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Calculation of the Taylor Series 
Expansion Coefficients of the 

Jacobian Elliptic Function sn(x, k) 

By Staffan Wrigge 

Abstact. The Taylor series expansion coefficients of the Jacobian elliptic function sn(x, k) 
and its power sn2(x, k) are studied. Recurrence formulae are given, and tables of the 
coefficients constructed. Using Lagrange's inversion formula, these coefficients can be 
expressed in terms of Legendre polynomials. 

Introduction. Not much is known about the Taylor series expansion coefficients 
of the Jacobian elliptic functions sn(x, k), cn(x, k), and dn(x, k). In handbooks 
only the first four or five terms are given. (See for instance Abramowitz and Stegun 
[ 1, p. 575], Hancock's book on elliptic functions [4, p. 252 and p. 486], or 
Gradshteyn and Ryshik [5].) Recently, however, Alois Schett gave a "combina- 
torial" expression of the coefficients of the Taylor series expansion of sn(x, k) and 
evaluated explicitly the first eight, nontrivial, terms; see [6, p. 146]. His results were 
extended by Dominique Dumont [3], who gave a new combinatorial interpretation 
of the coefficients of sn(x, k). It is often said that no recurrence formulae exist for 
these coefficients ([1, p. 575] or [6, p. 143]). What is meant by that is probably that 
no simple recurrence formulae exist. Using differential and other equations, one 
can deduce a number of useful recurrence relations and, with the help of the 
Burmann-Lagrange theorem, even a definite (although hard to handle) expression 
of the coefficients in question. 

1. Derivation by Means of the Biirmann-Lagrange Theorem. The function sn(x, k) 
may be defined by (Bowman [2, p. 8]) 

fsn(x, k) dt (1.1) x 
~~~((I _ t2)(l - k 2t2))1/2 

Ik ,-< K 

where K(k) is the complete elliptic integral of the first kind. Using an algebraic 
addition formula, one can define sn(x, k) for all real x and, with the help of 
imaginary transformations, for all complex x. Expanding the integrand in (1.1) in a 
Taylor series, one obtains 

(2E sn _(2n+x, k) 

n=O 2n+lI 
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where 

(1.3) C2.(k) = knP( 
I 

(k + k)= In -( v)( 2v )k2v 

and Pn(t) is the nth Legendre polynomial. 
(1.2) may be used for computational purposes, at least for small k, because the 

polynomial C2A(k) satisfies a three term recurrence formula, viz. 

(1.4) (2n + 2)C2n+2(k) -(1 + k2)(2n + 1)C2n(k) + 2nk2C2n-2(k) = 0, 

with starting values CO(k) = 1, C2(k) = 4(1 + k2). (See Table I.) 

Using Biirmann-Lagrange's inversion formula [1, art. 3.6.6], we may formulate 
the following theorem: 

THEOREM 1. The Taylor series expansion of sn(x, k) is 

oo x2n+1 
sn(x, k) = a X 2 Il 

n-O (2n + 1)! 2n+1( k) 
where 

[ d 2n ( 2n +1 
] a2fl~1(1, k = 

[a2;: P(a) ) 
af+1 

and 
oo a2v 

P(a) = aC2v(k) 2v + I 

To further exploit this theorem, we must know how to compute the nth 
derivative of a compound function. A useful formula is given in Gradshteyn and 
Ryshik [5]. We thus get 

d2n (-1)m(2n + m)! 

da2n (P(a))2n+ 
I 

ii+2i2+* +vi,=-2n p2n+m+l(a) 

(1.5) il+i2+ +iv=m,m=1,2,...,2n 

s= [( ! )i'! 
Applying (1.5) to the case n = 2, we get 

d4 1 - _I P(4)(a) P(3)(a)P(a) P2(a) 5 + 120 +90 
da4 P5(a) p6(a) P7(a) P7(a) 

-1260 (a) (a) + 1680P4(a) 
P8(a) P9(a) 

Since we are mainly interested in the case a = 0, we may formulate 

THEOREM 2. The coefficients a2n+ I(1, k), occurring in the Taylor series expansion of 
sn(x, k), are given by 

02n+1(1, k) = (-1)m(2n + m)!kn 
2i2+4i4+ * +2Vi2v=2n 

i2+i4+* +i2=m,m=1,2,...,n 

s- 1 i2! (2s + 1 2 k))) 

where Pn(t) is the nth Legendre polynomial. 
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Proceeding in the same way, we can prove 

THEOREM 3. The coefficients a2n+ 2(2, k), occurring in the Taylor series expansion of 
sn 2(x, k), are given by 

a2f+ 2(2, k) = 2 (-1)m(2n + m + 1)!kn 
2i2+4i4+ +2vi2v =2n 

i2 + 4 + + i2v m, m = 1, 2... , n 

s=1 2s! (2s + I 2 k)))2s 

The use of Faa di Bruno's theorem to compute the coefficients of an inverted 
series is awkward, at best, and becomes prohibitively complex after a relatively few 
terms. The tenth one already contains 42 distinct terms. Therefore Theorems 2 and 
3 are only of theoretical interest. A more practical approach is to note that 

[(2n)!f-'a2n+ (1, k) is simply the coefficient of x2" in the power series expansion of 
(p(X))-<2n+ 1). The coefficients bi of any power ax of the series 

f(x) = 1 + a1x + a2x2 + a3x3 + * 

can be computed recursively by 

(1.6) bi = ia, + - I (k(a + 1) - i)akbi-k, 
k5l 

which seems to be a computationally more tractable approach than the use of the 
multinomial theorem, even though the latter gives an explicit expression. 

2. Recurrence Formulae for the Taylor Series Expansion Coefficients of snm(x, k), 
Especially m = 1 and m = 2, Used to Calculate the Coefficients. Using elementary 
properties of sn(x, k), cn(x, k), and dn(x, k), we may prove 

d2 
-jsnn(x, k) = n(n - I)snn-2(x, k) - n2(1 + k2)snn(x, k) 

(2.1) x 
+ n(n + 1)k2snn+2(x, k). 

(See Whittaker and Watson [7, p. 516].) We note the special cases n = 1 and n = 2 
(Bowman [2, p. 1 1]): 

(2.2) -2sn(x, k) = - (1 + k2)sn(x, k) + 2k2sn3(x, k), 

dx2 

(2.3) ?2 Osn2(x, k) = 2 - 4(1 + k2)sn2(x, k) + 6k2sn4(x, k). 

(2.1) provides an alternative means of proving (1.4) by differentiating (1.2) twice 
with respect to x. 

We now define the coefficients an(m, k) as follows (m = 1, 2,...) 

cron(m, k) 
(2.4) snm(x, k) = n= n! x jm(m, k) = m!. 

Using the definition of an(m, k) and (2.3) we get, identifying coefficients of 
corresponding powers of x and observing that a2n + 1(2, k) = 0, 
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THEOREM 4. The Taylor series coefficients a2J(2, k) of the function sn2(x, k) satisfy 
the recurrence formula 

a2n+ 2(2, k) = -4(1 + k2)na2(2, k) + 6k2 ( )a2v(2, k)a2n-2J(2, k). 

The coefficients a2(2, k), 04(2, k),... , 016(2, k) are given in Table II. Writing 
sn3(x, k) = sn(x, k) * sn2(x, k) and using (2.2) we get, observing that a2n(1, k) = 0, 

THEOREM 5. The Taylor series coefficients a2n+ (1, k) of the Jacobian elliptic 
function sn(x, k) satisfy the recurrence formula 

n-I(2+1 

a2n+3(1, k) = - (1 + k2)a2n+1(1, k) + 2k2 2 ( 2v + 1u c2v+ I(1, k)f2n - 2v(2, k). 
v=O 2v + 1/ 

The coefficients a1(l, k), 03(1, k), .. ., a17(1, k) are given in Table III. The first 
eight values are also given by Schett [6, p. 146]. 

Recurrence relations for the coefficients of sn2(x, k) and sn(x, k) may be 
obtained alternatively in the following way: 

For sn2(x, k), we have, from (2.1) 

d__2 

2 sn2(x, k) = 2 - 4(1 + k2)sn2(x, k) + 6k2sn4(x, k), 

2 sn4(x, k) = 12 sn2(x, k) - 16(1 + k2)sn4(x, k) + 20k2sn6(x, k), 

2 sn 6(x, k) = 30 sn4(x, k) - 36(1 + k2)sn6(x, k) + 42k2sn8(x, k), 

etc. 
Differentiating the first relation twice (and then twice again) and making use of 

the remaining ones, we get 

4sn2(x, k) = -8(1 + k2) + 8(2 + 13k2 + 2k4)sn2(x, k) 

-120k2(1 + k2)sn4(x, k) + 120k4sn6(x, k), 

dx6 sn2(x, k) = 32 + 208k2 + 32k4 - (64 + 1920k2 + 1920k4 + 64k6)sn2(x, k) 

+ (2016k2 + 8064k4 + 2016k6)sn4(x, k) - 6720k4(1 + k2)sn6(x, k) 

+ 5040k6sn8(x, k). 

It is clear that we will, in general, have 
2n n+1 

(2.5) (_)n+l d2 sn2(x, k) = 2 (-I)vav(n, k)sn2v(x, k). 

Differentiating (2.5) twice, we get 

+1 d2n+2 n+1 d2 

(dX2 + 2sn2(x, k)= (-1)vav(n, k) 2sn2v(x, k) 
(2.6) v=1dx 

n+2 

= - 2 (-1)vav(n + 1, k)sn2v(x, k). 
v=O 
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Using (2.1), we now easily obtain the following recurrence relations for the 
coefficients ai(n, k): 

for i = 0, ao(n + 1, k) = 2a,(n, k), 

for i = 1, a,(n + 1, k) = 4(1 + k2)a,(n, k) + 12a2(n, k), and, 

(2.7) generally, for i > 2, 

ai(n + 1, k) = (2i - 2)(2i - l)k2aj-1(n, k) + 4i2(1 + k2)ai(n, k) 

+ (2i + 2)(2i + I)ai+1(n, k), 

where ao(l, k) = 2, a1(1, k) = 4(1 + k2), a2(1, k) = 6k2, and ai(l, k) = 0 when 
i > 2. 

Since the Taylor series coefficients 02(2, k) are equal to 

d 
sn 2(x, k)] 

it follows that 

G2n(2, k) = (-_)"+'ao(n, k), o2n+2(2, k) = 2(-1)n a(n, k). 

We can thus formulate the following theorem: 

THEOREM 6. Define a-1(n, k) = 0, ao(l, k) = 2, a1(1, k) = 4(1 + k2), a2(1, k) = 

6k2, and a,(l, k) = 0 when i > 2. Furthermore, let 

ai(n + 1, k) = (2i - 2)(2i - I)k2a,-1(n, k) + 4i2(1 + k2)ai(n, k) 

+ (2i + 2)(2i + I)ai+1(n, k). 

Then 

G2n(2, k) = (-I)"+'ao(n, k), 02n+2(2, k) = 2(-1)"a,(n, k), 

where o2n(2, k) are the Taylor series expansion coefficients of sn2(x, k). 

An advantage of this method is that it can also be used to obtain the Taylor 
series expansion coefficients of sn(x, k) directly, without first computing those for 
sn2(x, k) as in Theorem 5. 

For sn(x, k), we have, from (2.1), 

3sn(x, k) = - ( ) + k-2)d sn(x, k) + 2k 2aXsn 3(x, k), 

dx3 3dd2xd 3 

3 sn(x, k) = 6Adsn(x, k) -9(1 + k2) d sn3(x, k) + 12k2 sn5(x, k), 
dx3 dx dx dxc 

-Lsn5(x, k) = 20A.sn3(x, k) - 25(1 + k2? sn5(x, k) + 30k2A sn'(x, k), 
dx3 dx dx d 

etc. 
Differentiating the first relation twice and making use of the second one, we get 

Aisn(x, k) = (1 + 14k2 + k4) sn(x, k) - 20k2(1 + k2), sn3(x, k) 
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We find, in general, that 

(2.8) ~~n+I d_2n__I_ d 2 (2.8) (- + d2n I sn(x, k) = 
I (- )'v+lbv(n, k) dx sn2s - (x, k), 

and, using the same methods as in (2.6) (i = 1, 2, ... ), 

(2.9) b,(n + 1, k) = (2i - 3)(2i - 2)k2b,-1(n, k) + (2i - 1)2(1 + k2)bi(n, k) 
+ (2i + 1)(2i)b,+1(n, k), 

with b,(I, k) = 1, and b,(l, k) = O when i > 1. 
Since the Taylor series coefficients 02,, -(I, k) are equal to 

[ 2 sn(x, k) Jo 

it follows that 02n- I(1, k) = (-I)"+ lb(n, k). We can then formulate 

THEOREM 7. Define bl(l, k) = 1 and b,(1, k) = 0 when i > 1. Furthermore, let 

bi(n + 1, k) = (2i - 3)(2i - 2)k2bi_..1(n, k) + (2i - 1)2(1 + k2)bi(n, k) 

+ (2i + 1)2ib,+ 1(n, k). 

Then 

?2n -l1(1, k) I(-1)n +'b,(n, k), n = 1, 2, ... 

where 02n - 1(1, k) are the Taylor series expansion coefficients of sn(x, k). 

Similar schemes can be worked out for the Taylor series coefficients of cn2(x, k) 
and cn(x, k), using the formula 

d 2 
- cnn(x, k) = n(n - 1)( - k2)cnn 

- 
2(x, k) + n2(2k2 -_ )cn"(x, k) 

(2.10) dx2 

-n(n + I)k2cnn+2(x, k). 

3. Some Other Relations and Check Formulae. A lot of formulae relating the 
coefficients 02n(2, k) and 02n+ 1(1, k) to themselves or each other may be deduced. 

We start with Jacobi's imaginary transformation (Bowman [2, p. 37]), i.e. 

(3.1) sn(ix, k) = sn(x, ') k' = ()-k2)1/2. 
cn(x,, k') k'=( 2'2 

Squaring the identity (3.1), we obtain, after a little algebra, 

(3.2) a2n(2, k') + (-1)na2n (2, k) = 2 n 
(- 2k) a2C(29 k)02n-2c(2 k'). 

The most obvious formula relating a2n(2, k) to ?2n+ 1(1, k) is 

(3.3) a2n(2, k) = (2n )a2v-l(l, k)a2(-2o+1ll k) 

but also several more intricate relations may be deduced. Starting from Landen's 
second transformation of sn(x, k) (Bowman [2, p. 72]) 

(3.4) sn((l + k)x, 2k"1 k (1 + k)sn(x, k) + 
I)x + k J 

I + k sn 2(x, k)' 
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we easily get (3.5), i.e. 

)2n +1 ( 2k"12 
(1 + k) G2n+1k 1 + kJ 

n(2n+ '')o2k)(1 + k)2n+1-2o2,+v.2s(1, 2k "2 

= (1 + k)02n+,(1, k). 

The duplication formula (Bowman [2, p. 14]) may also be used. From the identity 

d 2 -sn2(x, k) 
(3.6) sn(2x, k) 

x 
1 - k2Sn4(x, k) 

we get, using (2.3), 

sn(26 )d sn2x, k)xdk + d sn 2(x, k) + 2 
+ k2)sn(2x, k)sn 2(x, k) 

(3.7) 6 dx 2 sn(xxk -3s 

4 
= -sn(2x, k). 

3 

In terms of the coefficients studied, (3.7) yields (3.8), i.e. 

6 E (2n + 1 )22v+02v+,(, k)[o2n+2-2v(2, k) + 4(1 + k2)n2-20(2, k)] 

+02n +2(2, k) 

22n+3 
3- ?2n +,l(I k)- 

A final example comes from combining (2.2) and (2.3) into 

d 2 d 2 
(3.9) 2 sn2(x, k) = 2 - (1 + k2)sn2(x, k) + 3sn(x, k) - sn(x, k), 

which yields 

'2fn+2(2, k) = - (1 + k2) 02n(2, k) 

(3.10) V>l( _ 1 )G2v_1(1, k)02n+32v(1, k). 

Using (3.3), (3.10) may be transformed into a recurrence formula for the coeffi- 
cients 02n+ I(1, k). We may formulate the following theorem: 

THEOREM 8. The Taylor series coefficients 02n +,(1, k) of the Jacobian elliptic 
function sn(x, k) satisfy the recurrence formula 

2n(1 + k2)02n -(1, k) 

(2n - 4)02n +1(1 k) [ ( 2v-1) 3( 2v-1 ) 

=+ (I + k 2)( 2- 1 )?2v1(l k)02n+,1-2v(1 k). 

A similar formula (i.e. of the same degree of complexity) may be deduced 
combining (2.2) and (1.6) with a = 3. 
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4. A Note on Bernoulli Numbers. It is easy to prove that 

e X - 
(4.1) sn(x, 1)= ex + ex = tanh(x). 

The Taylor series expansion of tanh(x) is well known; see [1, p. 85]. Therefore 
00 n2n2n _2 2nO 

(4.2) sn(x, 1) = 2(2n) B 2n - 

Moreover 

sn2(x, 1) = tanh2(x) = 1 -jd tanh(x) 

"O(2n - 1)2 2n(2 2n -1 2x~ 

n-2 (2n)! 

We conclude that 
22n+2 22n+2 _I 

(4.4) g2n(2, 1) =-n2 (2+2 -=B-?2n +1(1)- 
(2nz + 2) 2+2--2+ 

(4.4) was used to check the polynomials given in Tables II and III. Combining (4.4) 
and Theorem 2, we finally get 

B2n+2 2 2n+2 (-1)m(2n + m)! 
222(2 

2 
- 1) 2i2+4i4+ * * +2vi2,-2n 

(4.5) i2+i4+* +i2-m, m- 1, 2,. 

sY i(2s +1 1 

5. Tables. 

TABLE I 

The polynomials C2U(k) = knPn(2(k + 1/k)) 

CO = 1 

1 + k2 
C2= 2 

3 + 2k2 + 3k4 
C4 8 

5 + 3k2 + 3k4 + 5k6 

C6 16 

Cl = 35 + 20k2 + 18k4 + 20k6 + 35k8 
c8- 128 

= 63 + 35k2 + 30k4 + 30k6 + 35k8 + 63k'0 
10= 256 

= 
231 + 126k2 + 105k4 + 100k6 + 105k8 + 126k'0 + 231k'2 

12- 1024 

IC = 429 + 231k2 + 189k4 + 175k6 + 175k8 + 189k'0 + 23k 1k2 + 429k'4 
14- 2048 
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TABLE II 

Taylor series expansion coefficients of sn2(x, k) 

02(2, k) = 2 

04(2, k) = -8 - 8k2 

06(2, k) = 32 + 208k2 + 32k4 

08(2, k) = -128 - 3840k2 - 3840k4- 128k6 

o1O(2, k) = 512 + 64256k2 + 224256k4 + 64256k6 + 512k8 

012(2, k) = -2048 - 1042432k2 - 10139648k4- 10139648k6- 1042432k8 

-2048k'0 

014(2, k) = 8192 + 16748544k2 + 408870912k4 + 1052502016k6 + 408870912k8 

+ 16748544k'0 + 8192k'2 

016(2, k) = -32768 - 268304384k2 - 15590621184k4 - 89073713152k6 

-89073713152k8 - 15590621184k0 - 268304384k'2 - 32768k04 

TABLE III 

Taylor series expansion coefficients of sn(x, k) 

ol(l, k) = 1 

03(1, k) =- -1 V 

05(1, k)= 1 + 14k2+ k4 

07(1, k) = -1 - 135k2 - 135k4 -k6 

9g(l, k) = 1 + 1228k2 + 5478k4 + 1228k6 + k8 

all(l, k) = -1 - 11069k2- 165826k4- 165826k6- 11069k8 -k' 

0j3(1, k) = 1 + 99642k2 + 4494351k4 + 13180268k6 + 4494351k8 

+99642k0 + k'2 

oa5(1, k) = -1 - 896803k2 - 116294673k4 - 834687179k6 - 834687179k8 

-116294673k0 - 896803k'2- k-4 

0j7(1, k) = 1 + 8071256k2 + 2949965020k4 + 47152124264k6 + 109645021894k8 

+47152124264k'0 + 2949965020k'2 + 8071256k'4 + k'6. 
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