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A Block-by-Block Method 
for Volterra Integro-Differential Equations 

With Weakly-Singular Kernel 

By Athena Makroglou* 

Abstract. The theory of a block-by-block method for solving Volterra integro-differential 
equations with continuous kernels (see Makroglou 14], [5D is adapted to Volterra integro- 
differential equations with weakly-singular kernels, and a rate of convergence is given. 

1. Introduction. Consider the nonlinear Volterra integro-differential equation 

(1.1) y'(x) = G(x,y(x), J K(x, t, y(t))) dt (x > 0), 

giveny(O), written in the form, 
rx 

(1.2) y(x) =J G(s,y(s), z(s)) ds + y(O) (x > 0), 

,.x 

(1.3) z(x) =J K(x, t,y(t)) dt (x > 0), 

with 
K(X, S,Y(S)) -K(x, s)y(s), 

(1.4) kC(x, s) = /l/x - SI', O < a < 1, O < s < x < X. 

For the discretization of the equation (1.3), we shall use a product integration 
technique in such a way that when the method is used for solving examples with 
K(x, s, y(s)) = H(x, s, y(s))/Ilx - sl it will not require the evaluation of 
H(x, s, y(s)) for s > x, where it might, for example, not be defined (see Section 2). 
Product integration techniques have been used for the solution of weakly-singular 
integral equations; see for example Linz [31, Weiss [6], de Hoog and Weiss [21, 
Baker [1]. 

For the discretization of Eq. (1.2) we shall use Eqs. (2.3) in Makroglou [5] and 

produce a scheme which we called a generalized block-by-block method after 

Weiss, scheme GC, though it is a new method for integro-differential equations, see 

Section 3 below, originated in [4]. ('G' stands for 'Generalized' and 'C' is kept here 
in agreement with the notation used in [4] where it meant the third of the G 

schemes GA, GB, GC.) 
A rate of convergence of the scheme is given in Section 4. 
For use in the discussion to follow, we define xm,j = mh + ujh, Xm,j,k = mh + 

ujukh,j, k = 0, 1, .. . ,p; m = O, 1, ... , N - 1, where N,p integers, h > Oso that 
Nh = X and 0 < uo <ul < .. < up = 1. We also assume the preliminaries and 
definitions given in Makroglou [5]. 
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2. Discretization of Eq. (13). Consider the equation (1.3) with K(x, s, y(s)) as in 
(1.4), that is the equation, 

(2.1) z(x) = J K(x, t)y(t) dt, 

where K(x, t) is given by (1.4). Discretizing at the points xr,,j we have 
rn-I i(+ 1)/shm 

(2.2) Z(Xr,j) = x J+ lK(x,,,, s)y(s) ds + J K(XI,j s)y(s) ds, 
i = Oih mh 

or 

Z(xr,j) = hm F K(xmj iih + ht)y(ih + ht) dt 
(2.3) 

~~i=oo 

+ hujf K(xm -, mh + ujht)y(mh + ujht) dt. 

We now use the approximations 
p 

(2.4) y(ih + ht) I Lk(t)y(Xi,k), 
k=O 

p 

y(mh + hujt) - Lk(t)y(mh + ujukh) 
(2.5) k=0 

p p 
1 
E Lk( t) E L,(UjUk)Y(XA0r 

k=0 r=0 

where Lk(t) are the Lagrangian coefficients, giving 
p p 

ZMrj = huj E E V(m)(m,j, k)Lr(UjUk)y,,r 
(2.6) r=0 k=0 

m-1 P 

+ h 2 V(nm)(i, j, k)yi,k, 
i=0 k=0 

m = 0, 1,.. ., N-1;j = O, 1, . . . p, (j = 1, 22 , p ., pif u0= ), where we have 
put 

(2.7) V(M)(i,j, k) = f K(xm j, ih + uht)Lk(t) dt, 

with 

(2.8) U=uj ifi=m, 
U = 1 if i = 0, 1, ..., m-1. 

2.1. Estimation of the Coefficients V(m)(i,j, k). Using the kernel (1.4) in (2.7), we 
obtain 

p 

11 (t -Uq) 
(2.9) V(M)(i,j, k) = q=0;q#k dt/ (u haD(k)), Il - tjia 

where 
p 

(2.10) D(k)= 11 (Uk - Uq), 
q =0;q#k 



A BLOCK-BY-BLOCK METHOD FOR VOLTERRA EQUATIONS 97 

and 

(2.11) 1= m + - i for i =O, 1,...,m- 1, 
I = 1 for i = m, 

or 

(2.12) V(m)(i, j, k) = (-IY + if('"-) II (til/a - aq)t11a2 dt/ (auahaD(k)), 
q= 1 

where 

(2.13) aq+ l 
Uq9 q=O,l, 

, k-1, 

aq = I-Uq, q = k + 1, ..., p. 

The product llp =(t". I - aq) in (2.12) can be written as 

p 
(2.14) II (ti/ -aq) = CO(tl/ay + CI(tl/ay- + 

q=1 

where, with Sm = am + am + + apm, we have 

c0= 1, 

(2.15) c1 =-s 

C= - (Sj + CISj> I + C2Sj-2 + * +Cj lSl)/j, j = 2, 39 .... 

Substituting (2.14) in (2.12) and integrating, we find 

P ((1+ - 1) ra+1 r- a+i} 
(2.16) V(m)(i,j, k) = __h_D_k) 2_ C _-r r-a + 1 

uah OD,(k) r=O r-a + 

i= O, , ... , m; k = O,l ,... ,p; j = 1, ... ,p if uo = O, j = O,l , ... ,p if 

Uo0 0. 

3. Statement of the Method. According to the illustration given in the introduc- 
tion, the approximate equations for scheme GC are 

p 

Ym,j = h E WjkG(Xm,k,Ym,k Zm,k) 
k=O 

(3.1) nm-1 p 

+ h E E wkG(Xi,k, Yi,k9 Zi,k) + Y(O), 
i=O k=O 

p p 

Zm,j = huj 2 z V(m)(m,j, k)Lr(UjUk)Y,r 
r=0 k=0 

(3.2) m-1 p 
+ h , , V(m)(i j, k)yi,k, 

i=0 k=0 

m = 0, 1 ..., N- 1;j =, l, ...,p, (j = 1, 2, ... .,p if uo = 0), where 

(3.3) Wk1 = f Lk(x) dx, 

(3.4) Wk = w 
I 

= Lk(x) dx, 
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p 

(3.5) Lk(X) = 1 (X - uj)/ (Uk - Uj), 
j =O+jk 

and V(m)(i, j, k) are given by (2.16). 
Equations (3.1)-(3.2) constitute a system of 2p + 2 (2p if u0 = 0) in general 

nonlinear equations for Ym,O ym, i... * Ym,p; Zm,O Zm, I... * zm, p. 

4. Convergence. For the complete convergence proofs we refer to [4]. There, we 
started by obtaining an asymptotic expansion for the error cm maxo j.plemjk 

Em,j- z(xmj) - Zmj in the approximations (3.2). In doing this, the work in [2] was 
of great help. Having obtained this expansion, one can then obtain a bound on 
sm = [em, cm]T along the lines of the convergence proof given in [5]. The conver- 
gence result obtained is given as Theorem 1 below. 

THEOREM 1. Let 
(i) g(x) E Pv, (see preliminaries in [5]), 
(ii)y(x) isp + 2 times continuously differentiable on 0 < x < X, 
(iii) G(x, y, z) be p + v + 2 times continuously differentiable with respect to 

x, y, z, respectively, on 0 < x < X, jyj < Y, IzI < Z- where y5 = max0<x<xIy(x)I and 
z = maX0<X<XIz(x)I. Then, there are constants C1, C2, C3, C4, C5 such that 

Ilsmlloo < C5hP+1 if v = 0, 

(4.1) IImI y C1+2 (1) 
()llsml < (C2hP+2-a** (2) if v > 0, 

m= 1,2,...,N-1,and 

{C3hP +2 (1) 
(4.2) llsoll C < h C hP+2-a (2) 

and the inequalities occur with (1) or (2) according to where the maximum occurs 
when considering 11 K .loo 

Some numerical results obtained by testing scheme GC on a linear and a 
nonlinear example for both u0 = 0, u0 #- 0 are displayed in [4] (see [4, Examples 3, 
4, p. 97; pp. 152, 153, 157, 158]). Order of convergence at least O(hP+l) was 
verified. 
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**The result (2) in (4.1) is changed here to C2hP+2-, from C2hP+' in [4]. This because in [4, p. 201, 
Eq. 111-1.108] we have frd g(t)PO(t) dt = 0 for g E Pv(>O). 
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