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On a Dimensional Reduction Method 
I. The Optimal Selection of Basis Functions* 

By M. Vogelius and I. Babuska 

Abstraet. This paper is the first in a series of three, which analyze an adaptive approximate 
approach for solving (n + 1)-dimensional boundary value problems by replacing them with 
systems of equations in n-dimensional space. In this approach the unknown functions of 
(n + 1) variables are projected onto finite linear combinations of functions of just n 
variables. 

This paper shows how the coefficients of these linear combinations can be chosen 
optimally. 

1. Introduction. Let ih = X [-h, hi be a domain in Rn, and let uh be the 
solution to some elliptic boundary value problem on W.h We wish to find-in a very 
effective way-an approximate solution UhpprOx satisfying a certain accuracy require- 
ment. 

Considering the special structure of Oh, we expect that u5 can be approximated 
well by a linear combination 

N 

I 4,j(ylh) * xj, y CE [h, h], 
j=O 

of N + 1 functions {XJ>. 0 on w. Methods built on an assumption of this type and 
a projection procedure are widely used in engineering. As an example, we mention 
various theories for plates, beams, etc.; cf. [4], [11], [12]. These methods are also 
sometimes associated with the name of L. V. Kantorovich; cf. [9]. 

Our goals are to select the family of functions {4x},? 0 such that 
(i) The method is optimally accurate when h is small and the data sufficiently 

regular. 
(ii) For arbitrary h and input data the method converges as N -m . 

(iii) It is possible to derive an a posteriori estimate for the error, and this leads to 
an effective procedure for the selection of N. 

Another approach, which has also been extensively used in structural mechanics 
and elsewhere to derive lower-dimensional approximating models, is asymptotic 
expansion in h; cf. [5], [7], [8]. We refer to [17] and references therein for various 
engineering applications of this approach. It is quite obvious that a method based 
on an asymptotic expansion in h does not satisfy the goals (ii) and (iii) stated 
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above. The validity of an approach of this type is dependent on the smallness of h, 
while the actual value of h may simply not be small enough. Even for arbitrarily 
small h, the approximation can be unsatisfactory because of rough data. [1] 
contains an example which shows, for an extremely thin, simply-supported polygo- 
nal plate, that the biharmonic equation is not always a good model for a three- 
dimensional plate. In models based on asymptotic expansion are also often 
included boundary corrector terms; cf. [10]. These terms are not of the simple form 
considered here-they are not lower dimensional and for practical purposes they are 
often very difficult to deal with. Instead of including boundary corrector terms, we 
suggest increasing N (in an adaptive way) to achieve the desired accuracy indepen- 
dently of input data. 

For the model problem analyzed in this paper we restrict ourself to projection in 
the energy. We project the solution u h on elements of the form 

N 

E, tj(ylh)xj, 
j=O 

where { 4j}) % is a sequence of functions on [-1, 1]. The variable y ranges over 
[-h, h] and the xj's are arbitrary elements of some linear space (e.g., a function 
space on w). The main question addressed here is how to attain the first of our 
goals, namely that the rate of accuracy be optimal for small h. In Theorems 3.1 and 
4.1, we prove that this requirement almost uniquely determines the sequence 

{4j} 00-0 
Though the scope of this paper is very much different from that of a formal 

asymptotic expansion, it is not surprising that particularly some of the techniques 
used in the proof of Theorem 3.1 are similar. We have chosen to give a detailed 
proof for two reasons, first of all because elements of it are needed in the proof of 
Theorem 4.1 and secondly because it is not very long. 

In another paper, [15], we show that this method of dimensional reduction fulfills 
the second of our goals. In addition we also give various estimates of the rate of 
convergence as N -> oo. 

If a singularity is present in the data, we must use a relatively high number of 
functions 4,j (i.e., we must increase N). Because such singularities are often 
localized, it is appropriate to introduce the possibility of using a different N in 
different parts of the domain h*. The a posteriori error estimation (and the 
problem of how to design an adaptive algorithm that will produce a good 
distribution of the N's) was briefly discussed in [14]. It will be given a more 
detailed treatment in a forthcoming paper; cf. [16]. 

2. Notation and the Model Problem. Let SC be a separable Hilbert space with the 
inner product <u, v> and the norm lIull = <u, u>1/2. 

A denotes a selfadjoint, linear (unbounded) operator in SC with a domain of 
definition 6)D(A). Furthermore we assume that A is a strictly positive-definite 
operator, i.e., there exists C > 0 such that 

Vu E- 6D(A ): Cl11uu112 < <Au, u>. 

6D (A 1/2) is itself a Hilbert space with the inner product <u, v> + <A 1/2u, A '/2v>. 
Let M be a selfadjoint bounded linear operator in SC. M is also assumed to be a 

strictly positive-definite operator. 
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I denotes an interval on the real line. L2(I; SC) is then defined as the set of 
strongly measurable functions I -> SC such that u( is an element of L2(I); cf. 
[6]. The same goes for L2(I; 6D (A 1/2)). 

We also need a Sobolov space of functions with values in SC. H '(I; SC) denotes 
the space of functions I -> SC such that u(.) E L2(I; SC) and du(.)/dy E 

L2(I; SC); cf. [2]. The derivative here is taken in the distributional sense. H'(I) 
denotes the standard Sobolev space on I. 

Assume a and b are real-valued functions in L?([ -1, 1]) such that 

aO < a(y), bo < b(y), 

for some constants ao > 0, bo > 0. ah and bh E L ([ -h, h]) are then defined as 

ah(y) = a(y/h), bh(y)= b(y/h). 

By Ph(d/dy) we denote the differential operator - (d/dy)(ahd/dy). 
Let f and g be two arbitrary vectors from KC. We consider the following model 

problem 

Ph( d )Muh + bhAUh = 0 in ]-h, h[, 

(1) ah d MMuh=g fory=h, 

dy h 
ah-Mu =f fory=-h. dy 

(Other boundary conditions, e.g., Dirichlet conditions, could just as well have 
been chosen; we could also consider the inhomogeneous problem. The above 
selection was simply made for convenience.) 

Before we proceed any further, let us give a simple example. 
Example. Let w be a domain in R' with a Lipschitz boundary. As SC we take 

L2(W). Let A be the Friedrichs extension (cf. [13]) of the operator - div c(x)grad 
defined on a subspace of H1 (w). (x denotes coordinates in w.) c is a function in 
L'(w) such that 3co > 0 with c0 < c(x). 

If we take a = b and let M be the operator of multiplication by c(x), the problem 
(1) becomes 

div dh(x, y)grad uh = 0 in w x ]-h, h[, 

d(x, Y) a uh = g(x) fory = h, 

d(x,y) a uh = f(x) fory = -h, 

uh=O onawx[-h,h]. 

Here dh(x,y) = b(y/h) * c(x), and div and grad are taken with respect to the 
n + 1 coordinates (x, y). 

The precise formulation of (1) is 

uh E H'([ - h, h]; SC) n L2([-h, h]; 6D(A 1/2)), 

(2) (i5h(Uh, v) = <g, v(h)> - <f, v(-h)>, 
Vv Ei H1([-h, h]; SIC) n L2([-h, h]; D(A 1/2)), 
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where fi3h denotes the bilinear form 

h(U, V) f ah(M1/2 d u, M1/2 d v) a 

+ h bKA /2u, A "/2v) dy. 

If H([ - h, h]; SC) n L2([- h, h]; 6D (A 1/2)) is endowed with the natural norm 

Illu[ll =[h | u(y) 2 dy + fh IA 1/2u(y)j2 dy]j/ 

then it is not difficult to prove 

PROPOSITION 2.1. There exist C1, C2 (independent of h) such that 

(i) PlIh(U, V)| < CIIIIUIII * |||V|||, 

(ii) 111u1112 < C21Bh(u, u)I 

VU, V E- H1([_ h, h]; SC) n L2([ -h, h]; 6D (A 1/2)). 

Also one has 

PROPOSITION 2.2. If x E SC andyo E [- h, h], then 

A: v -< Kx, v(yo)> 

is a continuous linear functional on H 1([ - h, h]; SC). 

Proof. From the definition of H([ - h, h]; SC) it follows that, if v(-) E 
H1 ([-h, h]; 5C) and X is a continuous linear functional on SC, then X(v(-)) E 
H ([ h, h]) and 

[lh l I -h |dy 
2 -1 [hIM(vCv))12 

dy + f 
ah 4X(v (y)) 2aY]1 

<IIxIIf[fh IIv()112 d +h |d4( 2 

(11 II' is the norm in SC'). 
Hence, with X(@) = <x, * >, we get <x, v(.)> E H '([-h, h]) and 

[|h I<X, V(Y)>12 dy + f a| <x, v(y)> 2y 

h 
_ Iv)1 +fh 4dvy)2 j1/2 

[lh fih ||dY 1 

Using this last estimate together with the standard trace theorem, we finally get 
that A is a continuous linear functional on H([ - h, h]; SC). [1 

Propositions 2.1 and 2.2 immediately give 

PROPOSITION 2.3. The problem (2) has a unique solution. 

3. The Direct Result. We first define exactly what is meant by a dimensionally 
reduced solution to (2). Let { 70j) O C H([ -1, 1]) be a given sequence of linearly 
independent functions. 
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Definition. The dimensionally reduced solution uk of order N is the projection of 
u onto the space 

V=(E (yh) lX 6D (A 1/2), 
= 0X f 

V== 
The projection is with respect to the inner product Gh(U, v). 
The main result of this section is the next theorem, which suggests a way of 

choosing {4p}j% O. It also gives an estimate of uuh-ukIII in terms of powers of h. 
As will be clear from the formulation of the theorem, this h-asymptotic estimate is 
very dependent on to what extent "boundary layers" are present. Since the 
dimensionally reduced solutions are linear combinations of functions of the type 
4'(y/h)x, we do not include boundary corrector terms, as is often done with formal 
expansions to improve the asymptotic rate in h; cf. [10]. In the case of "boundary 
layers" we instead increase N, which is also much more natural insofar as we are 
completely free to choose N but have absolutely no control over h. 

We would furthermore like to underline that a particular boundary layer be- 
havior is not relevant to the main scope of this investigation, which is the selection 
of { lpj-= 

Let P denote the differential operator 

b-1 
d d 
ay da 

In the notation of the previous section P = -b-'Pl(d/dy). P is considered as an 
operator 

L2([-1, 1]) D @(P) -*L2( [-1, 1]). 

Gy (pi) denotes the null space of the operator Pi, 0 < i. P0 = I (identity). It is 
easy to see that 6(P') C H'([- 1, 1]) for all i. 

THEOREM 3.1. There exists a sequence of linearly independent functions {ftpj 
with 

6yX(pi) = span{4'}f2i7' i> 1, 

that has the following property: 
For any integer N > 0 and for any given set of vectors f, g E 6D ((AM - 1)N) there 

exists a constant CN (independent of h) such that 

hU - U ihIII < CNh.2N+ 1/2 

Remarks. The sequence {47}}7?O depends only on the operator P. It is also clear 
that {4}Pj)O is not uniquely determined by Theorem 3.1. Any other sequence 

{VYqj) 0, with span{(1j}j=o = span{4i>j=O Vi, could have been used. 
In order to prove Theorem 3.1, we need a couple of auxiliary results. 
By changing variables to [- 1, 1] and introducing iuh(y) = uh(y * h) for -1 < y 

< 1, we transform (2) into the following equation for iuh: 

jh E H'([ -1, 1]; SJC) n L2([ -1, 1]; 6D(A/2)), 

(3) (h(u, v) = <g, v()> - <f,v(-1)>, 

Vv E H'([-1, 1]; SJC) n L2([-1, 1]; 6D(A1/2)). 
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Here the bilinear form 6~3h is given by 

gh(u,v) = h-f a(M1/2 d,My/2d) 

+ hf bKA '12u, A 1/2v> d4. 

Now let us define the sequence 9)' C H ( -1, 1]) by the following equa- 
tions: For anyv E H1([-l, 1]) 

(40) f1 a dod dy = 0, 

(4') f1ad'_ dye +f1 b40v dy= v(l), 

and forj > 2: 

(4j) _ d b4?0 iv dy = O. 

The sequence { ,1 }Oj O C Hl([-1, 1]) is defined by the same system of equa- 
tions, the only difference being that in the right-hand side of (41) v(l) is replaced by 
v(-1). 

LEMMA 3.1. Let jO denote an integer > 0. The equations (4J),O < j < jo, determine 
the sets {4!}-j?o 0 uniquely up to a constant in 41, / = 0, 1. 

Proof. It is sufficient to prove the statement for 1 = 0. 
The case jo = 0 is obvious. We proceed by induction. Hence assume that the 

equations (4i), 0 < j < jo - 1, determine {4,9}JjO- 1 uniquely modulo a constant in 

{Joo-1 

Consider the equations (4j), 0 < j < jo. According to the induction hypothesis, 

{4O})Jo-71 is determined uniquely up to a constant in =.iOd']. Choosing v = 1 in Eq. 
(4Jo), we derive the value of f' bAjo , which means that 49,01 is completely 
determined. The equation (41o) is now nothing but a Neumann problem for 
-(d/dy) (ad/dy), and since jf I b4-lv dy is equal to the right-hand side of Eq. 
(41o) for any constant v, this has a solution that is unique modulo a constant. This 
proves that 4,jo is determined uniquely up to a constant. El 

Because of the way the two sequences {4j9}7j= and {4',}7jXo are constructed, we 
also have 

LEMMA 3.2. For any i > 0 the following proper inclusions hold 

Gy(pi) c span {4ij, 4,,'X,; C 
6X(pi+ 1) 

Proof. The lemma is clearly true if, for any i > 0, we can prove the more detailed 
statement: 

GL(Pi) c span{ o jo, ipjb=' C (P properly, 

and, if 4, is defined by 4, = A+ 1 - q,!+ ,, then 

span{ j, Ay,l}>0 fl Dspan{+} = 6X(pi+l) 
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The validity of the above statement is easily checked for i = 0, and we proceed 
by induction. That is, we assume the statement to be true for i = k > 0. 

From the way ik?+ 1 and 'P+ 1 are constructed, it follows that 

0k+ 1k+E C %(pk+2) \ qL(pk+1), 

and, because of the induction hypothesis, we then get 

O,( pk+ l) c span{4 +,, 4Aj}1Ij. properly. 

Now, adding the two vectors %Pk+I and 'kP+ 1 we cannot increase the dimension 
by more than two. The fact that the codimension of yL(pk+1) in 9L(pk+2) is 2, 
together with the inclusion 

span{ 4jo,.1)k c Cyt(pk+1) 

hence shows that 

span{ 4A}9' }k2o C q(pk+2) properly. 

That means we have proven the first part of the extended statement for 
i = k + 1. 

Concerning the second part we consider the linear combination Pk +2 -4k+2 

From the construction we know that P(4ko+ 2 - 'k+2) = 4ko+ 1- 4k+ I. 

Together with the induction hypothesis, this tells that 

4'k+2 - Pk+2 E 6(pk+2) 

On the other hand, 41k +2 - Pk+2 cannot be an element of span{4l,, 4j'}oJ. If so, 
we would have, by application of the operator P, that 

-k+l Ak+l E span{ 
j 

1,}k 

which contradicts the induction hypothesis. 
This finally proves that 4/k+2 - 4/k+2 together with span{ 4,o, pil}k+, span all of 

D ,(pk+2) 

Thus, the second part has been established for i = k + 1. LI 
We are now ready for the 
Proof of Theorem 3.1. Choose {f 4pj% such that 

{ j 02i- 
I 

qq(pi) Vi > 1, 

and 

span{t 41J i = span{t 41 Al } X V i > 0- 

This is possible because of Lemma 3.2. The 4ij's chosen this way obviously have 
the first property stated in Theorem 3.1. 

For any N > 0 and any pairf, g E G ((AM )N), let 
N 

Sh =, h-1+2j(4z,0(y/h)M_ (AM_y-Y1g - tP1'(y/h)M_1(AM 'Yyf). 
j=0 

It is clear that SNh E V2N. Because of Proposition 2.1 it follows that there exists a 
constant C (independent of N and h) such that 

||uh - _UNh I < C inf |IIuh - vIII < C|Iuh - ShII. 2N 
h 

N 
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We now proceed to estimate luh 
-_ 

hjj. This is very straightforward and similar 
to what can be found in, e.g., [10]. For completeness, we give the details. 

By a change of variables and introduction of the bilinear form %h' it follows that 

IIUI Su ( C[ h(Uh - 
N 

- gh)]l/2 

with 
N 

N h 1+2i(j(y)M - 1(AM - l-<g - ij'(y)M - '(AM lY f 
j=O 

(and C independent of N and h). 
Let us now consider h(iih -_Sh, v) for an arbitrary v E H([- 1, 1]; X) n 

L2([- 1, 1]; 6D(A1/2)). We get that 

h(u - gh, v) = <g, v(l)> - <f,v(-1)> - 93(SN,v). 

Concerning the last term, we have 
N 

~h(, V) = h -h1+2J6j3(4yj(y)M -1(AM -1Y1 g, v) 63h N) hj (Y) (h g 

j=O 

N 

- 2 h- 1+26h (h4,(y)M -'(AM - ') -f, v). 
j=O 

Now, because of the properties of the sequence {4j1}jo', 
N 

I h -h iPj0 +M-1(AM-1Ylg V) 

j=O 

= 
h-2+2if a.-4 ((AM 'Y 'g, v) dy' 

J= 1- dy dy ( 
N 

+ E h2if bPj9((AM-'Yg, v) dy 
j=O -1 

= <g, v(l)> -h2f a d d ((AM)Ng v) Y. 

Similarly, 
N 

fih `- %- +22j3^+>M -'1(AM -ly- If v 
j=O 

<f, v(- 1)> - h2Nf a N+ I .-((AM ')Nf, v) dy, 

so that altogether 

%h(U -N v)) h2| a (ad4S dy, 

with rN given by 

rN = ,N+ 1(AM 1)Ng - 4k 1(AM-)NJ 
Using Schwarz's inequality, we see that 
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is bounded by CNh I/2[ h(v v)]'!2. As a consequence of this, it follows that 

[;(h _ gh, h) _ 4)1/2 <C*}+/ -%( N h _ g)]l/ (CNh 2N+l1/2,3 

and hence l1uh - SNhII < CNh 2N+1/2 

From Theorem 3.1 we immediately get 

COROLLARY 3.1. Let {f 4j})0 be a sequence with properties as in Theorem 3.1. Let 
N and K be two nonnegative integers andf g a set of elements of 63 ((AM - 1)K). Then 
there exists a constant C (dependent on K and N but independent of h) such that 

|||IU - UNh2I | Ch2 nfil{K,N)+172 

4. The Inverse Result. In Theorem 3.1 we examined a particular choice of the 
functions A1j. The approximation error was of order h2N+ 1/2 using the 2N + 1 
functions {4')}2 o provided the vectorsf and g were sufficiently regular. 

The goal of this section is to prove that the previous choice of functions was by 
no means arbitrary. That sequence, or any other sequence {3,qjijo with span{nqjj}2i0 
= span{4t}' 0 for every i, is the only one that gives this order of approximation. 

We formulate this as 

THEOREM 4.1. Let N and K be two nonnegative integers and f and g two linearly 
independent elements of SC. Let {Aj}J=O be the sequence introduced in Theorem 3.1 
and u h the solution to (2) of Section 2. 

If {4j}j)Ko is a set of elements of H ([- 1, 1]) with the property that 

inf IjIuh - vll o =o(h{2N-3/2,-1/2) 
V E WK 

where WK denotes the set 
KA 

{K k ,y/h)xilxi E6GD(A1/2), 0Oj K}, 
i=o 

then 

span{4XJ2L0 C span{fo}..O. 

Theorem 4.1 is actually a little stronger than just an inverse of Theorem 3.1. Let 
N be > 1. Theorem 3.1 then says that with the 2N + 1 functions {4p }J.o we can 
obtain an error of order h2+ 1/2. But Theorem 4.1 tells us that, even if we are 
satisfied with an error of order o(h2N-3/2), we still have to use all the functions 

{'ki})jo. 
Proof. We can, without loss of generality, assume that f, g E 6D ((AM - 

Otherwise we replace uh, f, and g by uh* = (A -M)Nuh, fJ = (MA -)Nf and 
g* = (MA - ')Ng, which obviously satisfy the assumptions of the theorem. 

Define Sh, g as in the proof of Theorem 3.1, i.e., 
N 

Sh= 2 h-1+2j(j10(y/h)M-1(AM-1y-1g - 4P1'(y/h)M-1(AM-fy1f) 
j=O 

and SN = SN(y * h). 
Then, because of Theorem 3.1 and the assumption of this theorem, we see that 

3vh E WK such that 

111Sh _ vhill = n(hmax(2N-3/2,-1/2) 
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By a change of variables, this yields 

(i) f IIId(SN - 1h)/ dyj2 dy = o(hmax{4N-20}), 

(ii) f1IIA /2 Nh 
_ 

V )112 dy = o(hma{4N4 -21). 

The function 13h has the form 
K 

E oj(y)vj, with vjh E 6P(A'/2) for O j < K. 
j=0 

Now, multiplying (ii) through by h2, we get, because of the form of Sh and v5, that 

1 ~~~~~~~~~~K 2 
f lpo(y)A /2g - ip(y)A- '/2f -h I (jy)A /2vh dy O 

j=O 

for h -O0. Since for a fixed K the set {I5 .'=O 40(y)xjlxj E X)} is closed in 
L2(- 1, 1]; 9C), we get 

K 

%op(y)A- 112g - 4s'(y)A /2f=- E 4j(y)x1. 
j=O 

The fact that f and g are linearly independent implies that so are A -1/2f and 
A - 1/2g. Hence 

span{4?, 40} c span{4}..0. 

This proves Theorem 4.1 for N = 0. If N > 1, we are not yet finished. In this 
case we proceed by induction, i.e., we assume it has been proven that 

spant{4iy, l'},=o M span{4j...o 

for some m: 0 S m N - 1. 

Rearranging (i) and dividing through by h4`+2, we get 

fl ~\d d Y!lm ml -1 - 

J 
4m + I -'(AM -)m 

g- 4m +I -(AM - 
) f 

. M M~~~~~Kd~ j +O ) h2(-m-1( M d 1 g M--M(AM - 1( Ig M f M (AM- if x 

-h-2`1l vdjVh| dy 

0 for h 0. 

(Here we use that 4m + 2 < 4N -2.) 
Because of the induction hypothesis, we know that 

h2( - -)-M - '(AM -l g- M - '(AM - 1Y_ if ) _4 Xh 

i=O k'dy dy j- O 0 7y 
x 

and now, using that for a fixed K the set {2f>.O (d1j/1dy)xj1xj E )} is closed in 
L2([- 1, 1]; QC), we conclude that 

K d4p d M '(AM ) g-- 
+ M (AM ')mf= 

j 



ON A DIMENSIONAL REDUCTION METHOD. I 41 

The fact that f and g are linearly independent implies that so are M - '(AM - l)mg 
and M - '(AM - lynj Hence 

y dy C span{ dy j.} 

From the way 4i0 and 4i1 are constructed, it is easily seen that 

span { 4?, ipO } = {constant functions), 
and this together with the induction hypothesis allow us to conclude that 

span {4 '>, Ayl 4,'}72 C span {J=O. 

The induction proof is now finished, and finally we get, because of the definition 
of _p)~ 

span{4AJ }2N 0 = span { 4jo, '>} O CQ span{y}> j0. EK 

By a slight variation of the preceding arguments, we could prove the following 
version of Theorem 4.1, for the case where f and g are not linearly independent, 
e.g., f = a g. 

THEOREM 4.2. Let N and K be two nonnegative integers. Let f = a * g, with 
g E SC \ {O}, and let _ and {4'l}J7 0 denote the same two sequences as in 
Lemma 3. 1. 

If {f}(K 0 is a set of elements of H I([ -1, 1]) with the property that 

inf lluh - vlll = o(h2N- 12) 
v E WKh 

then 
span{ t4'0 - a1 }1 jOC span {kj}0. 

5. Numerical Examples. Consider the problem 

div(a grad uh) = 0 in ]0, 1[ x ]-h, h[, 

a h g(x) fory = h, 

a h u -g(x) fory = 

ay 
uh=0 forx=Oandx=l, 

with 
{a+ for y > 0, 

a(y) = 
a_ fory <0. 

(a+ and a are two positive constants.) This problem clearly falls within the 
framework of our model problem. Simply choose 

a+ for y >0, b(y) = a(y) =(a+ fr O 
~yj-a~yj~a- for y < 0, 

c(x) = 1, and 

A = - (+) with 6D(A) = H2([0, 1]) n Hi}'([0, I]) and 9C = L2([0, 1]). 



42 M. VOGELIUS AND I. BABUgKA 

The operator P in this case is given by 

P = a- 
I d 

a 
d 

ay ay 

Define {,}]pj O c H ([ 1, 1]) as follows 

~fr0= 1, fki(Y) = anly, 

k21Cv) = f|' 12; l(t) dt forj > 1, 

and 

k2+l1(Y) = a' f 12j(t) dt forj > 1. 

Here Ik denotes the Legendre polynomial of degree k. 
It is not difficult to see that with this definition 

span{}>}j O = span{4ip}j O Vi > 0, 
where { p} 

' is the sequence introduced in Theorem 3.1. 
As before uN denotes the dimensionally reduced solution of order N. uh has the 

form 
N 

U= E kj(y/h)uj(x), 
j=O 

with uj E H ([0, 1]). The vector U = (uj)j2vO is the solution to a two-point elliptic 
boundary value problem 

- hK+ U+l/hLU = F, U() = U(1) =0. 

The matrix L is diagonal, and the matrix K has a band structure. Both L and K are 
independent of h. We solve this problem numerically by expanding U in its Fourier 
series, only maintaining a finite number of terms. Since we are interested in 
studying the error introduced by the dimensional reduction, we maintain a very 
high number of terms. The graphs shown here were computed using 400 Fourier 
coefficients. This ensures that the error introduced by discretization can be ne- 
glected compared to the error introduced by dimensional reduction. 

Let us start with the case a+ = a_ = 1 and g(x) = -r/4. Figures 1, 2, and 3 
show the energy error as a function of h by dimensional reduction of order 0, 2, 
and 4, respectively. (Note that the functions {f4}o 0 form a basis for the polynomi- 
als in this case.) Using interpolation by the K-method (cf. [3]) we know that 
g(x) E (SC, 6iD(A))114,. An application of Corollary 3.1 hence gives the following 
conclusions. (The energy error is here not the norm but the difference in energies.) 

(i) The energy error is of order h with dimensional reduction based on 4k0. 
(ii) The energy error is of order h2 with dimensional reduction based on 400 4 

and T2. 
(iii) The energy error is of order h2 with dimensional reduction based on 

0(ii e 4). 
Figures 1, 2, and 3 illustrate the sharpness of the theoretical results. Comparing 

Figures 2 and 3 we see that 
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The dependence of the estimate in Theorem 3.1 (or Corollary 3.1) on the 
regularity of f and g is essential. If f and g are not sufficiently smooth, 
higher-order dimensionally reduced models will not improve the asymp- 
totic order of approximation as h ->0. (But they certainly give better 
approximate results due to the convergence as N oo; cf. [15].) 
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FIGURE 1 
Energy error X 103 as a function of h, using polynomials of degree = 0 
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Energy error X 110 as a function of h, using polynomials of degree 4 
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Energy error X iO5 as a function of h, 
- - - using polynomials of degree < 2, 
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Now consider the case where a + # a . In our computations a = 1, a_ = 2, 

and again g(x) = w/4. Figure 4 compares two different dimensionally reduced 
solutions. For one of the dimensionally reduced solutions the polynomials of 
degree < 2 have been chosen as basis functions in the y-direction. For the other 
dimensionally reduced solution the "special" functions 4o0, 0, and 42, introduced 
earlier in this section, have been used. (Note that the "special" functions are 
piecewise polynomials in this case.) 

Applying Corollary 3.1, we get that 

The energy error will be of order h2 with dimensional reduction based on 
the functions ?o0, k1 and 42- 

Since the "special" function k0 is the constant = 1, which of course is a polynomial 
of degree < 2, we also expect that 

The energy error will be of order h with dimensional reduction based on 
the polynomials of degree < 2. 

From Figure 4 it is again evident that there is a very good agreement between 
the theory and the computational results. Specifically it is seen, by comparing 
Figures 2 and 4, that 

If the dimensional reduction is based on the "special" functions {4jmo 
then the asymptotic behavior of the energy error is independent of the 
regularity of the solution uh across the liney = 0. 

A feature very similar to this is well known for optimally constructed finite element 
meshes. 
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