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Hydrocode Subcycling Stability* 

By D. L. Hicks 

Abstact. The method of artificial viscosity was originally designed by von Neumann and 
Richtmyer for calculating the propagation of waves in materials that were hydrodynamic 
and rate-independent (e.g., ideal gas law). However, hydrocodes (such as WONDY) based 
on this method continue to expand their repertoire of material laws even unto material laws 
that are rate-dependent (e.g., Maxwell's material law). Restrictions on the timestep required 
for stability with material laws that are rate-dependent can be considerably more severe than 
restrictions of the Courant-Friedrichs-Lewy (CFL) type that are imposed in these hydro- 
codes. These very small timesteps can make computations very expensive. An alternative is 
to go ahead and integrate the conservation laws with the usual CFL timestep while 
subcycling (integrating with a smaller timestep) the integration of the stress-rate equation. If 
the subcycling is done with a large enough number of subcycles (i.e., with a small enough 
subcycle timestep), then the calculation is stable. Specifically, the number of subcycles must 
be one greater than the ratio of the CFL timestep to the relaxation time of the material. 

1. Introduction. A previous paper [2] presented the results of a stability analysis 
of the WONDY [3] hydrocode with a material law that was rate-dependent. 
WONDY is a computer program based on the artificial viscosity method of von 
Neumann and Richtmyer [5]. The timestep in WONDY is called the CFL timestep 
because it is determined by a constraint that is essentially just a modification of the 
Courant-Friedrichs-Lewy condition [4]. This CFL timestep restriction arose from 
an approximate stability analysis of the von Neumann-Richtmyer method for the 
case when the material law is a rate-independent law such as the ideal gas law or 
Hooke's law. See [2] for further details of the history of the stability analyses of the 
von Neumann-Richtmyer scheme. 

The previous paper [2] showed that the timestep restriction required for stability 
with material laws that are rate-dependent can be much more stringent than the 
CFL timestep restriction, especially when the relaxation time T > 0 of the material 
is small compared to the CFL timestep At,. 

The present paper presents a proof that the CFL timestep restriction now in 
WONDY need not be altered if the integration of the stress-rate relation is 
subcycled with a sufficiently large subcycle number, m > 1. A subcycle timestep is 

At, = Atl/m. To subcycle the integration of the stress-rate relation means to 
integrate it with the subcycle timestep instead of the CFL timestep. As proved 
herein, m > 1 + At,/T suffices for stability in the case of a simple but representa- 
tive material law that is rate-dependent, namely the Malvem material law. 
Malvem's material law is a special case of Maxwell's material law. See [1] for 
further details about these rate-dependent material laws. 
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Note that another way of stating this stability result is that 

1 1 1 

Ats Atc r 

is sufficient for the stability of the subcycing scheme presented herein. 

2. Notation and Nomenclature. The conservation laws in one-dimensional, 
Lagrangean conservative form are expressed by 

(2.1) au/at + fF/ap = 0, 
where U = (V, u, E)T and F = (-u, a, ua)T. Here t is time; IL is material coordi- 
nate; V is specific volume; u is specific momentum; E is specific total energy; 
E = & + u2/2, where & is specific internal energy; and a is stress. The artificial 
viscosity is a finite difference analog of 

(2.2) q = -AAIu au 

where A > 0 is the coefficient of the artificial viscosity and A/, is the material 
increment. The von Neumann-Richtmyer scheme is a discrete analog of a system 
of differential equations derived from (2.1) with a augmented by q; see [3]-[5]. The 
material law they originally considered was the ideal gas law 

a = /V, 
where r is a positive constant. 

In the following analysis the material law is Malvem's [1]: 

(2.3) a/lat + a2a3V/at + (a - aeq)/ = , 

where a > 0 is the acoustic impedance; aeq is the equilibrium stress; a, aq, and T 
are assumed constant here. 

Let ,= jA,i and t' = nAt, where At is the time increment. The approximation 
to f( 6., t ) is denoted ff. Differences with respect to ,u and t are denoted A. and A, 
respectively. For example, A.f, 1/2-fA - _f and jf7n 1/2 jffl+ -jf'. 

3. Lemmas. These lemmas are used in Section 4. Lemmas 1 and 2 present 
constraints on B and C to insure that the roots of the quadratic 

-2 - 2BX + C = 0 
lie in the unit circle. Lemma 3 is on the reduction of the quadratic inequality 

Aa2 + 2Ba < 1 
to a linear inequality. Lemma 4 presents constraints on the eigenvalues of amplifi- 
cation matrices to insure stability. The proofs of Lemmas 1-3 are left to the reader 
and a proof of Lemma 4 may be found in [4]. 

LEMMA 1. Let B and C be real numbers; D = B2 - C; A+ = B + D"2; Xm = 

maxlX? 1. 
Case (a): If D > O and B2 > 1, then 

RlAmax > 1. 

Case (b): If D > 0 and B2 < 1, then 

[IXlmax 6 1 if and only if 2IBI S C + 1]. 
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Case (c): If D < 0, then 

[ IXimax < 1 if and only if C < 1]. 
Moreover, this also holds when the < signs inside the square brackets are replaced by 
either < or 

LEmmA 2. Let B = 1- b, C = 1- c, 2b > c > 0. Then 

[Rimax < 1 if and only if 2b + c < 4 

LEmmA 3. Assume A real, B and a positive and let D = B2 + A. Consider the 
following inequalities 

(3.1) [Aa2 + 2Ba < 1], 

and 

(3.2) [a(B + D1/2) < 1]. 

Case (a): If D > 0, then (3.1) if and only if (3.2). 
Case (1): If D < 0, then (3.1) holds for all a. 

LEmLA 4. Let G(At, k) be a p by p amplification matrix. If there exists a positive 
number 8 such that the elements of G(At, k) are bounded for 0 < At < 8 and for all k 
and if all the eigenvalues of G, with the possible exception of one, lie in a circle strictly 
inside the unit circle, then von Neumann's condition is sufficient as well as necessary 
for stability. That is, if there exists a constant r such that for all k and all At in (0, 8), 

jA.I < r < 1 for i = 2, ... ,p, then 1X11 < 1 + O(At) is necessary and sufficient for 
stability. 

4. Results. Results 1-3 are for the case A = 0 (artificial viscosity turned off) and 
Results 4-6 are for the case A > 0 (artificial viscosity turned on). 

When A = 0, the WONDY timestep restriction is given by 

(4.1) CFL < 0 < 1, 

where CFL = aAt/Ay and 0 = .9. 
In the case m = 1 (i.e., no subcycling) and A = 0, the WONDY equations for 

conservation of volume and momentum are 

(4.2) ( jV/ 1/2 =(U/)j"+1 /2 

and 

(4.3) (u/t), = - (A.a/A,)7, 

and the stress-rate equation is 

(4.4) -,+l - eq = (1-h)(j+ /2 - aeq) -hA, 

where 

(4.5) h = At/T 

and 

(4.6) A = a2T(AVIAt j 
1/2 

Note that Eq. (4.4) is just a simple difference analog of the Malvern material law. 
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Next consider the case m > 1. Let the overstress at subcycle v be denoted 

(4.7) St = "n+v/m - e 

for 0< v < m; the starting value for the subycyling is 

(4.8) S = }+ 1/2 - ?eq 

The simple subcycing scheme for (4.4) is given by 

(4.9) S '1 = (1 - h/m)S' - Ah/m 
for 0 < v < m - 1. The solution to (4.9) is 

(4.10) S' = (1 - h/m)nS0 + [(1 - h/rm) - 1 ]A 

for 0 < v S m. In particular 

(4.1 1) a/J2n+ I- Oeq = S 

for v = m in (4.10). It follows that 

(4.12) aj+i/2 - aeq = (1 - hf(M))(a+ /2 - eq) hf(m)A, 

where 
(4.13) f(m) =[I - (1 - h/m)m]/h. 

Note that 

(4.14) lim f(m) = g(h) 

where 

(4.15) g(h) = (1 - eh)/h. 
Further, note that for all h > 0 and m > 1, 

0 <g(h) <f(m + 1) <f(m) < 1. 
To construct the amplification matrix for the system (4.2), (4.3), and (4.12) let 

(4.16) Wj+ 1/2 = ("eq -+ /2)/a 

and 

(4.17) j j 

and replace vjn by vn ' and Wj+1/2 by WnV+1/2, where t = exp ikAlt. Then (4.3) 
becomes 

(4.18) vn+1 = vn + i/3(k)wn, 

where 

(4.19) /3(k) = 2CFL sin(kA,U/2), 
and (4.12) becomes 

(4.20) w n+1 - iff(M)n)+l = ( _-hf(m)) w n. 

Let Un = (vn, wn)T, and it follows that 
Un+ '= GUn, 

where the amplification matrix is given by 

(4.21) G iR8ff m 1 _ (82 + h)f(m)] 
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Note that 

det(G - XI) = X2 - 2BX + C, 

where 

(4.22) B = 1 - (/82 + h)f(m)/2 

and 

(4.23) C = 1 - hf(m). 

RESULT 1. If m > h > 0, then 

(4.24) f(m)[ CFL + h/2] < 1 

is a necessary and sufficient condition for the stability of G in Eq. (4.21). 
Proof Sketch. In Eqs. (4.22)-(4.23) identify the b of Lemma 2 with 

(/32 + h)f(m)/2 and the c with hf(m). Lemma 2 says 1A + I < 1 if and only if 

2b + c < 4, 

and this is the same as 

f(m)(132(k) + 2h) < 4, 

which is true for all k if and only if (4.24) holds. Therefore (4.24) if and only if 
1X+ I < 1. Thus, necessity is established; by Lemma 4 sufficiency is established. To 
use Lemma 4, it must be shown that either jX+1 or jX-1 is strictly less than unity. 
Consider their product: 

X+X-= C = (1 - h/m)m. 

If m > h > 0, then 0 < C < 1. End of proof sketch. 
RESULT 2. If m > h > 0 and CFL < 9 < 1, then there exists a positive integer M 

such that m > M implies (4.24) holds. 
Proof Sketch. Note that (4.24) holds if and only if 

(4.25) 0 < h - hf(m)(02 + h/2) 

holds. If H(h) is the limit as m -- oo of the RHS of (4.25), then 

H(h) = h - hg(h)(02 + h/2). 

Observe that H' has a minimum at h. = 2(1 - 92) and H'(hm) > 0, therefore 
H'(h) > 0 for h > 0. Since H(O) = 0, it follows that H(h) > 0 for h > 0. There- 
fore, there exists an M such that if m > M, then (4.25) holds. End of proof sketch. 

RESULT 3. If m > h + 1 > 1, CFL < 9, and 02 6 5/6, then G is stable. 
Proof Sketch. By Results 1 and 2, there exists an M such that G is stable for 

m > M. This proof shall show that M > h + 1 suffices when 02 < 5/6. That is, it 
shall be shown that if m > h + 1 > 1 and 02 < 5/6, then 

(4.26) 202 + h < (1 - h/m)m, 

and from (4.26) follows (4.24) when CFL < 9. The problem of showing (4.26) is split 
into three cases: 

Case (1): h < 202 and 0 < h < 1, then m = 2. 
Case (2): h < 292 and 1 < h < 2, then m = 3. 
Case (3): h > 292. 
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Case (1). For m = 2, (4.26) is equivalent to 

O < hF(h), 

where 

F(h) = h 2h(2 - 92) + 8(1 -_ 2). 

The roots of F are 

2 -2- 2 D 1/2 

where 

D = 84 + 492 - 4. 
Observe that if D < 0, then F(h) > 0 for all h > 0, and if D > 0, then F(h) > 0 
for all 0 < h < h_. Note that if 2(V- 1) < 92 5/6, then D > 0 and h_> 1. It 
follows that if 92 < 2(V2 - 1), then F(h) > 0 for all h > 0, and if 2(V2 - 1) < 

< 5/6, then F(h) > 0 for all h in [0, 1]. 
Case (2). For m = 3, (4.26) is equivalent to 

O < hF(h), 

where 

F(h) = -h3 + h2(9 - 202) - 9h(3 - 292) + 54(1 -_ 2) 

Note that 

-F'(h)/3 = h-2 2h(9 - 202)/3 + 9 - 602, 

and that the extrema of F occur at 

h+ = (9 - 202)/3 ? [202(9 + 202)/9]1/2. 

The minimum is at h_ = h_ and the maximum is at hM = h +. Using the relation 

hm = 2hm(9 - 292)/3 - (9- 692), 

the evaluation of F at hm may be reduced to 

F(hm) = hm(9 + 202)492/9 + 27 -302 494. 

An elementary calculation shows that F(hm) > 0 for 92 < 5/6. It follows that 
F(h) > 0 for h < hM. Observing that hM > 292 for 92 < 5/6 completes Case (2). 

Case (3). Note that the LHS of (4.26) is nonpositive in this case while the RHS is 
nonnegative. Note also that for Case (3) (the large h case) the conditions may be 
relaxed to m > h and 9 < 1. End of proof sketch. 

Remark. Result 3 shows that if A (the coefficient of the artificial viscosity) is 
zero, then the timestep restriction routine in WONDY need not be altered provided 
that the integration of the stress-rate relation is subcycled with m > h + 1. The 

'2 < 5/6 restriction is satisfied in WONDY because 9 = .9 there. The next part of 
this paper deals with the subcycling stability when A > 0. In this case the 
restriction on the timestep in WONDY is 

CFL 6 9, 

where 

(4.27) CFL = CFL(A/a + [1 + (A/a)2] 1/2) 
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The artificial viscosity in WONDY is of the form 

(4.28) q +u 1 /22 1 

where A depends on a, V, and A.u. For simplicity the A is taken to be a positive 
constant here. The addition of this artificial viscous stress to a in the conservation 
of momentum equation results in 

(Au/At)n = - (A.i/Ay), 

where 

%jn+ 1/2 = 0j+ l/2 + qj+1'%2/ 

for allj. Therefore Eq. (4.18) becomes 

v n+1 = Vn(l - 8) + i3wn, 

where 

(4.29) 8 = (4AAt/Ajt)sin2(kAtL/2). 
Then the amplification matrix becomes 

(4.30) G = (1-8)iff(m) 1 _ (/32 + h)f(m) 

and B and C become 

(4.31) B = 1 -[ + (/82 + h)f(m)]/2 

and 
(4.32) C = (1 - 8)(1 - hf(m)), 

where 

det(G - XI) = 2- 2BX + C. 

RESULT 4. If 2AAt/A/L < 1 and m > h > 0, then a necessary and sufficient 
condition for G to be stable is 

(4.33) a(m) CFL + 2b(m) CFL < 1, 

where 

a(m) = f(m) - AAu/ (a2T) 

and 
b(m) = A/a + A%f(m)/ (4aT). 

Proof Sketch. Lemma 2 implies that (4.33) holds if and only if IX+ I < 1. To us 
Lemma 4, it must be shown that either jX+ I or IX41 is strictly less than unity 
Consider their product 

A+A_= C = (1-8)(I - hf(#)). 

By hypothesis 2AtSt/A,t < 1 and therefore 11 - 81 < 1. Thus, IX+X4l < 
1 - hf(m)j, and, since 1 - hf(m) = (1 - h/rm) and m > h > 0, the result fol 

lows. End of proof sketch. 
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Remark. The inequality 2AAt/A[ < 1 in the hypothesis of Result 4 is satisfied in 
WONDY because 

aAt AA2 
A [a+ 1(+ () < j < I 

is enforced there. It follows that 

A 9 < 1. 

Also note that Result 4 is an improvement over Results 3 and 4 of [2]. This is easily 
seen by noting that (4.33) is equivalent to 

f(m)[ CFL + h/2] + CFLa[2 - h] < 1, 

and recalling thatf(l) = 1. 
RESULT 5. Let 

z = A/a + [I + (A/a)2]12, 

and 

CFL = ZCFL. 

If 

CFL < ( < 1, 
then there exists an M such that m > M implies (4.33) holds. 

Proof Sketch. Let 

H(h) - lim h[ 1 - a(m)CF2L - 2b(m)CFL] 

and note that 

H(h) = h[ 1 + (h - 2)CFLA/a] - (1 -e-h)(CFL + h/2). 

Use the fact that 

A/a = (z2 _1)/2z 

to get 

H(h) = h[ 1 + C.L(h - 2)(1 - l/z2)/2] - (1 - e-h)[(C L)2/z2 + h/2]. 

Letx= 1 - l/z2to get 

H(h) = h[ 1 + C;L(h - 2)x/2] - (1 - eh)[(CFL)2(1 - x) + h/2] 

H(h) = h - (1 - eh)[(CFL) + h/2] + x{Cf CLh(h - 2)/2 + (1 - eh)(CFL)2}. 

Note that if 

(4.34) O<H(h) forh>O 

and for all x in [0, 1], then the desired result is established. Since H is of the form 
H = Ax + B, all that is required is to establish (4.34) for x = 0 and x = 1. In the 
proof of Result 2 the case x = 0 was established. That leaves the case x = 1 to 
establish. If x = 1, then 

H(h) = 2 (1 + eh) + (- 2) 
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It is easy to see that (4.34) holds if h > 2. If h < 2, then the worst value for CFL is 
unity, but then H(h) = h[eh - (1 - h)]/2 and since eh > 1 - h for h > 0, the 
desired result follows. End of proof sketch. 

RESULT 6. Let 02 < 5/6, z = A/a + [1 + (A/a)2]1/2, and CFL = zCFL. If CFL 
< 0 and 1 < h + 1 < m, then G is stable. 

Proof Sketch. The plan of the proof is to show that (4.33) holds and then use 
Result 4. Note that (4.33) holds if and only if 

(4.35) f(m)[ CFL + h/2] + CFL(2 - h)A/a < 1. 

By the proof of Result 3, it is seen that (4.35) holds for h > 2. The remainder of the 
proof is broken into three cases: 

Case (1): 0 <h < 202, h < 1, m = 2. 
Case (2): 0 < h < 292, 1 < h < 202, m = 3. 
Case (3): 292 < h < 2. 

Let 

H(h) = (I - h/m)m[ 02(l - x) + h/2] - 02(1 -x) + h- h(l - h/2)x, 

and note that (4.35) holds for z > 1 if 

(4.36) 0 < H(h) 

holdsfor0 <x < 1. 
In Result 3, (4.36) was shown for x = 0. Since H is the form H = Ax + B, if 

(4.36) is also shown for x = 1, then it holds for all x in [0, 1]. If x = 1, then 

H(h) = 
h 

J(h) 

where 

J(h) = (1 - h/m)tm + 1 - 0(2 - h). 
The problem is reduced to showing 0 < J(h). 

Case (1). If m = 2, then 

J(h) = 2 - h + h2/4 - 0(2 - h), 

and for h < 2 the worst case for 0 is 0 = 5/6. If 0 = 5/6, then J(h) = h2/4 + 
(2- h)/6 and J(h) > O for h > 0. 

Case (2). If m = 3, then 

J(h) = 2 - h + h2/3 - h3/27 - 0(2 - h), 

and for h < 2 the worst case for 0 is 0 = 5/6. If 0 = 5/6, then J = h2/3(l - h/9) 
+ (2 - h)/6 which is positive for h < 2. 

Case (3). 202 < h < 2, 

J(h) = (1 - h/m)tm + 1 - 0(2 - h). 
The first term (1 - h/m)tm is positive and considering the second term, namely 

1 - 0(2 - h) 

in the interval 202 < h < 2, the worst case is seen to be h = 202. Let 

P(0)= 1 - 0(2 - 202), 

and note that the minimum of P(0) occurs at 02 = 1/3 and is positive there. End 
of proof sketch. 
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5. Concluding Remarks. If the material law with rate-dependence that is consid- 
ered in this paper is used in WONDY (or related hydrocodes) without subcycing, 
then Result 4 says that the restrictions on the timestep for stability are 2AAt/At. < 
1, At < T, and CF2L + 2CFLA/a + At(l - 2AAt/Ats)/(2T) < 1. These constraints 
can be rather severe, particularly for relaxation times T that are small compared to 
the WONDY timestep At, which is determined from 

(5.1) CFL + 2CFLA/a < 9 < 1 
with 9 = .9. 

Result 6 says that, if (5.1) is satisfied with 02 < 5/6 and if m (the subcycle 
number) satisfies m > h + 1 (where h = Atc/T), then the WONDY subcycling 
scheme results in a stable calculation. In other words, the existing timestep 
calculating routine need not be altered provided subcycing is used with subcycle 
timestep At, satisfying 

(5.2) As < '+At,. 
T + Atj 
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