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An Analysis of a Uniformly Accurate Difference 
Method for a Singular Perturbation Problem* 

By Alan E. Berger, Jay M. Solomon and Melvyn Ciment 

Abstract. It will be proven that an exponential tridiagonal difference scheme, when applied 
with a uniform mesh of size h to: euXx + b(x)ux = f(x) for O < x < 1, b > O, b and f 
smooth, e in (0, 1], and u(O) and u(I) given, is uniformly second-order accurate (i.e., the 
maximum of the errors at the grid points is bounded by Ch2 with the constant C 
independent of h and e). This scheme was derived by El-Mistikawy and Werle by a C' 
patching of a pair of piecewise constant coefficient approximate differential equations across 
a common grid point. The behavior of the approximate solution in between the grid points 
will be analyzed, and some numerical results will also be given. 

I. Introduction and Notation. This paper is devoted to the error analysis of a 
particular three-point finite difference scheme derived by El-Mistikawy and Werle 
for the solution of the following singular perturbation problem 

(1.1) Lu_euxx + b(x)ux - d(x)u = f(x) for O < x < 1, u(O) = a0, u(l) = a1, 

where e is a parameter in (0, 1]; a0 and a1 are given constants; b, d, and f are in 
C'[O, 1] (throughout this paper m = 5); d > 0, and b(x) > B1 on [0, 1] for some 
positive constant B1. Under these assumptions, (1.1) has a unique solution u which 
in general displays a boundary layer at x = 0 for "small" e, e.g., [14], [8]. The 
problem (1.1) and the associated initial boundary value problem for Lu = u, when 
e is small are prototypes of the problems which arise, for example, in the modeling 
of steady and unsteady viscous flow problems with large Reynolds numbers and 
convective heat transport problems with large Peclet numbers. 

We will consider a particular finite difference method for the numerical solution 
of (1.1) which is a member of the following family of difference schemes. Let J be a 
positive integer and define the uniform mesh length h = 1 /J. Let the grid points 
{xj; be given by xj = jh, j = 01,1 ... , J, and let Uj denote the approximate value 
(to be determined) for uj = u(xj). When applied to (1.1), the family of schemes has 
the form 

(1.2a) h-2( -Uj-l + rjcUj + r+U.+,) = qyf_l + qjfj + qJ4+j 

forj= 1,...,J-1,with 

(1.2b) UO-ao and UJ-a1. 
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Here f denotes f(xj) etc. The choice of the coefficients rj , rjf r, and qj qf, qj1 
determines the particular scheme. WVhen it will be clear from the context, the j 
subscripts in rj-, . . . , qj+ will be omitted. It will be convenient to employ the 
following notation; given an arbitrary set of values Vj at the grid points xj, 

(1.2c) RVj r-Vj>i + rcVj + r+Vj+)l, and RhVj =eh-2RVj, 

(1.2d) QVj q-Vj-l + qcVj + q+Vj+l. 
To illustrate this notation, consider, for example, the standard one-sided (upwind) 
scheme for (1.1) given by 

(1.3a) eh-2(U>_i-2I +2j +j+1)+ bj(Uj+- Uj)/h-djUj= fj. 

For this particular scheme, the r's and q's are given by 

(1.3b) r- = 1, rc = -2 - hbj/e - h2d/e, r+ = 1 + hbjle, 
qc =1, - q+ =O. 

The scheme for (1.1) to be considered here was derived in [4] and has the 
following form when d 7 0. Let i11 denote the negative root of ew2 + 

(bj- I + bj)w/2 - (d + dj)/2 = 0 and let k, denote the nonnegative root. Define 

n, = hn-i and k, = hk,. Similarly define n2 and k2 using the quadratic EW2 + 

(bj + b,+,)w/2 - (dj + dj+,)/2. Define the following functions: e(w) exp(w), 
g(w) (e(w) - l)/w with g(O) _ 1, and let 2v _ [1 - e(n - kl)]-l and 2v2 
[1 - e(n2 - k2)f-1. The scheme [4] at point xj then has the form 

r = e(n1)/g(n, - k,), r+ = e(-k2)/g(n2 -k2) 

r, = -n, - l/g(n1 - k,), r2 = k2- l/g(n2 -k2), 

(1.4) rC= r1 + r2, 

q- = g(n,)v, -e(n)g(-kl)v, 

q = g(-k2)v2 - e(-k2)g(n2)v2, qc = q + q+ 

In the situation where d _ 0, this scheme reduces to 

r- = p- exp(-p-)/[ - exp(-p)], r+ = p+/[ -exp(-p+)], 

rc =-r- -r +, q - = (l-r -)/ (2p -), q + =(r +-1)/ (2p +), 
(15) qc = q- +q, wherep = (bj + bj)h/(2e) 

p+ = (bj + bj+ )hl (2e). 

A sketch of the derivation of (1.4) (as done in [4], cf. also the references in [4], 
particularly [12] and [13]) will be given in Section 2 below. 

The principal result of this paper is 

THEOREM 1.1. Assume d 0, and let { Uj) be the approximate solution of (1.1) 
obtained by using (1.5). Then there is a constant C, depending only on b, f, ao, a1, such 
that for all e in (0, 1] 

(1.6) 1 Uj- u(xj)l < Ch 2 forj= 1, .. .,J- 1. 

The constant C in (1.6) will be seen to depend only on the set S2 (with m = 5 
and Bg = SI = 0) defined in the beginning of Section 3. Our proof of Theorem 1.1, 
based on the comparison function approach of Kellogg and Tsan [8], was briefly 
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outlined in [3] and [2]. An independent proof of Theorem 1.1 has now also been 
obtained by Hegarty, Miller and O'Riordan [6] using the "double mesh method" 
(cf. [7], [10]). Lorenz [9] has obtained the result (1.6) for nonzero d(x) for a related 
scheme under the assumption that b is a positive constant. Finite element methods 
employing particular exponential type functions in the trial and test spaces were 
formulated and analyzed in [5]. 

For a detailed discussion of properties of schemes of the form (1.2) (e.g., 
maximum principle, cell Reynolds number condition, formal application to Lu = 
u,) and for a comparison of the theoretical and numerical convergence behavior of 
(1.5) with that for a number of other schemes for (1.1) see [3], and also [1], [2], and 
the references therein. Here we proceed directly to presenting the basic properties 
of (1.4) and then to proving Theorem 1.1. A numerical experiment, whose result is 
consistent with the conjecture that (1.4) is also uniformly second-order accurate for 
(1.1), is given in Section 5. 

II. Derivation and Basic Properties of (1.4). The schemes (1.4) and (1.5) can be 
derived as follows [4]. Consider the problem 

(2.la) LU-exU +bU+ -dU=f forx>1< x <xj+ 

with 

(2.1b) U(xj ) Uj-> and U(xj+1) Uj+, 

where U) l and Uj , are regarded, at this point, as prescribed numbers, and where 

(2.1c) b(x) 
(bj + bj)/2 forxj <x x <x 

and d and f are similarly defined. This problem has a unique solution U(x) in 

Cl[xj-1, xj+,]; indeed, for any given value UL, there are unique solutions Ul(x) of 
LU1 = f on (xj l, xj) with U1(xj l1) = Uj -l and U1(xj) = U); and U2(x) of LU2 = f 

on (xj, x>+ 1) with U2(xj) = Uj and U2(x + 1) = Uj+ 1. With Uj -l and U)+ l consid- 
ered as given, there is then a unique choice of Uj for which it is true that 

(2.2) Dx U1 (xj) = Dx U2(xj), 

where Dxk denotes the operation of taking k x-derivatives and Dx=Dx. The 
equation (2.2), when written out, produces (1.4) (or (1.5) when d 0_ ). Note that, as 
d -O 0, (1.4) becomes (1.5). The above derivation of (1.4) beginning with (2.1) is also 
valid in the situation where d > 0 on [x>_ , x>+ l] and b(x) is an arbitrary function 
on [x_ l, x>+ l] (e.g., b(x) being allowed to go through zero). 

It will be convenient to have the following observation for use in verifying 
properties of the r's and q's. 

Remark 2.1. Let g(x) be a smooth function satisfying g(O) = Dxg(O) =* = 

Dxkg(0) = 0 and Dxk + lg(x) > 0 for x > 0 (k some nonnegative integer). Then g > 0 
for x > 0. 

Using Remark 2.1 and some algebra, one can verify 
Remark 2.2. Consider the formulas (1.4) as algebraic formulas independent of 

their origin, with only the assumptions that n, < 0, n2 < 0, k, > 0, and k2 > 0. 
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Then it is true that 

(2.3) r- >0, r+>0, -rl >r-, -r2>r+, q- >0, q >0. 

For example, to show -rl > r-, take out the common denominator exp(n, - kl) 
- 1 and then verify the result for each fixed n1 < 0 using the approach of Remark 

2.1 on the resulting function of kl. One thus finds it suffices to show 1 - exp(n1) + 

n1 exp(nI) > 0 for n, < 0, and the idea of Remark 2.1 again applies. 

As pointed out in Section 2.2 of [3], (2.3) implies that the linear system of 

equations given by (1.2a, b) can be solved by simple tridiagonal Gaussian decom- 

position and that (1.4) satisfies a discrete maximum principle, i.e., 

Suppose { Vj) is a set of values at the grid points xj satisfying 

(2.4) VJ < 0, VJ < O, and RVj > 0 forj = 1,...,J-1. Then 

Vj < 0 forj = 0, 1, ..., J. 

Tlhis discrete maximum principle permits the use of the comparsion function 

approach for an error analysis of the scheme [8], [3], [2]. 
We now turn our attention to the analysis of (1.5) (a comparison function 

analysis of (1.4) would seem at best to involve an overwhelming amount of 

algebra). We conclude this section with a collection of technical results on the 
properties of the r's and q's of (1.5) which will be used in the proof of Theorem 1.1. 

Corresponding to (1.5) we define the following functions of p: 

r- (p) = p. exp(-p)/ [ - exp(-p)], r -(0) =1, 

(2.5) r+(p) = p/ [ - exp(-p) ], r+(0) 1, q-(p) = (1 -r-(p))/ (2p), 

q-(O) 1/4, q+(p) = (r+(p) - 1)/ (2p) q+(0) 1/4. 

Remark 2.3. The functions r-, r+ , q -, q+ in (2.5) are C on R'. Dr -(0)= 
-1/2, Dpr- < 0 on 0 < p < oo, and Dpr- 0 as p -> oo. Dr+(O) =1/2, D r+ 

>0 on OSp< oo, and Dpr+ -l as p-oo. q-(p)>0 on O p< oo and 
q- > O as p --oo. q+(p) > 0 on 0 < p < oo and q+ 1/2 as p -oo. 

Remark 2.4. The following power series expansions about p = 0 obtain; 

r-(p) = 1 - p/2 + p2/12 + 0(p4), 

r+(p) = 1 + p/2 + p2/12 + 0(p4), 

(2.6) q-(p) = 1/4 - p/24 + 0(p3), 

q + (p) = 1/4 + p/24 + 0(p3). 

Remark 2.5. r+(p) - r-(p) = p. Also, let C1 be a given positive constant. Then 

there are constants C2 and C3, depending only on C1, such that for p > C1 it is true 

that 

Dpr-(p) = exp(-p)(I - p - exp(-p))/ (1 - exp(-p))2, 

jDpr-(p)I < C2 exp(-p/2), lDpr-(p)l < C2p - exp(-p), 

(2.7) D r+(p) < C2, jDpq-(p)l + jDpq+(p)j < C3P? 

lDp2r-(p)l < C2 exp(-p/2). 
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III. Comparison Function Proof of Theorem 1.1. A detailed overview of the 
comparison function approach as employed by Kellogg and Tsan [8] has been 
given (in terms of our notation) in [3], and we shall directly proceed with the proof 
following the outline given in Section 4.2 of [3]. We first need to introduce the 
hypotheses and some notation. Let B1 be a positive constant such that b(x) > B1 
on [0, 1], and define B5 to be the norm of b(x) in C?[O, 1] (for Theorem 1.1 
m _ 5). To accomplish our proof, we allow the function f in (1.1) to depend on x 
and E such that f(x, E) has m continuous x-derivatives satisfying 

(3.1) IJf')(x, c)I < B7 + B9E' exp(-8jx/F) for i = 0, 1, ... , 

x in [0, 1], and E in (0, 1], where B7, B9, and 81, are positive constants (independent 
of x and E). 

Note, however, that for Theorem 1.1 it is assumed that f is independent of E (in 
which case B9-8I= 0). Let B8 = laol + 1a11, and let S2 denote the set 

{B1, B5, B7, 81, B8, B9). Throughout the rest of this paper c, C, c*, Ci (i = O, 1, ... ) 
will be used to denote generic positive constants which may depend on elements of 
the set S2 but which are independent of h and E. 

We will prove below the following preliminary error estimate. 

THEOREM 3.1. Assume d = 0 in (1.1) and let { Uj), j = 0, . .. , J, be the approxi- 
mation to the solution u(x) of (1.1) obtained using (1.5). Assume the hypotheses of this 
section are valid with m = 3. Then there are constants a and C, depending only on S2, 
such that for j = 1, . . . , J - 1, 

(3.2a) I Uj - u(xj)l < Ch2 + Ch2OE exp(-axj/F) when h < E, 
(3.2b) Uj - u(xj)l < Ch2 + CE * exp(-axj -1/E) when F < h. 

This result, along with the following expansion of the solution u(x) of (1.1) will 
enable us to demonstrate Theorem 1.1. 

LEMMA 3.2 (SMITH [14, pp. 253-258]). Assume the hypotheses of this section are 
satisfied with m = 5, and assume f(x) is independent of F (so B9 081 _ O). Then the 
solution u(x) of (1.1) can be written in the form 

(3.3a) u(x) = Ao(x) + COE(x)/b(x) + cRo(x), 

where 

(3.3b) E(x) exp(-E-' b(4) dr) 

and where the magnitude of the constant CO and the norm of Ao(x) in C4I0, 1] depend 
only on S2. The function Ro(x) satisfies the equation 

(3.3c) Erxx + b(x)rx = Fo(x, E) for 0 < x < 1, r(O) = 0, r(1) = yo(E) 

where, for F in (0, 1], Iyo(E)I has an upper bound depending only on S2, and where 

Fo(x, E) satisfies the hypothesis of Theorem 3.1 (B7, Bg, and 81 for Fo depend only on 
the set S2 from (1.1)). 

Thus Theorem 3.1 implies that the contribution to the total error from using (1.5) 
on the cRO(x) summand is uniformly 0(h2) (i.e., bounded by Ch2). The contribu- 
tion from the other two summands in (3.3a) will be shown below to be also 
uniformly 0(h2), which will then complete the proof of Theorem 1.1. 
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The following two lemmas bound the behavior of the solution u(x) of (1.1) (with 
f satisfying (3.1)) and are used in the comparison function proof to bound the 
truncation error. 

LEMMA 3.3 (KELLOGG AND TsAN [8]). Equation (1.1) has a unique solution, and 
there are positive constants 8 and C, depending only on S2, such that 

(3.4) lu(')(x)l < C + CE- exp(-28x/e) for i = 0, 1, . .. , m + 1. 
Here and in Lemma 3.4 m is that of (3.1). 

LEMMA 3.4 (slight extension of Lemma 2.4 of [8]). The solution of (1.1) can be 
written in the form 

(3.5a) u(x) = (-eux(0)/b(0)) exp(-b(0)x/e) + w(x), 

where, for some positive constants 8 and C depending only on S2, 

(3.5b) I w(')(x)l < C[ I + E +1 exp(-28x/e) ] for i = 0, 1, ... , m + 1. 

The two comparison functions to be used are 

(3.6) ql--2 + xi and 4l, = 4,(1) _-[,(f3)]j, 

where ,u(,8) _ r-(h/E)/r+(/3h/e) = exp(-/8h/e) for some e > 0 to be chosen 
(,B will be taken to be the smallest of various positive constants appearing in the 
proof). 

3.1. The Truncation Error for (1.5). The truncation error of the scheme is defined 
to be 

(3.7a) T = R"u(xj) - Q(Lu(xj)) forj = 1, ... , J - 1. 

For u(x) sufficiently smooth, the standard formal Taylor development of Tj for E 
fixed has the form 

(3.7b) Tj = Tj(u) = T?(R, Q, h, e,j)u(xj) + T'(R, Q, h, e,j)u(')(X1) + .... 

The specific form of TO, T1, . . ., T6 is given in Eq. (2.5) of [3]. As in [8], when 
e < h essential use will be made of the integral form of the remainder in Taylor's 
theorem; viz., for a sufficiently smooth function g(x) and numbers a andp, 

Rn(a, p, g) _ g(p) _-fi ) (p- a)' = + (p- a)n+ 
(a, p2,g g())igg(pl)(W (n +1) 

i=O 
(3.7c) 

(3.c)= f (p - S)ng(nf+l)(S) ds. 

Here t is a point between the points a and p. Once can easily verify that, for the 
scheme (1.5), To and T' from (3.7) are 0. 

Expanding out to u(4)(x) terms (which is the appropriate expansion for h < e), 
the truncation error has the form 

X = T2u(2)(xj) + T3u(3)(xj) + r-eh-2R3(x1, xi - h, u) 

(3.8a) ,+ r+eh 2R3(X, Xi + h, u)-q-eR1(x, xj -h, u.) 

38a- q -bj-IR2(X Xj-h, ux) - eq RI(xj, xj + h, uxx) 

-a +h.. l R.,(x- x. + h, u), 
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where 

T2 = (r- +r+)E/2 + (bj-lh - )q- -qc - (bj+lh + E)q+, 

T3 = Fh(r+ -r-)/6 + (Eh - b -h2/2)q - -(bj+Ih2/2 + Fh)q+. 

For h > E, the expansion which is suitable for obtaining the desired error estimate 
is 

j= T j(2)>) + r-Eh-2R2(x xj - h, u) 

+ r +h-2R2(xj1, X + h, u) - q-RO(xj, xj - h, u..) 

-(q -qb - RI (xj, xj - h, uj) -Eq +Ro(xj, xj + h, u..) 

-q +bj+ 1R1(xj, xj + h, ux), 

where T2 is again given by (3.8b). Note that if b is constant, then T2 vanishes. 
A first step in obtaining Theorem 1.1 is to show the following. 

LEMMA 3.5. Suppose in (3.8) that the first four derivatives of u are uniformly 
bounded by some constant Cu for 0 < x < 1 and 0 < E < 1. Then Tj is uniformly 
0(h2), i.e, there is a constant C, depending only on S2 and Cu, such that ITjI < Ch2. 

Proof. This follows by inspection and Remark 2.3 for the remainder terms, so it 
suffices to show that T2 and T3 are uniformly 0(h2). For T3, when E < h, this is 
again easily verified, while (2.6) suffices to give the result for h < E. For T2, observe 
that r-(p) = r-(p+) + (p -p+)D,r((1) and similarly for q-(p-). Since T2 
vanishes for b constant, the result follows for h < E, and (noting (2.7)) for E < h as 
well. 

3.2. Lower Bounds for Rhp1 and Rh p. We now obtain lower bounds for R'hcp and 
Rhpj. 

LEMMA 3.6. There is a constant c, depending only on S2, such that R i > C for E in 
(0, 1] andh < 1. 

Proof. Since To = T1 = 0, Tj for q(x) =-2 + x is 0 = Rhqj - Q4j, so Rhpj = 

Qbj, and the result follows from Remark 2.3. 
Note that Lemmas 3.6 and 3.5, along with the maximum principle (2.4), imply 

that the contribution to the error from approximating the summand Ao(x) in (3.3a) 
using (1.5) is bounded by Ch2. 

For the rest of the proof of Theorem 1.1, it will be convenient to take h bounded 
above by some "small" constant (independent of E). This is permissible by Remark 
4.16 of [3]. We now turn our attention to finding a lower bound for Rh1pj. 

LEMMA 3.6. There exist constants cl and C2, depending only on S2, such that when 
h ? cl and 0 </31' < C2, then, for j = 1, . . ., J-1, and for some constant 
depending only on S2 and ,6, it is true that 
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Proof. One can check that 

(3.11) Rh4 j(/3) = h(-2/3(<y 'r'(l - I)( - r /r'). 

The estimate (3.10) is obtained by estimating the individual factors in (3.11) for the 
three cases (i) h/E < c, (ii) h/E > C, and (iii) c < h/I < C (for appropriately 
chosen c and C). Take c2 < min(l, B1/2). For (i) and for c sufficiently small: 
r+ 1, 1 -,u > C3,83h/c, u(3) - r-/r+ > c4(/8)h/c, and (3.10) holds for (i). 
For (ii) and for C sufficiently large: r+ > BIh/E, 1 - , C>(#), r- < 

C6hF-1 exp(-BIh/c), , -r-/r+ > C7[(f8), and (3.10) then holds for (ii). For (iii) 
(c and C are now fixed) and for h sufficiently small: r+ > C8; and 1 - g > Cg( 8) 
> C10(,8)h/c. Let p _ bjh/E and note that since c < h/e < C, r-(p-) = r-(p) + 
(p - -p)DP r- () = r-(p) + 0(h), and similarly for r+. Then r-/r+ = 
r-(p)/r+(p) + 0(h) = exp(-bjh/F) + 0(h), and hence ,L(f) - r-jr+ > c11l . 
The result (3.10) then follows. 

3.3. Proof of Theorem 3.1. We will use Lemma 3.4 and separately estimate the 
error from using (1.5) to approximate v(x) -exp(-b(0)x/F) and w(x). Starting first 
with w(x), we denote the approximate solution by Wj and the error w(xj) - Wj by 

ej. If kj(h, E) > 0 and k2(h, E) > 0 are such that Rh(klgj + k24P) > R(+e) =+ j 
for each j = 1, . . . , J - 1, then the discrete maximum principle implies that 

Iej I <kIIjI + k2l4 I for each j, so we need to find suitable kI and k2 and then 
verify (3.2). Consider first the case h < E, and use (3.8) to evaluate Tj = Tj(w), and 
use the standard form for the remainder terms in (3.8). Now T2 and T3 are 
uniformly 0(h2) (i.e., bounded by Ch2) by Lemma 3.5 and 

| )l < C + CE2 exp(-8xj/c). 

Thus, the contribution to the error from these terms satisfies (3.2a). For the 
remainder terms, we write out the treatment of the r-Fh-2R3(x1, Xi - h, w) term; 
the treatment of the other remainder terms is very similar and so will not be 
reproduced. For h < E, this term is bounded by I Ch-2h4w(4)(')l which is bounded 
by CEh2(l + E-3 exp(-8x-> /c)), and, observing that c < exp(-Sh/F) when h < E, 

we see that this contribution again satisfies (3.2a). To consider w in the case h > E, 

we use (3.9) and the integral form for the remainder terms. We see that I T2w(2)(xj)I 
is bounded by Ch2(1 + C1 exp(-6xj/c)), and, using the fact that for any given 
positive integer k, (h/E)k exp(-.56h/c) < C, and hence exp(-8xj/c) < 

C(c/h)k exp(-.56xj/c), one finds that the contribution to the error from this term 
satisfies (3.2b). 

We will show explicitly how to deal with the remainder term Y1' 
-q - bj -RI(xj, xj - h, wx) (the others being similar). This term (and only this term) 
requires a special treatment atj = 1. Forj > 1, by (2.5) and (3.5b) and (3.7c), 

I Yj1 < CEh-1 L hIw(3)(s)I ds < CE f(1 + Ec2 exp(-8s/c)) ds 
(3.12a) X-h X-h 

< Cc(h + E2(E/8) exp(-xj 1/E)), 

which forj > 1 is 

(3.12b) < CEh + CEh' exp(-.58xj_1/E), 

and so, again, the addition to the error from this term satisfies (3.2b). In the last 
step in (3.12) we used the fact that] > 1, so then h'-l exp(-.58x>_,/c) < C. For 
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I = 1 this device is not available, and we observe that 

(3.13) y1 = -q -b - (Ro(x, xj - h, w.) + hwX,(xj)). 
Then, 

(3.14a) I Y1< 1 CEh |h(I + E1 exp(-As/E)) dv + CE(i + E1 exp(-8h/F)), 

so 

(3.14b) IYlI < CE + CEh', 

and, hence, it is true that 

(3.14c) I Y11 < CFh-'L,(8/'1 atj = 1. 

Thus, (3. 10c) shows that the term Y1 leads to a term in the error estimate which 
satisfies (3.2b). 

3.4. Proof of Theorem 3.1 Continued-Estimate for v(x). We now show that the 
error from using (1.5) to approximate v(x) = exp(-b(O)x/F) satisfies (3.2) which 
concludes the proof of Theorem 3.1. Let bj denote b(xj), and let Vj, j = O, ... J, 

denote the approximation to v(x) obtained via (1.5). Now 

T= Rh(ej = v(xj) - Vj), 

so 

(3.15a) T= Rhej, = R hv - Q(Lv) 

and 

(3.15b) Lvj = Ev.x(xj) - b(x)vx(xj) = bo -l(bo- b)vj. 

The proof will use the fact that (bo - bj) is small near the boundary layer at x = 0. 
We have Tj(v) = 1q + Tr, where 

T q =_ -QLvj = {-q-bol'(bo- bj- _) exp(boh/E) 

(3.16a) - (q- +q+)b0&-1(b0 - bj) 

- q +b-'(bo-bj-+ 1) exp(-boh/E) }v, 
3 b 

r_ Rhv = Fh-2vj{r-(p-)(exp(b0h/c) - 1) 

+r+(p+)(exp(-b0h/c) - 1)), 

and so 

Tr = Eh-2r+(p +)v-(r-)(p -)r+(p+)(exp(bohIE)-1) 
(3.16c) +exp(-boh/E) - 1). 

We first consider the case when h > E. The following simple facts will be used: if 

4 is between p - and p +, then there is an q between bj- and bj + such that 
= b(q)h/c; if a1 < a2 then there is a point p in (a1, a2) such that exp(a2) - 

exp(a1) = (a2 - a1) exp(p); and, again, liberal use will be made of the fact that if 
k is a positive integer and cl > 0 then there is a constant C2, depending only on cl 
and k, for which (X/c)k exp(-c,x/E) < C2 for x > 0. To bound Tr, we use (2.7) to 
observe that 

(3.17a) r-(p-) = r-(p +) + O(h3E2 exP(-b(Qq)h/F), 
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and hence 

(3.17b) r-(p-)/r+(p+) = exp(-p+) + O(h2e-' exp(-b(-q)h/c)), 

(3.17c) r - (p )/r (p ) = exp(-boh/E) + [ exp(-p ) - exp(-boh/E)] 

+ O(h2E-' exp(-b(Qq)h/c)). 

The second term in (3.17c) is bounded by O(xjhE-l exp(-b(p1)h/E)) for some p1 
in (0, xj). Now exp(-b(pj)h/E) exp(boh/E) < exp(Chxj/c). Writing vj = 

exp2(-.5b(O)xj/c), one of these factors can be used to bound the latter term for h 
sufficiently small, and so (3. 1Ob), (3. 1Oc), and (3.17) lead to (3.2b) for the wTr term. 

For Tq, the last two terms from the right side of (3.16a) are bounded by 
CxcE-'vj < CEh-1 exp(-.5b(O)xj/c) which leads to (3.2b). For the first term on the 
right of (3.16a), the observation that Cx_- 16' exp(boh/c)vj = Cxj- Ic vj_I suffices 
forj > 2. Forj = 1, bo -bj - = 0 and the proof for h > E is complete. 

We now commence the task of treating the error in v(x) when h < E. The overall 
approach is to Taylor expand everything in (3.16b) about p = bjh/c. We have 

(3.18a) r-(p-) = r-(p) + (p- -p)Dpr-(p) + 0(h4/F2), 

(3.18b) Dpr (p) = Dpr (O) + pDp2r-(O) + 0(h2/F2) 

and so (throughout the rest of the paper terms which have been reduced to a nice 
form where (3.10) yields (3.2) will be generically denoted by N) 

(3.18c) r-(p-) = r-(p) - *5(p- -p) + p(p- -p)/6 + N, 
from which one has 

(3.19a) r-(p-) = r-(p) + h2--lb (xj)14-h3F-1b.,(xj)/8 

-h3E-2b(xj)bx(xj)112 + N. 

Similarly, 

r+(p+) = r+(p) + h2E-lbx(xj)14 + h3E-lbx(xj)18 
(3.19b) + h3E-2b(xj)bx(xj)/ 12 + N. 

Expanding exp(boh/c) - 1 and exp(-boh/c) - 1, we find, from (3.16b) and (3.19), 
that 

(3.20a) Tr= Tr -2v{r-(p)(exp(boh/e) - 1) + r+(p)(exp(-b0h/e) - 1)) + N, 

and so 

(3.20b) Tr = eh-2vjr+(p)(exp(-p) - exp(-b0h/c))(exp(b0h/c) - 1) + N. 

Now observe that 

Zj (exp(-p) - exp(-b0h/e))(exp(b0h/e) - 1) 
(3.2 a) = N + [- (bj - bo)h/e + (bj - b0)2h2/ (2e2)](boh/e - (boh)2/ (2c2)), 

and so 

(3.2 1b) Tr = oh-2vj(l + p/2)Zj + N, 

from which, after considerable cancellation of terms, one finds that 

(3.22) Tr = vj(bo- b)bole + N. 
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The treatment of Tq is fortunately not quite so tedious. Simply use (2.6) to 
expand q- and q+, expand (bo - bj +) and (bo - bj1) about (bo - bj), expand 
exp(boh/e) and exp(-boh/e), and find that 

(3.23) T q = vj(bo - bj)bole + N. 

Equations (3.22) and (3.23) combine to complete the proof of Theorem 3.1. 
The final step in the proof of Theorem 1.1 is to show uniform 0(h2) accuracy for 

the function E(x)/b(x) from (3.3a, b). 
3.5. Treatment of E(x)/b(x). Let G(x) E(x)/b(x), and set z(x) = l/b(x). 

Then one can verify that 

(3.24) LG = eGxx + b(x)Gx = eE(x)z(2)(x). 

We write the truncation error for (1.5) applied to (3.24) as Tj(G) = Tr + T q= RhGj 
- QLGj, and we will prove that (1.5) gives a uniformly 0(h2) accurate approxima- 
tion to G(x). Consider first the case h > e. Then Tq is immediately bounded by 
Cehli(Bl'-l/h which by (3.10c) leads to a contribution to the error estimate of 

CehWi-' which is certainly 0(h2). It remains to deal with Tr = RhGj. The approach 
is to expand all terms about xj or p _ bjh/e. Terms which are directly seen to lead 
to uniformly 0(h2) additions to the error are simply denoted by N. Define for 
k <m 

(3.25a) S(k, m) _ exp{-e- fM b(t) d{}. 

Then 

Tr= eh-2E7 l{r-zjl + (-r- -r )zjS(j - 1,j) 

+ r+zz+ IS(j - 1,j + 1)), 

and 

(3.26a) r-(p-) = r-(p) + (p -p)Dr -(p) + N, 

(3.26b) zj+I = zj + hDxzj + N, zj-I = z1-hDxzj + N, 

(3.26c) r+(p+) = r+(p) + (p+ -p)D r+(p) + N, 

(3.26d) -E- f b(s) ds =-p + bx(xj)h2/ (2E) + 0(h3/e), 

(3.26e) -&'_ fx+ b(s) ds =-2p + 0(h3/e). 

Now for arbitrary a and -q, exp(a + q) = exp(a) + . - exp(a) + .5q2 exp(t) for 
some t between a and a + q, from which we have 

(3.26f) S(j - 1,j) = exp(-p) + exp(-p)bx(xj)h2/ (2e) + N, 

(3.26g) S(j - 1,j + l) = exp(-2p) + N. 

From (3.25), (3.26) and (3.10) and the fact that 

(3.26h) r -(p)(l l-exp(-p)) + r +(p)(exp(-2p) -exp(-p))-0, 
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one verifies that 

=Tr = 
2E 1{-z2 (-p) Dr(p) - 

z,(xj)hr-(p) 
(3.27) -zj(p -p) exp(-p)D,r-(p) - zj(p' -p) exp(-p)D,r+(p) 

-Z jr 
- (p) exp(-p)bx(xj)h2/ (2E) -zjr (p) exp(-p)bx(xj)h2/ (2e) 

+zj(p+ -p) exp(-2p)D,r+(p) + zx(xj)hr+(p) exp(-2p)}. 

Now use the fact that r-(p) = exp(-p)r+(p) and (from Remark 2.5) D,r-(p) = 

Dpr+(p) - 1 to eliminate r- and Dpr- from (3.27). Then replace -bx(xj)zj by 

bjzx(xj) in the two terms where it appears. Again use the latter equality to find that 

zj(p- -p) = zx(xj)ph/2 + O(h3/e), 

Zj(p+ -p) =-z,(xj)ph/2 + O(h3/E). 

Using (3.28) in the expression for Tr just obtained, one ascertains that rr has the 

form 

(3.29) E>leh-2zx(xj)h{N + P(p)} 

where P(p) is a certain function of p. Using (2.5) and the common denominator 
(1-exp(-p))2, one can check that P(p)- 0, and the result is in hand for h > e. 

The proof for the case h S e is very similar, but more Taylor expansion terms 
must be carried along, viz., 

(3.30a) r-(p-) = r-(p) - bx(xj)h2DPr-(p)/ (2e) 

+ bxxa(xj)h3D,r-(p)/ (4e) + N, 

(3.30b) r+(p+) = r+(p) + bx(xj)h2Dpr+(p)/ (2e) 

+ bxx(xj)h3Dr + (p)/ (4c) + N, 

(3.30c) q+(p+) = q+(p) + N, q-(p-) = q-(p) + N, 

3 dzxx(x-) 
= zxx(xj) - hzxxx(xj) + N, 

(3.30d) zxx(xj+1) = zxx(xj) + hzxxx(xj) + N. 

Analogous to (3.26d-g), one has 

(3.30e) S(j - 1,j) = exp(-p){l + h2bx(xj)/(2e) - h3bxx(xj)/(6e)} + N, 

(3.30f) S(j -1, j + 1) = exp(-2p){ 1 - h3bxx(xj)/ (3E)} + N. 

Now rT is given by (3.25b), and q is given by 

q =-_Ej-1{zxx(xj-1)q(pY) + zxx(x)(q(p) + q+(p+))S(j - I,j) 
(3.3 1) 

+3.31) >+z - )q+(p+)S( -1, j + 1)). 

Also 

(3.32) z--(x;) =-2b,(xj)zjz,(x1) -Z(X)2bXx(x,). 
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Now substitute (3.30) into (3.25b) and (3.31), and also expand zj and z- about 
zj, and use (3.26h) and (3.32) to find that 

Tj eh -2E 1{[-hz,(xj)r r+ .5h2z (xj)r --h3zxx(xj)r/6 

+zx(xj)phDr-72 - zxx(xj)ph2D,r-/4] 

+ [(exp(-p)Dpr --exp(-p)Dpr +-r - exp(-p) -r + exp(-p)) 

* (bjh2/ (2e))bx(xj)/b(x1)2 

+ (-exp(-p)D r- -exp(-p)D r+ +r- exp(-p)/1.5 

+ r+ exp(-p)/1.5) 

*(bjh'I (4e))bxx(xj)lb( j)2] 

(3.33) + [(bjh2/ (2c))(bx(xj)/b(x1)2) exp(-2p)Dpr + 

+ (exp(-2p)Dpr+ -4r+exp(-2p)/3) 

. (bjh3/ (4e))bXx(xj)/b(x1)2 

+ r+ exp(-2p)hz,(xj) + exp(-2p)(bjh3/ (4E)) 

* 2bx(xj)zx(xj)(1/bj)D.r+ 

+r+ exp(-2p)h2zxx(xj)/2 + r+ exp(-2p)h3z,x,(xj)/6] 

+ [ h2z.x(xj)(-q --q -exp(-p) - q +exp(-p) - q +exp(-2p)) 

+ hzxxx(xj)(q-q + exp(-2p))]} 

+ N. 
From (3.33), one can write Tj in the form 

Tj = gl(p)hzx(xj) + g2(p)h2zxx(xj) + g3(p)h3zx.(xj) 

(3.34) + g4(p)bjh3c71b j(x1)z(xj)2/4. 

After replacing r-(p) by exp(-p)r+(p) and Dpr- by D r+ - 1, it is quickly seen 
that gl(p) is exactly the function P(p) in (3.29) which was found to vanish. Using 
(2.6) to expand g2(p) in the form a0 + a1p + N, we find that g2(p) = 0 + N and, 
similarly, with g3 and g4, and the proof is complete. 

IV. Accuracy of the Approximate Solution Between the Grid Points. Given 
problem (1.1) with d- 0 and approximate solution { UjJ obtained using (1.5), let 
U(x) be defined by 

eUxx + bUx = f forxjI < x < xj, 

(4.1) U(x) = U , U(X) = U = (bj + bj)2, 

f = (fj- + fj)/2 forj =1, . . J. 

The discussion in Section 2 demonstrates that U(x) is in C l[O, 1], and hence offers 
a potential approximation to u(x) (the solution of (1.1)) between the grid points, as 
well as to u,. The following result estimates the accuracy of this approximation. 
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THEOREM 4.1. Let U(x) be the function defined by (4.1) and let u(x) be the solution 
of (1.1), where d 0_ and f is independent of c. Assume b and f are in C5[O, 1], and 
assume b(x) > B1 on [0, 1] for some positive constant B1. Then there are positive 
constants C and a, depending only on the set S2 of Section 3 (with m = 5 and 
B9 = 8 = 0), such that 

max I U(x) - u(x)I < Ch2 + Ch3e-2 exp(-ax/ e) 

forh < ,j =O ..., J- 1, 

max I U(x) - u(x)I < Ch2 + Ch exp(-axj/e) 
(4.2b) xj X <xj+ I 

forh > ,j =O,.. ., J- 1, 

(4.2c) eI UJ(O) - ux(O)l Ch2e-1 + Ch2 + Ceh for h < e 

(4.2d) eI Ux(0) - ux(0)I < Ch for e < h. 

We note that the last term in (4.2c) is not "sharp." Indeed for e = 1, Pruess [12] 
has shown that IUx(x) - ux(x)I is everywhere 0(h2). Numerical experiments il- 
lustrating (4.2) were presented in [2]. 

Proof. The proof is obtained by observing that the error e(x) = u(x) - U(x) on 
(Xj, x>+ 1) satisfies the differential equation 

(4.3) Me -eex + Bex = (f- F) + (B - b)ux =g(x) for xj <x <xj+I, 

where B = (bj + bj+ )/2 and F = (fj + fj+1)/2. Now Theorem 1.1 shows that 

e(xj) and e(xj+1) are 0(h2). For the case h > e in (4.2b), we use the comparison 
functions p(x) Ch(x - Xj- 2h) and 41(x) _-Ch exp(-ax/c), where C and a 
are positive constants. Evaluating Mg and M4A, using Lemma 3.3 to bound ux, 
picking C sufficiently large and a sufficiently small, and applying the maximum 
principle for M (e.g., [11, p. 6]), one obtains (4.2b). For the case h < c, let p denote 
the particular solution of (4.3) given by 

(4.4) p(x) = B-1 g(s)[ - exp(B(s - x)/6)] ds. 

We will show directly that p(x) satisfies (4.2a). Then e(x) = p(x) + p(x), where 
p(x) is a solution of Mp = 0, and p(xj) = e(xj) = 0(h2) while p(xj+ ) = 0(h2) - 

p(xj+ 1). By the maximum principle for M, p is bounded by its values at Xj and x>+ , 
and thus (4.2a) holding for p implies it is valid for e. To demonstrate (4.2a) for p 
one can quickly reduce the situation to the case 

g(s) = [ (xj + .5h - s)bx(xj + .5h) + 0(h2) l ux(s). 

For xj < s < x < xj+l, exp(O) - exp(B(s - x)/e) is bounded by Bh/e, and using 
(4.4) and Lemma 3.3 then gives (4.2a). 

For (4.2c, d), observe that 

x. (4.5) D,p (x) = e-l g(s) exp(B(s -x)/e-) ds. 

For h < , lDxp(x)l is bounded by C--'(h2 + hPe-' exp(-axj/c)) while for h > e it 
is bounded by C0-7(he + h * exp(-axj/e)). Now, 

e(x) = p(x) + C1 exp(-B(x - x1)/c) + C2 
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for some numbers C1 and C2. Using the fact that e(xj) and e(xj+ 1) are 0(h2) and 
the previously obtained bounds for p, and "solving" for C1, the estimates (4.2c, d) 
are obtained. 

V. A Numerical Experiment for the Case d m 0. Numerical experiments illustrat- 
ing Theorem 1.1 were given in [3]. Here we present numerical results which suggest 
that, when d w 0, (1.4) also achieves uniform second-order accuracy. The scheme 
(1.4) was used to obtain approximate solutions to the problem 

(5.1) cu,, + b(x)u, - d(x)u = f(x) for 0 < x < 1, u(0) = a0, u(1) = al, 

where b(x) = (x + 1)3, d(x) = .31(x + 1)5, f(x) =-.43 - .29x - .23x2, ao = 2.7, 
and a, = 53/100. For a given value of E, the value of the exact solution u at any 
grid point xj was taken to be the value at xj of the approximate solution of (5.1), 
obtained using (1.4) with h = 1/8192. To obtain a wide variation of h and e, (5.1) 
was solved with e -hP for various values of p. Uniform meshes with h = 1/J, 
J = 32, 64,..., 1024, were used. The results are shown in Table 1 where J is given 
in column 1, and where numerical results for a particular value of p are given in 
each of the other columns. The 1' error _ maximum over j = 1, . .. , J - 1 of 

I u(x) -Ujl is listed under E.. The numerical rate of convergence is determined 
from the E, values for two successive values of J (e.g., E 1 and E2 corresponding 
to h = 1/J and h = 1/(2J), respectively) by 

(5.2) rate -(ln E 1 - ln E 2)/ln(2). 

The results seem to suggest uniform 0(h2) accuracy. 

TABLE 1 

Numerical results for (1.4) applied to (5.1) 

e=1 e=h e=h e=h 1 e=h2 e=h 
3 

J E. rate E. rate E, rate E. rate E. rate E. rate 

32 4.4E-4 6.9E-4 8.6E-4 2.6E-4 2.5E-4 2.6E-4 

2.00 1.90 1.92 2.03 1.94 1.95 

64 1. 1E-4 1.9E-4 2.3E-4 6.3E-5 6.6E-5 6.7E-5 

2.00 1.91 1.96 1.97 1.97 1.98 

128 2.7E-5 4.9E-5 5.8E-5 1.6E-5 1.7E-5 1.7E-5 

2.00 1.92 1.98 1.97 1.98 1.99 

256 6.8E-6 1.3E-5 1.5E-5 4.1E-6 4.3E-6 4.3E-6 

1.98 1.94 1.99 1.98 2.00 2.00 

512 1.7E-6 3.4E-6 3.7E-6 1. OE-6 1. 1E-6 1. 1E-6 

1.93 1.96 2.01 2.00 2.01 2.01 

1024 4.6E-7 8.7E-7 9.3E-7 2.6E-7 2.7E-7 2.7E-7 
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