt, 

where go is the spline in the representation (2.15) of SO. Integrating by parts, we get 
r-1I r-1I 
= 

(-)r- 
I 
-W- I-A(b -)So(i)(b) - 

E (1 g (a +)SO)(a) 
j.0 j.0 

n Pk - 

+ 2 E (- 1) 50 (Xk)[) - gXrk9 ')(Xk +)] 
k=2 X-0 

Since SO satisfies the homogeneous system we conclude that a = 0. This implies 

So(r)(t) = 0 and, consequently, SO is a polynomial of degree r - 1. Then, the 

periodicity of SO yields So(t) = const. Finally, So(t) vanishes at least at one point 

(v1 + * * * + vn > 1), hence So(t) 0. The theorem is proved. 
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As we have already mentioned, Theorem 2 is equivalent to the following 

PROPOSITION 1. The determinant A(w; x) is nonzero for every weight function w and 
nodes x. 

Now denote by J(x) the Jacobian of the system (2.8) with respect to the 
coefficients (a,), { A)J, {akj} at the solution of (2.8). Our next task is to prove that 
J(x) is nonsingular. Indeed, careful computation of the elements of J(x) shows that 
the elements from the first r + v1 + + ** , rows of J(x) are equal to the 
corresponding ones of A(j Ma(x; t)jP-2; x) multiplied by p - 1; the elements of the 
last r - v1 rows of J and A coincide. Therefore, 

(2.18) det J(x) = (p - a(X; t)l-2; X). 

It can be shown (see Appendix, Corollary 3) that the function IMa(x; t)Ip-2 is 

integrable on [a, b] if 1 <p < oo. Thus, we have proved 

COROLLARY 2. The Jacobian J(x) is nonsingular for every system of nodes x of the 
form (2.1). 

Finally, we recall an existence theorem [5, Theorem 2] which will be needed in 
the sequel. 

THEOREM A. Let { Pk})n be arbitrary fixed natural numbers satisfying the inequalities 
I < Pk < r, k = , ...,n, P1 + + Pn > 1 r > 1. Suppose that 1 < q < oo. 
Then there exists a system x of optimal nodes of type (vi, ... , Pn) in the class 

Wr[a, b]. Moreover, the best coefficients {ak;,A for the optimal nodes satisfy the 
conditions 

(2.19) J akX > 0, A = 0, 2, * * Pk 1 if Pk is odd, 
| ak, k-1 0, akA > 0, A = 0, 2, ... , Pk - 2 if Pk is even. 

3. Main Result. We prove in this section our central theorem. The proof is based 
on the concept of topological degree. We picked up the thought of using topological 
degree in approximation theory from Barrow (3]. 

First we recall, for the sake of completeness, some facts from degree theory (see 
Schwartz [17] or Ortega and Rheinboldt (15]). 

Let D be an open bounded set in the Euclidean space Rn. Denote by D and aD 
the closure and the boundary of D, respectively. Let the mapping 1: D-+ Rn be 
continuous. Then, if c E Rn and c 4?(aD), the degree of 4 with respect to D and 
c is defined, has an integer value and will be denoted by deg(Q, D, c). The 
following are some basic properties of the degree: 

(i) Suppose that 1 Ee C'(D), c E D(aD) and let det(V(x)) =# 0 for each x E D 
satisfying the equation ?(x) = c. Then there are a finite number of points xi E D 
where I(xi) = c and deg(Q, D, c) = Xi sign det(D'(xi)). 

(ii) If deg(Q, D, c) # 0, there exists at least one point x E D for which ?(x) = c. 
(iii) Let 4(a; x) be continuous on (0, 1] x D and 0(a; x) =# c for any x E aD8 

0 < a < 1. Then deg(Q(a; .), D, c) is constant independently of a. 
(iv) Let c 4 O(aD), cm ? a(aD) U O(z(D)), m = 1, 2, . . ., where z(D) 

{x E D: det(D'(x)) = 0). Suppose that cm -- c as m -m oo. Then deg(Q, D, c) = 

deg(Q, D, cm) for each sufficiently large m. 
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Now, let us introduce the notations 

a: {x ER"-IV : x- (x2,,.............. ,xn), a = x,<x2< <...... <x" < b}, 

2e := x co: xi,, Xi > E, i-1 = * .., n, Xn+l I= b} 

Define the mapping D(a; x): Q -* Rn- 1 by 
4(a; .) := (b2(a; x), ... , bn(a; x)), x EEQ, 

where we have denoted by bk(a; x-) the coefficient ak,,k - of the monospline 
Ma(X; t), x = (a'x2.XX ) 

The basic steps of our reasoning in the proof of the uniqueness of the optimal 
nodes go through the following lemmas. 

LEMMA 1. Let 1 < p < oo, a = 0 and r > 1. Suppose that the parameters (ai), 
{ Ai}9 {akA) of the function Fa(x; t) satisfr the system (2.8) for some x. Then the 
equalities ak, - 1 = O for k = 2, . .9 , n imply MO(x; t) _ O, i.e., the system 

ak,,k-I( X 2... I, x") ?0 k 2, ... . n, 

has a unique solution Xk = Yk' k = 2, . ., n. 

LEMMA 2. Let 1 < p < oo and r > 1. Suppose that { k}n are even multiplicities. 
Then there exists an e > 0 such that whenever (t(a; x) = 0 ( := (0, ... , ) E 

RW-')for some a E [0, II and x- E (X2, ... , X) E a2, then xF E Qe. 

LEMMA 3. Let 1 < p < oo and r > 1. Suppose that { k)n are even multiplicities. 
Let the points y := (Y2,... Yn) be fixed and a < y2 < *.* < yn < b. Suppose that 
e is an arbitrary positive number such thaty) E Q.. Then 

(3.1) deg(4)(0; *), Qe O) =(1) 

Denote by Ajk(w; x) the matrix which is obtained from A(w; x) by deleting the 
row and the column of numbers r + vl + + vj and 2r + V2 + * * kg 
respectively. 

LEMMA 4. Let 1 <p < oo, r > 1. Suppose that { k}n are even multiplicities 
satisfying the conditions 1 < Pk < r, k = 1, ... ., n, and w is an arbitrary (b - a)- 
periodic weight. Let x- = (X2 ... ., x") E U2. Then, for fixed k E (2, ... ., n), the 
determinants det Ajk(W; X), j = 1,... , n, are nonzero and have a contant sign, 
independent of j and w. 

Now we are prepared to prove our central theorem. 

THEOREM 3. Let { vk,n be arbitrary fixed natural numbers satisfying the conditions 
1 < 2[((k+ 1)/2 < r, k =1,. ..,n, r > 1. Suppose that < q < oo. Then there 
exists a unique optimal quadrature formula of type (1, .v.. , vn) in the class Wq[a, b] 
with fixed node xl = a. 

Proof. It is clear from Theorem A that the assertion will be proved if we show 
that the equation 
(3.2) 4(1; x) = 0 

has a unique solution for every system { k}n of even multipicities. For r = 1, the 
optimal nodes can be found even explicitly; see (11]. So, we assume in the sequel 
that r > 1. 
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Let the number q be fixed in (1, oo). According to Lemma 2, there exists an 
e > 0 such that each solution xi of the equation 4t(a; xD = 0 is situated in U2. for 
any a E [0, I]. It is easily seen that 4(a; x) is a continuous function of a and x in 
[O, 1] x Q. Then, using (iii), we conclude from Lemma 3 that 

(3.3) deg(Q(l; *), Se 0) = deg(Q(O; * ), Qc O) = (-1) 

Next, observe that 4(1; ) E C'(0a). Indeed, the coefficients bk(l; x) are solutions 
of the system (2.8) for a = 1. Further, the Jacobian J of the system (2.8) is 
nonsingular, in view of Corollary 2. Thus, by the implicit function theorem, bk(l; .-) 
is a differentiable function of x. Moreover, 

abk(lV X) det Akj (3.4) ax) detJ 

where the matrix Akj differs from J only by its 2r + P2 + + v*kth column 
which consists of partial derivatives with respect to xj, but not with respect to bk, as 
it is in J. The elements of Akj and J are continuous functions of xF and det J(xD =# 
0. Therefore, 4D(l; xD EC C'(02). Then the uniqueness of the solution of (3.2) will 
follow immediately from (i) and (3.3) if we prove that 

(3.5) sign dett a(i)) = (-1) 

for each x E U. satisfying (3.2). To this end, we assume that x = (x2, . .., x) 
satisfies (3.2) and x- E 0, Denote for simplicity the function F,(x; t) (from (2.11)) 
by F(t). Careful calculation shows (see (3.4)) that 

abk( ; = - (- )rF(',)(xj)det Jjk/det J for k =#j, 

(3.6) ab(l = - - ( x Jl/ det J -9,- 

ax. /e -a,,2 

where the the matrix Jjk is obtained from J by deleting the column and the row of 
numbers 2r + P2 + + Pk and r + PI + + Pj, respectively. 

Clearly, 

det Jk=(-)+l P det Ajk(IMI(X; q)p-2; X). 

Therefore, in view of Lemma 4, det Jjk has a constant sign for k E (2, ... . n}, 
j = 1, ... ., n. Now, consider the values FP')(xj), j = 1, . .. , n. It follows from the 
construction of F that it has P, + * + * ,n zeros. Consequently, by Rolle's 
theorem, MI(x; t) has at least P+ + + Pn zeros in [a, b). Further, the assump- 
tion 4(1; xD = 0 shows that the knots x2 ... 9, xn of MA(x; t) have odd multiplici- 
ties. Then, according to Lemma 4 from [5], the coefficients {akA) of M,(x; t) satisfy 
the inequality 

(3.7) ako k-2 > 09 k = 2, ..., n. 

It is easily seen that the function F(t) has no other zeros except {xk)n of 
multiplicities {Pk)' (Otherwise M,(x; t) would have more than P1 + + Pn zeros, 
a contradiction to a known result of Micchelli [13, Proposition 1]; see Lemma 8b of 
the Appendix.) Since {v Pk }n are even, F(k)(xk), and consequently (- l)rF(`k)(xk) has 
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a constant sign for k = 1, ... , n. So, we proved that the quantities 

Ykj (-1) F(lk)(xk)det Jjk/det J 

have a constant sign for k E (2, . .. , n},j = 1,. . . , n. 
Next observe that Mj(x; t) is a periodic spline function of degree r - 1 with 

knots {xk } of multiplicities { Pk)' respectively, since 1(1; xD = 0 (which implies 
ak,,_1 = O, k = 1, ... , n, as can be seen in the proof of Lemma 1, Appendix). 
Therefore F' E 9f2r -1(w; x) where w(t) = IMl(x; t)p-2 and F' can be presented 
(according to Theorem 2) in the form 

(3.8) F'(x) = F(P)(x1) S1 (x) + + F(-)(xn)Sn(x), 
where Si E t2r- I(W; x) and 

S /(a) = S/(b), j =O, . . .,. r -1 

SP'A)(Xk) =O, k 7&i, X = O, ... ., Pk - 1 

S( )(Xi) = , X = ? ... ., pi - 2, 

Si(V l,)(xi)=1 

g(i)(a + ) = 0/(b-) j = O, ... ., r - pi-1 

Here g is the spline in the representation (2.15) of Si. Now, following an idea of [8], 
we compare the coefficients of the basic functions on both sides of (3.8) and obtain 

n 
- (P - l)ak,,-2 = 2 F(rj)(xj) {(1)r(p - I)det Jjk/det J. 

j=l 

Therefore, 
n 

ak,vk-2 E Ykj, k =2,.. .,n. 
j=1 

Since YkJ has a constant sign, we deduce from (3.7) that 

(3.9) -Ykj > ? k = 2,...,.n,j= 1l,...,.n. 

Therefore, ak, 2-(Yk2 + + * Ykn) > 0. This inequality shows that the de- 
terminant 

Y22 -a2,, Y23 Y2n 

det( a; i) I Y32 Y33 - Y3n 

Yn2 Yn3 Ynn - an,s,-2 

has a dominant main diagonal, i.e., the corresponding matrix is strictly diagonally 
dominant. Moreover (see [4]), 

sign det )(sign ) I (Ykk - ak,vk-2) = (- 1)"'. 

The relation (3.5) is proved. This completes the proof of our theorem. 
The next proposition is a simple consequence of the previous theorem. 
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THEOREM 4. Let V1 = * = n,, = p and 1 < 2[(p + 1)/2] < r. Then the equidis- 
tant nodes 

Xk =a + _(b- a), k = 1,.. ., n, 

are optimal of type (V1,... , V") in the class Wqr[a, b] for 1 < q < oo. Moreover, the 
best coefficients { ak } for these nodes satisfy the conditions 

a I * = a,,a = ? if X is odd, 
al =I ***= a,, > O if X is even, 

a0o= = a.0 = (b - a)/n. 

The optimal nodes are unique in the case 1 < q < oo. 

Proof. Suppose that 1 < q < so and vP = . = ',, = p. It follows from the 
uniqueness of the optimal nodes that they must be equidistant. 

Set 

X = ( 
... 

Xn) W(t) = IMA(x; t)P-2 

where 1/p + 1 /q = 1. Denote by 9ij the unique function from the set k2r - 1(W; x) 

which satisfies the interpolation conditions 

1P(Xk) = 
aikay 

6S. being the Kronecker symbol. On the basis of Corollary 1, akA = fb FkA(t) dt. 
Since the function qk^(t) can be obtained from ql,(t) by translation, we conclude 
that 

(3.10) a,,=* =an forX= 0,..p - 1. 

Further, it is easily seen that the quadrature formula 

b P-1 n Pk- I 

Jf(t) dt I (- 1)AaiJ(A)(xi) + 2 2 (- 1)an+2-k,JQ)(Xk) 
a A=O k=2 X=0 

has the same error in Wq[a, b] as the optimal quadrature. Then, it follows from 
Theorem 3 that 

(-1)xalx = al,, X = 0, . I, 1 1. 

This, coupled with (3.10), gives akX = 0, k = 1, . . . , n, for odd X. 
The value of ak0 is calculated using the fact that the optimal quadrature formula 

is exact forf(t) _ 1. 
The optimality of the equidistant nodes for q = 1, so follows as a limiting case. 

The theorem is proved. 
Note that a particular case of Theorem 4 (for p = r - 2) was studied in [12]. 
Using the correspondence between monosplines and quadrature formulae, we 

can restate our main result in the following form. 

THEOREM 5. Let {Vk}n be arbitrary fixed natural numbers satisfying the conditions 
1 < 2[(Vk + 1)/2] < r, k = 1, . ., n. Suppose that 1 < p < mo. Then there exists a 
unique (up to translation) (b - a)-periodic monospline of least Lp deviation in [a, b] 
of degree r with n distinct free knots {xk}n of fixed multiplicities { Vk}. 
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An analogous proposition to Theorem 5 was proved in [6] for monosplines with 
free ends, i.e., without boundary conditions. The first uniqueness results for 
monosplines of least Lp deviation are due to Johnson [9] (for p = 00, vP = ... = 
vn = 1, free ends), Jetter and Lange [8] (for p = 2, v = *= = 1, free ends) 
and Zensykbaev [21] (for 1 < p < oo, vP = = = 1, under the boundary 
conditions M(J)(a) = M(0)(b) = 0, j = 0, . .. , r - 1). Recently Barrar and Loeb 
[2] considered the casep = so with arbitrary fixed { Pk}), 1 < Vk < r, k = 1, .. ., n, 
and free ends. 

Remark 2. We must note that the proofs of Lemma 5 and Lemma 7 of [6] are not 
complete. However, one can apply with obvious modifications the reasoning used 
in Lemma 1 and Lemma 2 of the present paper in order to complete the proofs of 
the lemmas mentioned. 

Appendix 

First we shall recall some known facts about spline functions and derive some 
new properties of the function M.(x; t) which we require in our study. 

For the sake of convenience we extend the definition of Ma(x; t) by 

Ma(X; t) := Mla([X]r; t) 

for each x - (Xi"Xn) where [X]r := (1 and k = rmin(r, mk), k = 1, . . , n. 

LEMMA 5. Let 1 < p < 0, 

XO = P I Xm 
X 

= ( X}n m = 1, 2 .... 

Suppose that Xm Xo in RN, N V1 + * * + Vn, am -ao, < am < 1, m= 
1, 2, . . ., as m -> oo. Then Mo (Xm; t) converges uniformly to Mao(XO; t) on each 
compact subset of [a, b) which does not contain breakpoints of MaO(xo; t). 

This lemma was proved in [5] for am = 1, m = 1, 2 .... The proof in the 
present case is similar. We omit it. 

LEMMA 6a. Let the multiplicities {vk}n be odd. Given [a, b] there exists a constant 
C > 0 such that whenever M(t) is a function of the form 

M(t) = a(b ) + (1-a) ? (Yk - t)' + 
b- 

( t) 
n Vk (X -I (rt-1 i-O 

n Pk r+- 

( A A ' kA (Xk - 1 
k=1 X=o (r-X - 1)! 

with 0 < a < 1, x1 < * * < x, and M has r + 7. ins (Vi + 1) distinct zeros in [a, b], 
then 

iBil <C, i =O,. ..,r1 

lakA I < C, k = 1, .. .,n,XA=O,.... ., Pk-1 

The lemma was proved in [13] for a = 1. A similar proof can be given for this 
setting. 
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LEMMA 6b. Let the multiplicities { Pk}) be odd. Given [a, b], there exists a constant 
C > 0 such that, whenever Ma(t) is a function of the form (2.2) satisfying (2.3) with 
0 < a < 1 and Ma has 27. I (vi + 1) distinct zeros in [a, b), then Ma has coefficients 
bounded by C. 

Proof. If some vi is equal to r, we apply Lemma 6a to Ma(t) considered on the 
interval [xi, xi + b - a]. Suppose that maxk Vk = vi < r. Then M.(`r)(t) has 
xn, I (vi + 1) distinct zeros in [xi, xi + b - a) and, according to Lemma 6a, 
M(r-ri)(t) has bounded coefficients. It is easy to see that 80, . . . f-,- are also 
bounded. For example 

fir,,-i + f 

M(rPi)(t) dt = 0 

for some T E [a, b). Therefore, I P,r I < (b - a) IM I-)II ,. The latter norm is 
bounded since the coefficients of M,(r-ri)(t) are bounded. The lemma is proved. 

Denote by Z(s; 6) the number of zeros of the spline s in the set 6 where the 
multiplicities are counted as in Schumaker [16]. The following is a result of 
Schumaker [16]. 

LEMMA 7. Let s be a (b - a)-periodic spline function of degree r - 1 with knots 
{(4)7', a < 41 < K . < iEm < b, of multiplicities { p)jm, respectively. Suppose that s 
does not vanish identically. Then 

Z(s; [a, b)) < K- 1 if Kis odd, 

< K if K is even, 

whereK== +tI +tLm. 

The next lemma was proved in [6]. 

LEMMA 8a. Let 0 < a < 1. Suppose that M(t) is a function of the form (1). Then 
n 

Z(M; [a, b]) < r 
+ 

I (Pk + ak), 
k-I 

where ak = 1, if Vk is odd, and zero otherwise. 

LEMMA 8b. Let 0 < a < 1. Suppose that Ma(t) is defined by (2.2) and (2.3). Then 

n 

Z(Ma; [a, b)) < E (Vk + ak). 
k-I 

The assertion follows from Micchelli's result [13, Proposition 1] as in the 
previous lemma. 

COROLLARY 3. Suppose that x is a given system of nodes with even multiplicities 
vl ... , v". Let 1 < p < oo and 0 < a < 1. Then the function IM.(x; t)lp-2 is 
integrable in [a, b]. 

Proof. The assertion is evident for p > 2. Assume that 1 <p < 2. Then it is 
sufficient to show that M.(x; t) has only simple zeros in [a, b). To this end, recall 
that the function FJ(x; t) (see (2.11)) satisfies (2.8). Hence, F.(x; t) has at least 
N := vp + * * * +vn zeros in [a, b). By Rolle's theorem, F.r)(x; t) and, conse- 
quently, M.(x; t) must have N sign changes in [a, b). This means that M.(x; t) 
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has N distinct zeros in [a, b). On the other hand, according to Lemma 8b, 
Z(Ma(x; *); [a, b)) < N. Therefore, all zeros of M,(x; t) are simple. The claim is 
proved. 

Proof of Lemma 1. Let us assume the contrary: ak,1 = 0 for k = 2, ..., n but 
Mo(x; t) is not identically zero. Then, clearly, Fo(x; t) is not zero, either. We shall 
show that Fo(x; t) cannot vanish even on some subinterval of [a, b). Indeed, 
suppose that Fo(x; t) = 0 for every t from a subinterval of [a, b). Then there is a 
subinterval (t1, t2) such that Fo(x; t) #& 0 almost everywhere in (t1, t2) and, Fo(x; t) 
= 0 if t E [t1 - E, tl] U [t2, t2 + E] for some E > 0. (Remember that we are 
thinking of [a, b) as a circle.) Lety, < tI <yl+l < ... < Yi+j < t2 < Yl++ X, xi < 

tl < Xi+1 < . . . < X+m<t2 < Xi+m+ Then Fo(x; t) has 2r + Nim, Nim := vi+I 
+ * * * +Pi +m+I, zeros at least in [tI, t2j. Consequently, by Rolle's theorem, 
Mo(x; t) has r + Nim sign changes at least in (tl, t2). Moreover, Mo(x; tl) = 0 or 
Mo(x; t2) = 0 since Mo(x; t) = 0 for t E [tl - E, tl] U [t2, t2 + E] and Mo(x; t) is 
continuous at least at one of the points tl, t2 because t , t2 E 

{ xI, . . . E x, 9y29 . . , y,,n} and the multiplicities of all these knots, without xl, are 
less than r, according to the assumption: 1 < Pk < r, k = 1, . .. ., n, akk- I = 0 for 
k = 2, . .. ., n and r > 1. Therefore Mo(x; t) must have at least r + Nim sign 
changes in (tl, t2). Then the function 

((b - t1r- 
I+ 

(Yk - 

( (r 1)! k=l+1 (r- 2)! J 

must have, for small a, at least r + Nim zeros in (t1, t2), which contradicts Lemma 
8a. Therefore Fo(x; t) has only isolated zeros. 

Next we prove that the assumption ak 1k-l 
= 0 for k = 2, ... ., n, implies al,,-,1 

= 0. For this, we consider the periodic function Fo(x; t) on an interval [A, B] of 
length b-a such thatA <x <* * <x, <B, A <Y2< . . . <y<B. Then 
Fo(x; t) can be represented on [A, B] (see the analysis in the proof of Theorem 1) in 
the form 

F0(x) = Fo(x; x) = - 
x (-1y ' (x- A)r-1 

P j=0 J(r -1-])! 

+ M(x - t)7 IAo(t)jP-2M0(t) dt, 
? (r -1) 

where 

MO(t = M0(X; t) = - (yk - Pt 

(2) k-2 (r 1)! (t) 
n Pk (xk - + 

- , 2 ak ( ) ! 
k=1 A=o 

l (r-X-1) 

with some P E fr - and {X.}o-1 are Lagrange multipliers for the extremal prob- 
lem 

(3) *(M) ->minimum 
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over all splines M of the form (2) with free coefficients. Here 

I(M) LB IM(t)IP dt + I Xj[M(J)(B) -M()(A) 

By the definition, Mo is the unique solution of the system 

F'o-)(A ) =FO(U)(B), j = 0, ... ., r -1 , 

(4) Folx'(Xk) 09O k = 1,. . . ., n, A = 09 . . ., Pk -19 

lMo6)(A +) = Mo(&)(B-), j = O ..., r-1. 

Since 

1 3'I(M0) 
P 

(5) ?= Y aka_ XFo1(Xk) 

the assumption ak k-I 
= 0, together with (4), yields a3(MO)/axk = 0 for k = 

2, . . ., n. We claim that a3(M0)/axI = 0, too. Indeed, let us set 
*((1 '... 9 4i) I= (MA(; *)), 0 = (5 ,"). Then it follows from the periodicity of 
Mo(x; t) that 

*(XI + h, X29 .. 9 X") = (XI9 X2 - h, . . . 9 xn h) 
34'(M0) 34'(M0) 

= *(XI9 . 9 Xn) h h + o(h) 

= I(x1, ... , x") + o(h). 

Therefore, 

*( ?) = lim { +(xI + h, x2,... , xn) - I(xl, * x") }/h = 0, 

which was to be shown. Now return to (5). It follows from (4) that 

(6) al I, - op,P)(X ) = 0. 

Suppose that Fo(lp)(xl) = 0. Then we conclude, on the basis of Rolle's theorem, that 
Mo(x; t) has at least vP + * * * + vn + 1 zeros in [a, b). On the other hand, in view 
of Lemma 7, Z(Mo; [a, b)) < n- 1 + vP + v2- 1 + * * * +vn - 1 = PI 
+ * * * + vn or Mo(x; t) 0 O. We obtained a contradiction. Therefore, F("l)(x1) # 
0. Then the relation (6) implies aj,1, -I = 0. Since Fo(t) has N := vP + * * * + vn 
zeros in [a, b), Mo(t) must have at least N zeros in [a, b). Applying again Lemma 7, 
we see that 

Z(Mo; [a. b)) < n- I + PI - I + * * 
- -1 = N-I 

or Mo(x; t) 0 O. This contradiction completes the proof of the lemma. 
Remark 3. We showed in the proof of Lemma 1 that the equalities ak 'k-I = 0 for 

k = 2, ... ., n imply (6) in the case a = 0. By the same argument, one can verify 
that this holds for 0 < a < 1 too. But, for 0 < a < 1, F/(x; t) does not vanish 
identically on any subinterval, and Fa(x; t) has only v1 + + v, zeros: {Xk}n of 
multiplicities {vjk7n, respectively. Therefore, F.IA(xI) =# 0. Hence, the relations 

ak,k- I 
= O fork = 2, ... . n imply al ,,_- = 0 for 0 6 a < l andI < p < oo. 
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Proof of Lemma 2. Assuming the contrary, there exist sequences {aam },, {Xm} , 

_m 
a 

Xm2 * Xmn I 
Pi - 2 * n J 

such that 

((am; xm) =0 Xm = (Xm2 ... * X m) 

for m = 1, 2 ... ., am-> ao E [0, 1] and xm tends to some 

a ,2. ... ,ji 
?O PI P2..' Pj} 

with a < (2 < . . . < ,j < b,j < n, as m o o. Remark that 4 (0; xm)=Oonly for 
Xm = Y= (Y2'... , y Yn) according to Lemma 1. Therefore, we may assume without 
loss of generality that am # 0, m = 1, 29 .... 

We know from Lemma 5 that Ma (xm; t) converges uniformly to MO(xo; t) on 
any closed subset of [a, b) which does not contain a breakpoint of M O(xo; t). It is 
not difficult to deduce from Lemma 6b that M,O(xo; t) is a continuous function. 
Indeed, each monospline Ma(xm; t) has a maximal number of zeros. Further, it 
follows from the assumption 4(am; -m) = 0 and Remark 3 that the knots {xm,}" 71 
of Ma Jxm; t) have multiplicities {v, - 1), respectively, i.e., odd numbers. Then, by 
Lemma 6b, the coefficients of each polynomial fragment of Ma,(xm; t) are 
bounded by a constant which does not depend on m. Consequently, 

M (X,,; )I C[a,b] is bounded. This implies the continuity of M 0(x0; t). 
Next, we prove that F,O(xo; t) does not vanish identically on any interval. First, 

note that F,O(xo; t) is not zero identically, since 

Fao)(x0; t) = IMiO(Xo; t)I -2A1(xo; t) 

and Mco(xo; t) 0 would imply ao = 09 Yk E {R29 . .. 9, (j for k = 2, ... ., n which 
is obviously impossible because j < n. Now assume that Fao(Xo; t) vanishes identi- 
cally on some subinterval [I1, tl] of [a, b). Let t2 be the next point after t, which is a 
zero of Fco(xo; t) of multiplicity at least r (note that T, may play the role of t2 since 
we are thinking of [a, b) as a circle). The function Fco(xo; t) has at least 2r + N1 

zeros in [tl, t2] where N1 is the sum of those {Pk}j for which (k E (tl, t2). According 
to the choice of t2, Pk < r for these (k. By Rolle's theorem, M O(x0; t) has at least 
r + N1 sign changes in (tl, t2). Moreover, Mco(xo; tl) = 0 since 

Mco(xo; t) 0 on (I1, tl) and Mco(xo; t) is continuous. Therefore Mco(xo; t) has at 
least r + 1 + N1 zeros in [tl, t2). This contradicts Lemma 8a in the case 0 < ao < 
1. If ao = 0 we apply again Rolle's theorem and conclude that Mo(xO; t) has r + N1 

sign changes in (t1, t2). Then the function 

{(b -t)r (yk- } + x t 
(r -1)! YkE(t1, t2) (r 2)!r ) 

would have r + N1 zeros in (t0, t2) for small a. We obtain a contradiction with 
Lemma 8a. Thus, FO(xo; t) does not vanish identically on any subinterval of [a, b). 

In the same way one can prove that Fco(xo; t) does not have a zero of multiplicity 
> r + 1, i.e., that xo does not have a coordinate (i of multiplicity pi > r + 1. (Note 
that the assumption pi > r + 1 yields that FO(xo; t) has a zero at (i of multiplicity 
at least r + 1 because F(r)(X0; t) is a continuous function.) Therefore, we can 
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assume that Pi x r for i = 1, ... Then Fao(x0; t) has a zero at (i of multiplicity 
at least pi. On the other hand, M,0(xo; t) has a knot at ( of multiplicity at most 
P-i4, where 1i is the number of those coordinates of xm which tend to ( as 
m -> oo. Hence F,0(x0; t), and, consequently, Ma0(x0; t) has at least Pi + * +pj 
= V1 + Vn + v, = N zeros in [a, b). On the other hand, 

Case I. For 0 < ao < 1, by Lemma 8b, 

Z(Mo(x0; ); [a, b)) < 2 (pi-li + 1) = N-(11 + + l) + j < N 1 
i=l1 

since 11 + + +j = n > j. We obtain a contradiction; 
Case II. For ao = 0, by Lemma 7, 

Z(Mo(xo;); [a, b)) n - 1 + (pi -) 
i=l 

= n - 1 + N - (11 +* + l) = N - 1 

a contradiction. 
Thereforej = n. The lemma is proved. 
Proof of Lemma 3. First we shall show that (3.1) holds for p = 2. To this end, we 

construct the unique natural spline function qpi(-; t) E t2r, 
(1; x) where x-= 

(X2, ... , x,,) E Q x - (Xl xn) which satisfies the interpolation conditions 

According to Corollary 1, the rule based on the coefficients {akX } of the spline 
M0(x; t) is exact for qp,(x-; t). Therefore 

n 

(8) b,(0; X) = .oi(;)) = 2 zp,(X; Yk). 
k 2 

We knlow from Proposition 1 that the determinant of the system (7) is nonsingular 
at every x E Qe Hence, by the implicit function theorem, the coefficients of the 
spline p,(x; t) are continuous functions of x in Q2e. Then 

(9 )(X; ) - (Y; *)II C[a, b] ? = 0, . . .P-, r1- 1, 

as x - y~. Now it is easy to see that 

(p, (y x)" 

( 10) b0; = (v -i 1)' + k- (I2 X I 

for each x- = (x2, ... ., x",) near toy~j. Indeed, by Taylor's formula 

TI E; Yk) = (Yk -Xk)q19(X; "k)! (^k 1)! 
where qk lies between Xk and Yk* Since, according to (9), 

(rk1)(X-; 
1k ) = 

(p(rj 
) (E ; Yk) = 0 I r - k 

TI I~~~~~~~~~~~~~~~~ 
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as x -> y, the relation (10) is clear. (Remember that { Pk)' are even natural 
numbers, hence Pk - 1 > 1.) 

Now we make the invertible, orientation-preserving change of variables Zi= 

(xi - yl'/(vi -1)!, i = 2, . . ., n, and get 
n 

bi(0; x) = -zi + E o(lzJ) b(iz). k =2 

Let us set B(z-: (b2(z0... , b"(z). Clearly 

det( 

M 

n))(-1). 
By the implicit function theorem, B(z) is 1-1 for z near 0 and hence 4(O; x) is 1-1 
for - near y, say in the neighborhood U(yD C Qe of -. Let E = (=2 * * 4,) E U(jP 
and denote c = 4(0; (). Then the equation 4(0; x) = c has a unique solution 
(which is () in U(yD. Therefore, by (i), 

deg(Q(0; *), U(y), 5) = sign det( '(( ) 

But the latter determinant has a dominant main diagonal for ( near y- and evidently 

sign det( (_ ) ) = (- l)"Isign II (Yk - _k)2 = (-_1)n' 
ax k=2 

since { Pk}) are even. On the other hand, c(() tends to 0 as ( - because 1(0; *) is 
a continuous function and '1(0; ye) = 0. It remains to apply (iv) with respect to a 
sequence of points c(() with F y- to obtain that 

deg(Q(0; * ), U(y),) = ) 

But, according to Lemma 1, y- is the unique solution of the equation 4(0; x) = 0 in 
ae. Therefore 

degQI(0; * ) Qe' O) = degQI(0; * ), U(y ), 0) = (-1 )n 1. 

The relation (3.1) is proved forp = 2. 
Now suppose that p* is an arbitrary number fixed in (1, oo). Consider the 

mapping (D: [0, 1] x Qe -> Rn-1 defined by the equality 4s(x) = 

(b2(0; x), ... , b,(O; x)) where the parameter p in the definition of the coefficients 
bk(O; x) is chosen to be ,Bp* + 2(1 - /), ,/ E [0, 1]. We have proved in Lemma 1 
that x = y is the only solution of the equation 4(0; x) = 0 in Q for each 
p E (1, oo), i.e., the equation 4,(D ) = 0 has a unique solution x = y in Q for 
B3 E [0, 1]. Sincey E . the property (iii) yields 

deg(QI Qe i) = deg(Q0, 9e' ?) = (-1)"' 

The lemma is proved. 
It remains to prove Lemma 4. Its proof is based on the following interpolation 

theorem for natural splines with weight. 
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THEOREM 6. Let 

be arbitrary systems of points satisfying the conditions 

a < 4I < ... << m <b a < x, < < xn b; 

? < Pk < r, k =1, ... . ,n, 

? < Uii< r . i=1, ...,9m. 

The number VP + * * * + Vn is odd; VP + * * * + Vn = [LI + + n. Let us think of 
the points {4}m and {Xk}n as being given on a circle obtained by joining the endpoints 
a and b of the interval [a, b]. Suppose that x and { satisfy the requirement: 

For any pair (a', i") from the set {41, * *,}, 1 + Pi, + +Pi > j 
+ * + ,Ujl provided the points Xi ... , xxi and j, 9 ... , (j lie between V' and (" 

(i.e., on the left-right oriented arc (a', a")). 
Suppose that w is an arbitrary (b - a)-periodic weight in [a, b]. Then, for every 

function f E Cr-` [a, b] there exists a unique natural spline S E Qt2r-I(; C) satisfy- 
ing the interpolation conditions 

S(X)(xk) = -Jf (Xk) k = 1, ..., n, X = O,.. .,vk- . 

Proof. Assuming the contrary, there exists a function S # 0, S E Gtr-l( =) 

satisfying the homogeneous system 

[S(i)(a)-S(j)(b) = 0, j = O,..., r-1, 
(1 1) q S(X)(xk) = 0 k = 1,.. ., n, X = 0, ..., 9k - 1, 

lg(')(a +) -g(i)(b- 0 O j = 0, ... ., r-,uL- 1, 

where 

f0 if a # 

AIl if a 4I. 

Suppose that S vanishes identically on some subinterval. Then there exists an arc 
[tl, t2] such that S(t) = 0 if t E [t, - C, tl] U [t2, t2 + E] for some E > 0 and S(t) 7# 

O almost everywhere in [tl, t2]. Clearly (t,, t2) = (i', i") for some (', V" E 
{4 . .. ., i,}. Let xi,, . .. , xi be the points from x which lie between (' and i". 
Then S(t) has at least 2r + Pi, + + Pi zeros in [tl, t2j: t, xi,, . . . , xik, t2 of 
multiplicities r, pi,, . . ., Pik, r, respectively. By Rolle's theorem, S(r)(t) and, conse- 
quently, g(t) must have r + Pi, + * * * + Pik zeros at least in (tl, t2). But g(t) = 0 on 

[tl - C, tl] U [t2, t2 + c] and g(t) is continuous at tl, because t,= ' and ,uj < r, 
j =1, .. ., m. Therefore g(tl) = 0. Thus g(t) has r + 1 + Pi, + * * * +Vk > r + 1, 
+ * * + zeros in [t,, t2], where 4 ,, ... ., j, are the points of J which lie in 

(a', 0o On the other hand, according to a known result by Schumaker [16], 
Z(g; [tl, t2]) < r - 1 + j * * + ,Uj,. This contradiction shows that S has only 
isolated zeros in [a, b). 

Since S satisfies (11), by Rolle's theorem, g(t) must have N := V1 + + Vn 

zeros at least in [a, b). But P, - + vn = I, + * * * + f and it is an odd 
number. Then, by Lemma 7, Z(g; [a, b)) < N - 1, a contradiction. The theorem is 
proved. 
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Proof of Lemma 4. It is easily seen that for given j and k the multiplicities { i}7, 
{ nti}7, where 

pi ifi # j, fi if i=k 
pi v-1 Iif i =j Pi 

- Ij- if i = k 

and the points x = ((xl, 1),. . . , (x", v")), 
g= ((xl, II), * . (x,,, )) satisfy the 

requirements of Theorem 6. Therefore, 

(12) det Ajk(W; X) # 0. 

Suppose that the nodes x are fixed and w1, W2 are two (b - a)-periodic weights. 
Then the function w(8; t) := 83l(t) + (1 - 8)2(t) is a weight too, for each 
8 E [0, 1]. Therefore, in view of (12), det Ajk(w(8; *), x) # 0 for every 8 E [0, 1]. 
Since the determinant is a continuous function of 8, we conclude that sign 
det Ajk(Ql; x) = sign det Ajk(W2; x). Thus, it suffices to prove the lemma only for 
w(t)_ 1. 

Let D(f It,... t' ) denote the divided difference of f at the points t1 < . * < t1 of 
multiplicities al, ... ., a,, respectively. It is well known that 

(13) D(f I.. 
t' _) If(q1) /N! 71q E (tl, t), 

providedf ECN[a, b], al + +a, = N + 1, ti E [a, b], i = 1, .. ., 1. It can be 
verified (see Cakalov [7, Theorem 1]) that 

1 rn-i 

(14) D(fIT,J ) = hmf(T + h) - o !- (T)h 

We shall show that 

(15) sign Ajk(l; x) =sign Aj+lk(l; x), j= 1,..., n - 1, 

for every fixed k E= {2, . . . , n}. Then (15) will imply the assertion of the lemma. 
Let k be fixed. Let M(k; t) stand for a monospline of degree r with knots 

(xl, vP), . .. , (xk, k - 1), ... , (xn, v"). Denote by A(-) the matrix corresponding 
to the system of the form (2.8) with interpolating nodes those indicated in the 
parentheses and with a F defined by M(k; t). For instance, Ajk(l; x) can be 
rewritten as 

XI . . . 
Xi Xn 

PIv . . .p vj-1 nJ 

Suppose that 0 < h < xj+ - xj. Consider the determinant of the matrix 

Ah Xi 
. . . l 1X j + 1 Xn 

It follows from Theorem 6 that det AYhk # 0 for each h, 0 < h < xj+ I-xj. We shall 
prove that sign det Ah = sign det Ai+ Ik. In order to do this, let us change Ahj in 
the following way: 

Multiply the r + vp + + jvth row by (Vj - 1)!/hV' and add to it the sum 
of the rows with numbers r + vP + * * * + vpi I + X + 1, X = O0,. . ., Vj-2, multi- 
plied by -(Vj - 1)!/(X!hpj-'-1), respectively. The new matrix a4%k will correspond 
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to the system which is obtained from the previous one, changing the r + v1 
+ * + vjth equation by 

(j- 1)!D(Flx,-xjl+h) = 0. 

Since vj < r, (13) implies 

(j- 1)!D(Flx xi+h) -F('i'1)(xj) ashh 0. 

Therefore, 

det l' k- det AJ+ 1,k as h -+0. 

But det k = ((j - 1)!/hPi-')det Ajk and det Aj+l,k # 0. Hence sign det Aj.= 
sign det Ai+ lk for small h. We have already mentioned that det Ahk #0 for 
0 < h < x>+ - xj. Therefore, sign det 4j%k = sign det Ai+ 1,k for all h, 0 < h < xj+ 
-X> 

In the same way, using the explicit expression of D(fl 1-h, ') one can show that 
sign det Aj'k = sign det Ajk. The relation (15) is proved. This completes the proof of 
the lemma. 
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