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The Lagrange Multiplier Method for 
Dirichlet's Problem 

By James H. Bramble 

Absrct. The Lagrange multiplier method of Babuika for the approximate solution of 
Dirichlet's problem for second order elliptic equations is reformulated. Based on this 
formulation, new estimates for the error in the solution and the boundary flux are given. 
Efficient methods for the solution of the approximate problem are discussed. 

1. Introduction. The purpose of this paper is to consider a method introduced by 
Babuska [3] for approximating the solution of Dirichlet's problem for second order 
elliptic operators. An important aspect of this method is that the approximate 
solution involves only natural boundary conditions. The point of view here is 
similar to that taken by FaLk [7] in that a family of solutions u(a) of the differential 
equation is introduced, where a is a function defined on the boundary. In fact 
a = au/la' + au. For each such function a, u(a) satisfies the given differential 
equation, and we seek to determine a so that u(a) takes on specified boundary 
values. By approximating the space in which a lies and that in which u lies we are 
led to a method of approximation which is a reformulation of Babuska's method. 
The advantage of this formulation is that we obtain new optimal error estimates for 
the error in u in norms weaker than the energy norm. We also obtain new estimates 
for the boundary flux approximation. It is finally shown how the approximation ak 
to a may be obtained numerically as a limit of a rapidly convergent sequence of 
solutions to problems with natural boundary conditions. This is done by introduc- 
ing a "discrete surface Laplacian" with the help of which we may formulate our 
equations in terms of a well-conditioned matrix problem which may be solved 
efficiently by the conjugate gradient method. 

An outline of the paper is as follows. In Section 2 we introduce the Dirichlet 
problem and its decomposition into solutions of natural boundary value problems. 
Relevant a priori estimates are there given. Section 3 concerns the spaces of 
approximating functions in our domain Q and Section 4 introduces spaces of 
approximating functions on the boundary ag. Section 5 contains a reformulation of 
Babuska's method and there the a priori estimates which are the basis for the error 
estimates and computational methods are proved. The error estimates are proved in 
Section 6, and finally in Section 7 the "discrete surface Laplacian" is introduced 
and the estimates of Section 5 are used to develop efficient computational proce- 
dures. 
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2. Notation and Preliminaries. We shall be concerned with the solution u of the 
problem 

(2.1) Lu =f inQ2, 

u=g onag2, 
where Q is a bounded domain in d-dimensional space Rd with smooth boundary 
ag. The operator L is given formally by 

Lu = 
-iE 

J- 
aXaij 

-X + au, 
i,=Iax\ a~ a.j 

where aij is a uniformly positive definite matrix of smooth functions in Q and a > 0 
is also smooth. We shall not consider the exact amount of smoothness necessary 
but will assume that the solution u E HS(Q) provided f E Hs2(g2) and g E 
Hs-1/2(aQ). Here HS((Q) and HS(aU) are the usual Sobolev spaces of functions 
defined on Q and aQ, respectively, with s a positive real number, and HS(Q2) and 
HS(ag) are the respective duals of H's(Q) and H-s(ag) for s < 0. The norms in 
HS(Q) and HS(ag) will be denoted by 11 * Ils and I * L, respectively. 

The above statement is expressed here by the well-known a priori estimate (cf. 

(9]) 

(2.2) IIuIls < C(OILUIIS2 + luls 1/2). 

For the purpose of this paper we wish to consider the boundary value problems 
with natural boundary conditions 

Lv = 0 in S, 
(2.3) av 

av +-P=a on ag, 
av 

and 
Lw =f in S, 

(2.4) a ww +-= O on ag. 
av 

Here a > 0 is a constant chosen so that a + a > 0 and a/ap is the outward 
conormal derivative on ag relative to L. The introduction of a avoids the 
appearance of semidefinite forms or the requirement that a > 0 in order that (2.3) 
and (2.4) have unique solutions. Let <0, AP> be the C2 inner product on the 
boundary and also the pairing between HS(ag) and Hs(aW), and let (4, 4,) be the 

C2 inner product on Q and also the pairing between HS(2) and Hs(2). We shall 
denote the generalized Dirichlet integral by A4/, *); it is given by 

A( ) = f aj- a-x axdx + (a 1) + a<+ ,> 
i,j= I j* 

It is defined on H '(Q) x H '(Q) and is positive definite. 
In this notation we may formulate (2.3) as follows: v E H 1(2) satisfies 

Aa(V, x) = <K', X> 

for all X E H'(Q). Set v = Go. It is well known (cf. [9]) that G: HS(4i2) 
H- +3/2(S) as a bounded operator; i.e. for 0 E HS(ag) 
(2.5) 1GO IIs+3/2 < COLj. 
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Here and in the sequel C denotes a generic constant not necessarily the same in 
any two places. At times also CO and C1 will denote generic constants. 

We observe finally that since G maps C2(ag) into H l(Q), the trace of GO on ag is 
in H 1/2(aQ). Hence we may consider G: C2(M2) - -2(a), and it follows easily 
from the definition that G is selfadjoint. 

We have the following lemmas concerning G. 

LEMMA 2.1. There exist positive constants CO and C1 such that 

(2.6) C0j0j2112 < <Go, 0> _ C10112 

for 0 E H-112(ag) 

Proof. Note that <GO, 0> = Aa(GO, GO) < CIIGo 12l. The second inequality now 
follows from (2.5). The first inequality follows by a simple duality argument. Let 
Lip = 0 and consider 

<0, AP> = Aa(GO, 4,) < CAa12(GO, GO)114'111. 

By (2.2) it follows that 

<0 4> < CA /2(G9, GO) = C<Go, 0>1/2 
I411/2 

a 

But 41 E H 1/2(ag) may be arbitrary and hence 

191-1/2 = sup 0,A>> C , 0>1/2 
E- H '/2(aa) 1 +11/2 

In a similar fashion we may prove the following 

LEMMA 2.2. Let s be a real number. Then there exist constants CO and C1 such that 

(2.7) C01jIs < IGOIs+1 < C1IjIs 
for all 0 E Hs(ag). 

Proof. The first inequality for s > 0 is just an application of a trace theorem (cf. 
[8]) and (2.2). We have 

jjIS = aGO + aG < C(1G69Is + 1IGOIIs+3/2) < ClG0ls+1. av 
When s =- it follows from Lemma 2.1. By interpolation it is true for any 
s > - 2. Its validity for s < - 4 is proved by a simple duality argument. 

The second inequality for s > -2 follows from a trace inequality and (2.5). 
Again a duality argument proves it for s < -2. 

In a similar manner we set the solution w of (2.4) to be Tf. Again it is well known 
that T: HS(Q) - Hs+2(Q) as a bounded operator. Now with this notation we shall 
represent the solution u of (2.1) as 

(2.8) u=Go+Tf. 

With f E Hs2(Q) and a E Hs3/2(aQ), u E= Hs(Q). Conversely, given f E 
Hs-2(g) and g E Hs- 1/2(ag) there exists a unique a E Hs-3/2(ag) such that 

(2.9) Ga=g-Tf onag, 

and then u is given by (2.8). In fact aT = au + au/av. It is unique by Lemma 2.2. 
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It will be from this point of view that we will approximate u; i.e. we will 
approximate G, T and a to obtain an approximation to u. 

3. Approximating Spaces on U. For 0 < h < 1 let { S.} be a family of finite 
dimensional subspaces of H' (Q). Let r > 2 be an integer. We shall assume that for 
s E= H'(Q) with 1 < I < r, 

(3.1) inf 11lf - Xiij S Ch'-jll(pllZ, j < 1. 
X E Sh 

We now define the operators Gh: H-1"2(aj2) -> Sh and Th: H-1(9) -+ Sh by 

AG(GhO, X) = <K, X>, VX E Sh, 

and 

A.(Thf, x) = (f, x), VX E Sh. 

These are just the so-called standard Ritz-Galerkin approximations to G and T. We 
recall some well-known properties. Let PI be the orthogonal projection onto Sh 
with respect to the norm (equivalent to the H '(92)-norm) induced by Aa; i.e. 

AaJk-PIO, X) = 0, VX E Sh. 

Then with this notation we see that 

Gha=PlGa and Thf=PPTf, 

so that we have immediately from the approximation assumption and standard 
duality arguments the following well-known results (cf. [2], [4D. 

LEMMA 3.1. There exists a constant C such that 

j(G - Gh)Jl-1/2 + II(G - Gh)a Lj < Ch'-IllGall < Ch'-jiulllI 

and 

I(T - Th)flIj12 + II(T - Th)flij < Ch'jll Tfj1, < Ch'-jllulll 

for 2- r < j < 1 A ? r, a E H=-3/2(ag), f E H-2(Q) and u = Ga + Tf. 

Note that the restriction to Q of continuous piecewise polynomials of degree 
r - 1 on a quasi-uniform triangulation of R2 or a rectangular mesh of "width" h 
are examples of spaces Sh satisfying (3.1). 

4. Approximating Spaces on ag. For 0 < k < 1 let {Sk} be a family of finite 
dimensional subspaces of Hn(Ml), n > 0. Let r > 1 be an integer. We shall suppose 
that for 4 E H'(a2) withj < n,j < / , 

(4.1) inf 1k - X11 < Ckl'jll4. 
X E Sk 

We further assume that forj < m < n 

(4.2) kklm < Cki-mlj 

for all E4 Sk. 

The conditions (4.1) and (4.2) together imply that for any givenjO < n there is an 
operator irk: HJo(8M2) -- Sk with 

(4.3) 10 - 'Tk4I C _<Cjk'-j o 

uniformly in j and / with Jo S j < 1 S i, j < n. This result may be found in [5]. 
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Finally we denote by p0 the C2(ag) orthogonal projection onto Sk; i.e. for v E 

C2(aQ) - H0(aQ), 

<poV, 0> = <V, 0>, V> E Sk. 

By a standard duality argument we have 

LEMMA 4.1. Let Sk c H'(a3). Then 

I(I - po)OIj < Ck'-lol 

for 4 E Hl(aQ), with -n < 1 < r and -r < j < min(l, n). 

We shall also need the following lemma concerning the boundedness of po in 
other norms. 

LEMMA 4.2. Suppose Sk c Hn(a3). Then 

IPOPIS < CI4IS 
for ISI < min(n, r). 

The proof follows from Lemma 4.1. 
We note here that the operatorpOGh: Sk -> S/k is selfadjoint; i.e. for 4, 4' ESk 

<pOGh4, A> = <GhO, A> = Aa(Gh4, GhO) = <K,pOGh44. 

This operator will play a central role in what follows. 

5. Babuska's Method Reformulated. As noted in Section 2 we may write u as in 
(2.8) and (2.9). 

The approximate problem motivated in this way is: Find ak E S/k such that 

(5.1) poGhak =Po(g- Thf). 

The approximation to u is defined as 

(5.2) Uhk = Gh ak + Thf. 

From the definitions of Gh and Th it follows that 

Aa(Uhk/ X) = <ak X> + (f' X), VX E Sh, 

and 

<uhk 9g > O, VO ES/ 

These equations are the same as those of Babuska [3]. 
The first estimate which we shall give is an analogue of Lemma 2.1. A condition 

relating h to k will be required. 

LEMMA 5.1. For h < ek with c sufficiently small there exist positive constants CO 
and C1 such that 

(5.3) C0lAl2l~-/2 S <GhO, O > <1 Cl _12/2 

for all 0 ES/c. 

Proof. By Lemma 2.1, 

?1/2 < <Gh0, O> + <(G - Gh)O, O> ? C110V21/2 
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Hence it suffices to show, for 0 E Sk, that I<(G - Gh)O, 0>1 8 O110-1 /2 where 0 is 
small with c. By definition 

<(G - Gh)O, 0> = Aa((G - Gh)O, GO) = Aa((G - Gh)O, (G - Gh)O) 

(5.4) < CII(G - Gh)0112 < Ch2lIIG0112+ 

for 0 < /3 < , where we have used Lemma 3.1. 
By (2.5) 

(5.5) IIGOIII+,O < ClOl,0i12. 
By assumption (4.2) with s = / - 4 andj - -I 

(5.6) 101,-1/2 < Ck |@|-112' 

Hence combining (5.4)-(5.6) we see that 

1<(G - Gh)O, 0>1 < C(h/k)2,l1012 ( < CE2j81012 

The result follows for e small enough. 
Lemma 5.1 clearly implies the existence and uniqueness of fJk sincepOGhO = 0 for 

0 E Sk implies that 0 = 0. 
Another stability estimate will be needed in our derivation of the error estimates 

and the computational method. 

LEMMA 5.2. Suppose that h < ek with e sufficiently small. Set m = min(r - 3/2, r) 
and let -m < s + 1 < 1. Assume that Sk c f2(M) and furthermore that Sk c 
H'(ag) if 0 < s + 1 < 1. Then there exist positive constants CO and Cl such that 

COJi6s < 1pOGhOls+j < CjjOjf 

for all 0 E Sk. 

Proof. We shall consider the cases -m < s + 1 < 0 and s = 0. The result will 
then follow by interpolation. 

Consider first s with -m < s + 1 < 0. Using Lemma 2.2 and the triangle 
inequality, we see that 

COj0s < l(G - Gh)OIs+l + |(I -po)GhOls+l + IpOGhOls+j 

and 

lPoGhOjs+j < l(G - Gh)OIs+l + I(I-pO)GhOls+l + C1IjSl. 

Hence it suffices to prove that 

(5.7) l(G - Gh)OlS+l < CeOis 3- r r<S+ 1 + 0, 

and 

(5.8) }(I-po)Gh0ls+l S C1poGhOls+11O1S, -r 9 s + 1 < O, 

for0 E-k 

To prove (5.7) we use Lemma 3.1 with]- 4 + l and I=3 to obtain 

(5.9) I(G - Gh)OIs+I < Ch IG09M11312- 
From (2.5), (4.2) and the fact that -s > 1 we see that 

h-511G0113i2 < Ch-1/0 1 C(h/k)SlOIs < Celjls 

which, together with (5.9), proves (5.7). 
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To prove (5.8) we apply Lemma 4.1 to obtain 

I(I _PO) Gs | 2+1l < Ck-2s- Gh0I12- 

By the trace theorem and the definition of Gh 

IGh91/2 ? CilGh6 ? CAa(Gho, GhO) = C<K OpoGhG>. 

Hence, using (4.2), 

I(1 -po)GAh92+l < Ck-s lIpoGhOIk-sIOI < CIpOGhsIS+ltI0s 

which is (5.9), and hence the lemma is proved when -m S s + 1 S 0. 
It remains to consider 0 <s + 1 < 1 when Sk c H '(Q). We only look at the 

case s = 0. The full result will follow by interpolation. Let 4, E Sk be the unique 
solution of poGh%p = 9 which exists and satisfies lI4l, < CI9I by virtue of the first 
part of the proof. Hence 

1912 = <#,poGh4*> = <pOGhO, 4A> < ClpoGhOll 1O, 

so that I 1 < CIpoGh l. Finally, since Sk c Hi(ag) 

1poGhi9l S 1po(G - Gh)OIl + IpoGOI, < lpo(G - Gh)ll + CIG9I1 

by Lemma 4.2. Using (4.2), Lemma 3.1, (2.5) and (2.7), we see that 

1poGhOll < Ck-/|(G - Gh)9l + C) GO) 

S C(h/k)IIG91)3/2 + CIGOII < CIG9), < C)9) 

which completes the proof of the lemma. 

6. Error Estimates. The following theorems are the main error estimates. The first 
is the energy norm estimate given by Babuska [3]. The estimates in weaker norms 
are sharper than those of [3]. These in turn give rise to an accurate method for 
calculating the flux on the boundary. 

THEOREM 1. Let r < r + 3 and h < ?k for c small enough for Lemmas 5.1 and 5.2 
to hold. Then 

lC - akl-1/2 + IIU - Uhkill < C(hO rIIUlr + kr 1/2talr). 

Proof. We note that 

U - Uhk (G - G)a + (T- Th)f + Gh(a - ak). 

Hence to estimate Iu -Uhklll, by Lemma 3.1 it suffices only to estimate 
Gh(a - ak). But since Gh = P1 G, we have that 

IIGh(a - a)IIi < CIIG(a - aq)II1 < CIa - akIl/2 

by (2.5). Thus we have reduced the estimate to that of la - akll/2. By (4.3) 

la- akl-1/2 6 C(I(I - 0k)aI1/2 + 17T,ka - akl-1/2) 

< C(k+ l/211ar +Iko -_| Jkl1/2). 

By Lemma 5.1 

(6.1) 7Tka -kl-1/2 6 CKGh(Xrka - 12 'ka - 
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Using the boundary conditions (5.1) and (2.9) 

(6.2) poGh0(rk - ak) =Po[ Gh(ka - a) + (Gh - G)q + (Th -T)], 

we see from (6.1) that 

170 - Uakl-1/2 S C(I(Gh - G)aI112 + 1(Th - T)fj112 + TGh(7ka - 0)j/2). 

Hence applying Lemma 3.1 and a trace inequality, we obtain 

|Tko - CkIl/2 < C(h rIIUIIr + IIGh(7kU - U)iII). 

But 

|IGh(vka - a)III < CIIG(gko - a)III < C1Tkg - 'g-1/2 

by the stability of P1 and (2.5). Collecting these results and using (4.3) completes 
the proof. 

THEOREM 2. Let Sk C Hn(ag) with 0 < n < r - 3, r < r + 3 and h < ek as in 
Theorem 1. Then for 0 < i < r -2, 

| C(h r+i llu + k i+3/2+i lolj) 0 < i < n 

IC((k/h)i+1/2-nhr+iIUllr + ki+3/2+iIal), n - < i < r - 2. 

Proof. As noted in the proof of Theorem 1 it suffices to estimate Gh(Q - Gk). By 
the triangle inequality and Lemma 3.1 

JIGh(a - ak)II- < | IG(a - ak)Ii + hl 'IIG(a - ak)II1. 

Now by (2.5) with s =- and Theorem 1 it remains only to estimate 2 

11 G(a - ak)1I1 for 0 < i < r - 2. By (2.5) and (4.3) 

II G( - k)jj-I < CO- akl-i-3/2 < C(I(I - 1k)l-i-3/2 + I'TkU - Oki-i-3/2) 
(6.3) 

< C(k 3/2iii + 17Tk - ?kI--3/2 

It remains to estimate I'k ka- akl-i-3/21 Using Lemma 5.2 and (6.2), we obtain 

1rkC - akl-i-3/2 < C(Ipo(Gh - G)al_i-112 + IPO(Th - T)fI- -112 
(6.4) + IPOGh('Tk0 -)1i-1/2) 

Now if 0 < i < n- , then po is bounded in H-i- 12(a8), and by Lemma 3.1 the 
first two terms on the right of (6.4) are bounded by Ch r+i U II r. Finally 

1Gh('gk - 0)1-i-1/2 < IG(k - I)CI i-1/2 + l(Gh - G)(Tk - 1/2 

< C(|(I - 0k)Cli-3/2 + h / k)2() 

< Cki+312+il<I 

where we have again used Lemmas 3.1 and 2.2, (4.3) and h < ek. This completes 
the proof for 0 < i < n -. In case n < i < r - 2, we cannot infer that po 
is bounded in Hi+ 1/2)(aS). Hence we use the triangle inequality in (6.4) and 
still have to bound (I - Po)(Gh - G)a[Ij11/2, ( - PO)(Th - T)f[-1/2 and 
(I - po)Gh('kU - a)1_iK/2. The result now follows from Lemmas 4.1 and 3.1, the 

triangle inequality, (2.7) and (4.3). 
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Now, looking at the proof of Theorem 2 from (6.3) on, we see that we have 
proved the following 

THEOREM 3. Under the same hypothesis as in Theorem 2 

a -akh-312 

{ C(hr+iIIllr + kr+3/2+ilL ) 0 < i < n 

C((k/h)i+l/2-nhr+i I + kr+3/2+ilGl), n - i < r -2. 

As an immediate corollary we have 

COROLLARY. Under the same hypothesis as in Theorem 2 

(6.5) Ia -(k- ag) < C(k-n-hr+n-1/2IIIIr + krlal-) 

Proof. By the triangle inequality and (4.3) 

au 
a-(ak -ag) = Ilay- k I < lXgk (y- al + lXgk y- (k I 

< l7Tka - al + Ck-n-I l'na - n1I + Ck-n-Ila - aklInI 

< C(k'Ila, +kr Ia - aklInll). 

The result now follows from Theorem 3. 
Let us apply Theorem 1 with r = r = 2 to estimate the flux on ag. The choice 

which balances the terms is then k = h2/5 which leads, as in the proof of the 
corollary, to 

|au - (k _ ag) < Ch415(11u112 + la12). 

Applying the Corollary in this case with n = 2-8 (discontinuous piecewise poly- 
nomials), we obtain 

au - (ak - ag) < Ch817-8(jju112 + 1a12), av 
where 3 = 128[7 -28]-1/7. In case n = (e.g. Sk consists of continuous 
functions), we obtain 

Iau - (k _ ag) < Ch817(11u112 + la12). 

Thus Theorem 2 indicates a different balance between h and k from that suggested 

by Theorem 1, and a higher rate of convergence in the lower norms and for the flux 
is proved. 

Finally, we see from (6.5) that in case u is very smooth we could obtain the result 

that for r fixed and any 8 > 0 we may choose i, n and k (as a power of h) such that 

au _ (a,k - ag) = O(h2r 2 8). 

As an example of Theorem 2 we specialize to the case i = 0, n > '. Then we 

have 

IIU - UhkII < C(h rIl UIlr + kr+3/2IaI;) 
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Since h < ek, the condition r < i + 3 is natural. For instance, if r = 2 and r = 2, 
then it would be natural to take h = k714. Hence for k sufficiently small the 
condition h < ek will be satisfied. 

7. Computation of Gk. Let us consider the following discrete surface Laplacian. 
Define lk: Sk -* Sk, with Sk C H '(aQ)), by 

<Kl4, 0 > = <0) 0 >1, 

where <*, >1 is the inner product in H l(at). (E.g. for d = 2 we may take 
<( 0 >I = <(, 0> + <K' , 0'> where 4' is the derivative of 4 with respect to arc 
length along ag.) Note that the computation of lk4 involves only the "inversion" of 
the Gram matrix which in the case of usual finite element spaces will be well- 
conditioned and sparse. Hence lk4 is always a relatively inexpensive computation. 
Now lk is positive definite and symmetric, and we may define lkS in the usual way 
by taking powers of its eigenvalues. We have the following 

LEMMA 7.1. Let Sk c H l(aQ). Then for IsI < 1 there are constants CO and C1 such 
that for 4 E Sk 

(7.1) COfs<|k/+ < Cllfs 

Proof. For s = 1 it is obvious by definition. For s = -1 we have that 

= sup <1 4' = sup 
kop 

qpE=-H1(aQ) 1e1 qEH(aQ) 11 

k ~ up -I'2) u 04 

Applying Lemma 4.2, we obtain 4)l ? Cll7"/24)l. Now 
11-l/2012 = <147'4 4)> < 11k'41_14)-1 = 1,71 kkl-1 

by the definition of lk. Hence 11,71/201 < 101-), and (7.1) is proved for s = -1. By 
interpolation it holds for -1 < s < 1. 

As an application, we combine Lemmas 5.1 and 7.1 to obtain 

C011/4k J2 < <Gh4p, (p> < ClllA-1/4412 

or taking 1kl /40 = 4 

C 6,12 < <K(4 14(poGh)414)4, 0 > ? Cl1012 

for 0 E Sk. This inequality means that the system with matrix induced by 
4'/4(PoGh)4/4 has bounded condition number, and hence we can obtain a solution 
4 to the equation 

i14 (poGh)l_ 4) 

to within an accuracy h' by the conjugate gradient method (or some other method) 
in O(ln l/h) iterations. To apply such a method we need to be able to compute 
k p2(poGh) for any E S,k (cf. [1]). An example of where this is possible is that of 

smooth splines on a uniform mesh of size k (d = 2). In this case we may easily take 
the discrete Fourier transform for 4 E Sk. Hence in that case 4k/2 is easy to 
compute; in fact using a fast Fourier transform algorithm (cf. [6]) the number of 
operations required is of the order k-' ln k-'. 
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In cases where fractional powers of lk are not easy to compute (e.g. for d = 3) we 
may apply Lemmas 7.1 and 5.2 to obtain a well-conditioned system. We obtain 

Co|12 < | IY12poGhIJ < C 

or 

Col|| < <(PoGh)lk(poGh)0, 0> < Cj1412. 

Hence the system induced by (poGh)4k(poGh) is well-conditioned, and we can use 
the resulting matrix as a basis for our iteration and apply the conjugate gradient 
method [1] to obtain a solution to our equations in O(ln 1/h) iterations. The 
solution ak satisfies 

pOGhak =Po[ g- Thf]. 

Instead we should consider the well-conditioned system 

pOGh4kvOGhak p kGh4Poy[ - Thf] 

The calculation of po and lk are inexpensive, and Gh is the natural boundary 
condition solution operator. 

The author wishes to thank Professor Lars B. Wahlbin for several suggestions 
which led to a considerable improvement in this work. 
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