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Krylov Subspace Methods for Solving 
Large Unsymmetric Linear Systems 

By Y. Saad* 

Abstact. Some algorithms based upon a projection process onto the Krylov subspace 
Km = Span(ro,Aro, . . .,AmA- rO) are developed, generalizing the method of conjugate 
gradients to unsymmetric systems. These methods are extensions of Arnoldi's algorithm for 
solving eigenvalue problems. The convergence is analyzed in terms of the distance of the 
solution to the subspace Km and some error bounds are established showing, in particular, a 
similarity with the conjugate gradient method (for symmetric matrices) when the eigenvalues 
are real. Several numerical experiments are described and discussed. 

1. Introduction. Few efficient iterative methods have been developed for treating 
large nonsymmetric linear systems. Some methods amount to solving the normal 
equations A HAx = AHb associated with the system Ax = b or with some other 
system derived by a preconditioning technique. 

This, unfortunately, is sensitive to the conditioning of A HA which is in general 
much worse than that of A. Techniques using Chebyshev iteration (12] do not 
suffer from this drawback but require the computation of some eigenvalues of A. 

A powerful method for solving symmetric linear systems is provided by the 
conjugate gradient algorithm. This method achieves a projection process onto the 
Krylov subspace Km = Span(ro, Aro, . .. , A m- 1ro), where ro is the initial residual 
vector. Although the process should theoretically produce the exact solution in at 
most N steps, it is well known that a satisfactory accuracy is often achieved for 
values of m for less than N [15]. Concus and Golub [5] have proposed a generaliza- 
tion of the conjugate gradient method which is based upon the splitting of A into 
its symmetric and skew-symmetric parts. 

The purpose of the present paper is to generalize the conjugate gradient method 
regarded as a projection process onto the Krylov subspace K,,. We shall say of a 
method realizing such a process that it belongs to the class of Krylov subspace 
methods. It will be seen that these methods can be efficient for solving large 
nonsymmetric systems. 

The next section describes the Krylov subspace methods from a theoretical point 
of view. In Section 3 some algorithms are proposed. They are essentially the 
extensions of the Arnoldi-like methods for solving large eigenvalue problems 
described in [18]. Section 4 deals with the convergence of the Krylov subspace 
methods. Finally, some numerical experiments are described in Section 5. 
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2. The Krylov Subspace Methods-Theoretical Aspects. 
2.1. General Projection Process-Notations. Consider the linear system 

(2.1) Ax-b =0, 
where A is a (complex or real) N x N matrix, and let Vm = [vl, . .. , v,,,] be a 
system of m lineariy independent vectors in Cv. The projection process onto the 
subspace Km = Span(v1, . v. , v,,) seeks an approximation x(m) to the solution of 
(2.1) by requiring that 

(2.2) 
~~~x(m) E- Kms 

Ax(m) - b I vj, j = 1, 2, ... ,m 

Writing x(m) = Vm y(m), it is immediate that y(m) must satisfy the m x m linear 
system 
(2.3) V[A Vm - y(m) - V:'b = 0, 

where V,' denotes the transpose of the conjugate of Vm: V[ = VTm. Let 7Tm denote 
the orthogonal projector onto the subspace Km. Then another formulation of (2.2) 
is the following 

(2.4) f 
(m) C Kin, 

7Tm(Ax(m) - b) = 0. 
It will be assumed for simplicity that b E Km. We shall denote by Am the restriction 
of s7mA to Km, so that x(m) is the solution in K,,, of the equation 
(2.5) Amx - b = 0. 
(Note that b E Km, so that rTmb = b.) 

The problem (2.1) is therefore replaced by the m-dimensional problem (2.5). In 
order to study the convergence properties of this process, one may express the error 
in terms of the distance between the exact solution x* and the subspace Km, that is 
in terms of jj(I - -m)x* j; see [8]. 

Note here that when A is Hermitian definite positive, the convergence is more 
easily studied by using the fact that the approximate solution x(m) minimizes the 
error function E(x) = (x - x*)HA(x - x*) over all elements x in Km. Unfor- 
tunately, this property does not extend to the nonsymmetric case, so it becomes 
necessary to make a different approach. Suppose that the exact solution x* is close 
to Km, in that 7TmX* is close to x*. Then it is possible to show that x(m) is close to 
7TXm (hence to x*) by showing that the residual of 7TmX* for the problem (2.5) is 
small. More, precisely, 

PROPOSITION 2.1. Let Ym = 117TmA(I - 7t)I. Then the residual of umx* for problem 
(2.5) satisfies 
(2.6) lb - Am7TmX*|ll < ymll(I - 7m)X*11- 

Proof. 
b - AmTmX* = b - 7TmA7Tmx* = b - 7ImA[X* - (I -m)x*] 

= 7TmA(I - 7Tm)x*- 

Observing that (I - '7Tm) is a projector, we can write 

ilb - Am7TmX*ll = 117TmA(I - 7m)(I - 7Tm)x*II < Ym|I(I- 7Tm)X*ll, 
which completes the proof. OJ 
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As a consequence, we can state the next corollary which gives a bound for 
||X* - x(m) . 

COROLLARY 2. 1. Let Ym be defined as above and let Km be the norm of the inverse of 
Am. Then the error x* - x(m) satisfies 

(2.7) 11X* - X(M)II 1 + IV 11( - 7Tm)X*IL 

Proof. By Proposition (2.1) and the fact that x(m) - 7Tmx* = A7,(b - Am7Tmx*), 
we get 

(2.8) ||7TM(X* - x(m ))| < YmKmII(I - 7TM)X*II 

(remark that 7Tmx(m) = X(m)). Writing 

(2.9) X* - X(M) = (I - 7TM)X* + Tm(X* - X(m)) 

and observing that the two vectors on the right-hand side of (2.9) are orthogonal, 
we obtain 

IIx* -x(m)112 - ||(I - 7Tm)X*I2 + Ihm(X* X(m))112, 

which, in view of (2.8), gives the desired result (2.7). El 
The above results show that the error llx(m) - x*jj will be of the same order as 

jj(I -7m)x*ll, provided that the approximate problem (2.4) is not badly condi- 
tioned. 

2.2. Krylov Subspace Methods. Let xo be an initial guess at the solution x* of 
(2.1), and let ro be the initial residual rO = b - Axo. If the unknown x is decom- 
posed as x = xo + z, then clearly the new unknown z must satisfy 

(2.10) Az - ro = 0. 

By a Krylov subspace method we shall refer to any method that obtains an 
approximation z(m) to problem (2.10) by applying a projection process to the 
system (2. 10) onto the Krylov subspace Km = Span[ro, Aro, . . ., A m - 'ro]. 

We shall assume, throughout, that the vectors ro, Aro, ... , A mn-i,ro are linearly 
independent, which means that 

(2.11) dim(Km) = m. 

If Vm _ [v, ... ., vm] is any basis of Km then, according to Subsection 2.1, z(m) 
can be expressed as z(m) = Vm y(), where y(m) is the solution of the m x m system 

(2.12) V[A Vm * y(m) - V:ro = 0, 

and the approximate x(m) of problem (2.1) is related to z(m) by x(m) = x0 + z(m). 

If z* = A -ro denotes the exact solution of the system (2.10), then we notice that 

(2.13) X* - X(m) = Z* - Z(M) 

which means that x(m) and z(m) admit the same error vector for (2.1) and (2.10), 
respectively. 

3. Practical Methods. Some algorithms based upon the Krylov subspace methods 
described above will now be presented. We first propose an adaptation of Arnoldi's 
method [1], [18] to the solution of systems of linear equations. The algorithm 
constructs an orthonormal basis Vm = [v,, ... ., vm] of Km such that V'TA Vm has 
Hessenberg form. An iterative version of this method is also given so as to avoid 
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the storage of too large arrays in memory. Then another class of algorithms is 
derived from the incomplete orthogonalization method described in [18]. 

3.1. The Method of Arnoldi. Arnoldi's algorithm builds an orthonormal basis 
vl, ... , v,,, of Km = Span[ro, Aro, .. 'Am- A ro] by the recurrence 

k 

(3.1) hk+l,kVk+I = Avk - E hikv 
i=l1 

starting with v1 = ro/ lIlroll and choosing hik i = 1, . .. , k + 1, in such a way that 
Vk+ 1Iv1, . .. , vk and IIvk+ I = 1. In exact arithmetic, the algorithm would be as 
follows. 

Algorithm 3.1. 
1. Compute rO = b - Axo and takevI := ro/lIroII. 
2. For k := I until m do 

k 
(3.2) w := Avk - hikvi with hik = (Avk, vi), 

i=l 

(3.3) hk+ 1,k I= || wIl, Vk+ 1 = W/hk+ l,k 

See [18] for some remarks on the practical realization of this algorithm. It is easily 
seen that [vI, V2, ... I Vm] is an orthonormal basis of Km and that the matrix 

V:'A Vm is the Hessenberg matrix Hm whose nonzero elements are the h. defined by 
(3.2) and (3.3). As a consequence, the vector V,:rO in (2.7) is equal to ,B. VHvj = 

fBeI, where ,B = IIroll. Thus, the system (2.7) becomes 

(3.4) Hm .y(m) =,Bel 

and the approximate solution x(m), defined in Subsection 2.2, reads x(m)= xo + 
Z(m) where 

(3.5) Z(m) = f8VmH-lel. 

The following estimate for the residual norm Ilb - Ax(m)II is very useful as a 
stopping criterion 

(3.6) lb - Ax(m)Il = hm+i1mIem:yv(m)I. 

Equality (3.6) follows immediately from the relation 

AVm = VmHm + hm+l,mVm+le: 

which can be derived from the algorithm and from equality (2.8). 
An interesting practical method would be to generate the vectors vk and the 

matrix Hk, k = 1, 2, ... , m, . . ., to compute periodically the estimate 
hm+ ImIe:y(m)I of the norm of the residual and to stop as soon as this is small 
enough. As was suggested in [15] for the symmetric case, there are various ways of 
updating Ie4Hy(m)l without even actually computing the vector y(m). Let us give a few 
indications about the problem of computing the estimation je,y(m)j, since it will 
appear in several parts along the paper. Parlett [15] suggests utilizing a recurrence 
relation proposed by Paige and Saunders [14], which is based upon the LQ 
factorization of Hm. 
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Another interesting possibility is to perform the more economical factorization 
provided by the Gaussian elimination with partial pivoting on the matrix Hj. The 
factorization of Hj can be easily performed by using the information at the 
previous step. Supposing that no pivoting has been necessary for steps 1 through 
j -1, and writing the LU factorization of Hj, Hj = LU, it can be easily seen that 

pj = 1+ I e, yI e is simply 

pj = hj+ 'i (p t 11 u 

where the 1j, i = 1, . . ., j-1, are the successive pivots. More generally, it can be 
shown that when no pivoting has been necessary at steps i, i E I, where I c 
{1, 2, ... ., j- 1), then pj becomes 

PI = 
hk+. Ij(,ll)/ u1. 

This means that pj can be updated at each step at a negligible cost. Finally, after it 
is decided that the estimate of the residual norm is small enough, the final 
factorization of Hm will be used to fully solve the system (3.4). The Gaussian 
elimination with partial pivoting gives satisfactory results in general, but one might 
as well use a more stable decomposition, as the LQ decomposition in [14], [15], 
although at a high cost. 

As m increases, the process of computing the vi becomes, unfortunately, intoler- 
ably expensive and core memory demanding. To remedy this, one can use the 
algorithm in an iterative way, as is described next. 

3.2. Iterative Arnoldi Method. Due to core memory capacities, the number m of 
steps in Algorithm 3.1 is inevitably limited. After having computed the approxi- 
mate solution x(m) with the maximum number of steps allowed, one may find that 
the accuracy is still unsatisfactory. This naturally raises the question of how to 
improve the accuracy of x(m). The simplest idea is to restart the algorithm with x0 
replaced by the approximation x(m) obtained. The idea is similar to that of the m 
step steepest descent in the symmetric case; see [6]. One can restart as many times 
as necessary to ensure satisfactory accuracy. We now give a more detailed descrip- 
tion of this iterative version. Let us start with an initial guess x0 and form 

ro= b - Axo. Then construct Hm and Vm by algorithm (3.1) and compute the 
approximate solution x(m) = x0 + z(m). The estimation (3.6) can- be used to de- 
termine whether the process must be stopped or restarted. Suppose a restart is 
necessary. Then take x, = x0 + z(m) and compute r = b - Ax,. (Remark that r1 is 
also equal to the residual ro - Az(m).) Construct again Vm and Hm starting with 

= r1/ llr1l in Algorithm 3.1. Then an approximate solution z4m) to the equation 
Az = rI is obtained yielding the new approximation x2 = xI + Z2m) to the solution 
x*, and so forth. 

At the sth iteration, the approximate solution x, is equal to xo + z(m) 
+ * + *z4). Thus, the algorithm can be formulated as follows. (The subscript 
(m) is dropped for simplifications.) 
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Algorithm 3.2. 
1. Start. Choose m and x0; ro b - Axo. 
2. Fors:=O,1,..., do 

*Compute vI, v2, .. v, m and Hm by Algorithm 3.1 starting with vI = 

rS/( , := llrsll) 

*Solve the system Hm y = y eI 
*Zs+ 1 Vm Y 

*Xs+1= Xs + Zs+1 
rs+l := rs- Azs+1 

* If hm+ 1,m Ie,I < c, stop else continue. 
3.3. Incomplete Orthogonalization Methods. 
3.3.1. The construction of the vectors v,, . .. , vm by Algorithm 3.1 amounts to 

orthogonalizing the vectors Avk against all previous vectors v1, . .. , Vk. This is 
costly and some numerical observations suggest to orthogonalize Avk against the 
precedingp + 1 vectors rather than all; see [18]. 

The system produced is such that (vi, vj) = 8, for i, j satisfying li - jj < p. 
Algorithm 3.3. 
1. Choose p and m such that p < m; compute ro := b - Axo and vI := ro/ IIroII. 
2. Forj:= 1,2,...,mdo 

io max(l, -p + 1) 
w := vj - j.ohii vi with 

(3.7) huj: (Avj, vi), 

(3.8) vj+ I w/(h+1j := IIwll). 

Under the assumption (2.11), this algorithm will not stop before the mth step and 
will produce a system of vectors v,, . .. , v, locally orthogonal and a (banded) 
Hessenberg matrix of the form 

Hm= 0] 

whose nonzero elements are computed from (3.7) and (3.8). The generalized 
Lanczos approximation z(m) must satisfy the equations 

(3.9) V,AV,,my(m) - V:rO = 0, z(m) - V,,y(m). 

In the present case, however, the matrix V,HA Vm does not have any particular 
structure as before, so we need to transform (3.9) into a simpler problem. 

Let us set Hm = ( VVm)-l V,HA Vm. Note that this is just the matricial representa- 
tion of the linear operator Am = 7TmAi,, (see Subsection 2.1) in the basis 

{VI, v2, .. V,m}. It was shown in [18] that Hm differs from Hm only in its last 
column. More precisely, 

THEOREM 3. 1. Let Sm = hm + I,m(VVm)-1 Vmm[Vm + I Then 
H 

(3.10) Hm = Hm + smem;. 
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Proof. From Algorithm 3.3 we get the basic equation 

AVm = VmHm + hm+i,mVm+le: 

which yields (3.10) on multiplying by (V:'Vm)-'V:. f1 
Multiplying (3.9) by (Vp:Vm)-l gives the equivalent equation 

Hny )- ( V[Vm)' Vm ro = 0. 
Observing that (V:,Vm)-'Vp[ro = 13e, where f = lroll, we obtain the system 

(3.11) H)(m)- f3el = 0. 

If we set 9(m) = 3H^'lei and9(m) = 8iH,-'el, then, by the Shermann and Morrison 
formula [7], these two vectors are related by 

(3.12) Ym = Ym-aHrn'Sm, 

where a = e:.Y(m)/(i + e:'H,mlsm). 
On the practical side, the only difficulty lies in the computation of the corrective 

column Sm. Note that Sm = hm+ I,Vm+vm,+I and that Sm is the solution of the least 
squares problem (see [19]) 

(3.13) min| Vms - hm+b,mvm+lll, 

for which many efficient algorithms are available; see [3], [13]. It should be added 
that only a moderate accuracy is needed in practice, so the bidiagonalization 
algorithm BIDIAG described in [13] is suitable for solving (3.13) with moderate 
accuracy. We can now give an algorithm based upon all the above observations. 

Algorithm 3.4. Incomplete Orthogonalization with Correction. 
Start. Choose two integers p and m with p < m. Compute rO := b - Axo, B 

Ilrlrl; VI := ro/lB . 

Iterate. Comment compute Hm and v, ... . vm. 
Forj = 1, 2, . . ., m do 

io max(l,j - p) 

w:=Avj-i .(h. := (Av, vi)) xv, 
vj+I := wI(hj+l,j := liwll) 

Correct: 
1. Compute least squares solution Sm of (3.13). 
2. Compute 

Ym := f3J,'len 
x := IIlsM 

a := e,ym/ (1 + e'x) 

Ym =Ym - ax 
3. Form the approximate solution 

x(M) = x0 + Vm *m. 

We shall now give some additional practical details. 
1. If necessary, the vectors vI, v2, . . ., Vm may be stored in auxiliary memory, 

one by one as soon as they are computed. Only the p vectors vj, vj . . ., +1 
must be kept in main memory for more efficiency. 
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2. The storage of Hm now requires only the storage of (p + 1) x m elements 
instead of the previous M2. 

3. For the choice of the integer p, we should first point out that p is limited by 
the available core memory. In theory, the larger p, the better. If p is large, the 
system (v, . . . , v,,,) will, in practice, be close to orthogonality, and the solution of 
the least squares problem (3.13) in step correct becomes easier [at the limit if 
p = m, then the solution is just hm+ I'm Vn'vm+ I = 01. But in that case the computa- 
tions in the step iterate are more expensive. If p is too small, on the other hand, it is 
very likely that the problem (3.13) will become difficult to solve (if not impossible 
numerically) as the vectors (v1, . .. , v,,) will become nearly linearly dependent. 
Note that this depends also upon m. When m = p, the system is orthonormal, and 
as m increases it is observed that the system departs from orthogonality, in a slow 
manner at the beginning. All these observations suggest thatp must first be chosen 
according to the main memory capacity and some arbitrary limitation p < Pma. 
Afterwards, a maximum number of steps mnmax should be fixed. Then a test must be 
included at the end of the step iterate in order to shift to the correction step as soon 
as the system {v1, v2 .. . , V 1} is suspected to be too far from orthonormal, as for 
example 

if I(vj+ 1, v1)I > -1 goto correct, 

where -q is a certain tolerance. The heuristic criterion given above is not the best. 
4. When the matrix A is symmetric, then, by takingp = 2, we obtain a version of 

the conjugate gradient method which is known to be equivalent to the Lanczos 
algorithm; see [14]. In that case the vectors v1, .v. , Vm are theoretically orthogonal. 
Suppose now that A is nearly symmetric and take p = 2 again. By a continuity 
argument, it is clear that the system (vl, . .. , vm) will be nearly orthonormal, 
making the choice p = 2 optimal in a certain sense. This suggests that, when it is 
known that A is close to a symmetric matrix, p could be taken small (or even 
p = 2). However, it is not easy to give a rigorous meaning to the notion of nearly 
symmetric, and it is even more difficult to monitor automatically the choice of the 
parameterp. 

3.3.2. In the following we develop another algorithm which is, in particular, more 
appropriate for the cases of almost symmetric matrices. As pointed out above, the 
correction step can be expensive and one may ask whether an acceptable accuracy 
could be achieved by ignoring the corrective step and replacing the approximate 
solution x(m) = x0 + V,,;9m by 

(3.14) x(M) = xo + Vjm. 

Tlhe answer is yes, provided that Vm+ I is not too far from orthonormal. In effect, 
A H writing Hm = Hm- smemS, we can derive the following analogue of (3.12) 

hm+i,mep:[jm .i 

(3.15) Ym = 9m + 1 A 

ISMI,H 
mSm. 

It is remarkable that, by (3.6), the term hm+ me,y~m is equal to the residual norm 
lro -Az(m)II, except for the sign, and hence it becomes smaller as m increases. If 
{ v1, .. , vm+ 1) is nearly orthonormal, then VVM m+ I is nearly zero and so will be Sm 
in general. This shows that, in general, the second term on the right-hand side of 
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(3.15) can be neglected (in comparison with 9m) as long as Vm+i remains nearly 
orthonormal. This fact is confirmed by the experiments, and it is observed that the 
residual norms behave in the same manner as the residual norms obtained for the 
incomplete orthogonalization method applied to the eigenvalue problem; see [18, 
Section 4.2]. 

The residual norms IIro - Aim decrease rapidly until a certain step and then 
start oscillating and decreasing more slowly. This suggests restarting immediately 
after a residual norm is larger than the previous one. Here, again, the formula (3.6) 
remains very useful for estimating the residual norm. This leads to the following 
algorithm. 

Algorithm 3.5. Incomplete Orthogonalization Without Correction. 
Start. x := xo; r := b - Axo; ,B := IIII; v1 := r/fl; 
Iterate. Forj = 1, 2, . . ., mma do 
1. Compute 

hj+ l jj+ I := Avj - hyi, 
i -io 

where io and the h.'s are as in Algorithm 3.4. 
2. Update the factoriza'tion of Hj and the estimate pj of the residual norm 

(see Subsection 3.1). 
3. Test for convergence performed every q steps only (e.g., every q = 5 steps). 

a. If pj < e goto restart. 
b. If pj > Pj-q goto restart; otherwise take m j and continue. 

Restart: 

z(m) :- fVmHHel 

i - _AE(m) 
r := r- Ai(m) 

If j3 < e stop else goto iterate. 

The numerical experiments (Section 5) will reveal that this last algorithm is to be 
preferred to the iterative Arnoldi algorithm and to the incomplete orthogonaliza- 
tion method with correction. Surprisingly, it is often the case that no restart is 
necessary, even for matrices that are not nearly symmetric. 

We shall conclude this section by a remark concerning the application of 
preconditioning techniques to the algorithms described above. Suppose that we can 
find a matrix M, for which linear systems are easily solvable and such that M-IA is 
closer to the identity than A. In this case it is advantageous, in general, to replace 
the system Ax = b by the new system M-'Ax = M-lb before applying one of the 
previous methods. There are two reasons for this. The first is that the rate of 
convergence of the second system will, in general, be higher than that of the first 
because the spectrum will be included in a disk with center one and with small 
radius, and the next section will show that in that case the smaller the radius, the 
higher the rate of convergence. The second is that M-IA, which is close to the 
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identity matrix, is clearly close to a symmetric matrix (the Identity), so that the 
application of incomplete orthogonalization without correction is most effective; cf. 
Subsection (5.5). 

4. Rates of Convergence for the Krylov Subspace Methods. 
4.1. Introduction. We shall now consider the problem of the convergence of the 

approximate x(m) toward the exact solution x*. We first point out that the 
convergence is achieved in at most N steps where N is the dimension of A. (This is 
immediate from the fact that KN is the whole subspace CN and from the definition 
2.2.) Therefore, the problem is not to show the convergence but rather to establish 
theoretical error bounds showing that one can obtain a satisfactory accuracy for 
values of m much less than the dimension N, which is supposed to be very large. 
Another way of stating the problem is to suppose that A is an operator on a Hilbert 
space (N = om) such that the convergence, the rate of convergence..., of the 
infinite sequence x(m) can be discussed. We shall not, however, adopt this extension 
in the present paper. 

In view of relation (2.13), it is equivalent to study either the convergence of x(M) 
to x* or the convergence of Z(m) to z*. In addition, Corollary 2.1 shows that the 
convergence can be studied in terms of 11(I - irm)z* 1, where 7Tm is the orthogonal 
projection onto the Krylov subspace Km = Span[ro, Aro, . . ., A m-ro]. Let us de- 
note by Pk the space of polynomials of degree not exceeding k. Then, a useful 
expression for the distance 11(I - -m)Z*II can be derived by remarking that Km is 
nothing but the subspace of CN constituted by all the elements q(A)ro, where q 
belongs to Pm_l1 

PROPOSITION 4.1. The distance 11(I - 7m)z*ll between z* and the Krylov subspace 
Km satisfies 

(4.1) 11(I - 7Tm)Z*Il- min IIp(A)z*11. 
p(O) - 

Proof. The following equalities are easy to show 

-m)z*II = minm Iz* - zIl = 1Z* - q(A)roll 

= mi JJz* - q(A)Az*j = mi 11(1 - Aq(A))z*jj 

= min J[p(A)z*11. 
pE- Pm 

p(O)= 1 

In order to obtain an upper bound for (4.1), we shall assume that A admits N 
eigenvectors 4,. 02, ... I ON of norm one, associated with the eigenvalues 
XI, XN. Then the solution z* can be expressed as 

N 

Z*= I 
i-i 

and we can formulate the next theorem. 
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THEOREM 4.1. Set a = a IaA, where the at, are the components of the solution z* 
in the eigenbasis of A. 

Then 

(4.2) 11(1 - 7Tm)Z*I| < a mm max lP(y)I- 
p(O) -1 

Proof. Letp E P,m withp(O) = 1. Then 

N N 

l/p(A)z*lj = Fp(A) Y aO,cp = p(N)ajo| 

N N N 

l |aip(i\)Oill < lc21 1,p(Ak)l < , j.> ail x max jp(k.)| 

Therefore, for any polynomial of degree not exceeding m such that p(O) = 1, we 
have 

(4.3) ||p(A)z*|| a max lp(Xj)l 

Hence, 

min lp(A)z*Il < a min max (Xj) 
p EPE1 p PE Pm.j -I. 

p(O)= I p(O) - 

which, by equality (4.1), completes the proof. Q 
We point out here that from classical results it can be shown that the polynomial 

realizing the minimum in (4.2) exists and is unique provided that m < N; see [11]. 
We should also add that there is unfortunately no upper bound for a. 

We shall set, throughout, 

(4.4) E^=mn j max p(,, 

p(O) - I 

so that inequality (4.2) simplifies to 

(4.5) (- 7m)Z*| < ae(m) 

and the result (2.7) becomes 

iux* - x(M)I = llz* - z(m)lI < a 1 + K E(m) 

We, therefore, need to show that the sequence E(m) decreases rapidly to zero. Note 
that e(N) = 0 which shows again that the process will give the exact solution in at 
most N steps. The rate of convergence of the sequence e(m) to zero provides a 
bound for the actual rate of convergence. Estimating E(M) is, unfortunately, a 
difficult problem in general. The number E(m) is the degree of best approximation of 
the zero function by polynomial of degree m satisfying the constraintp(O) = 1, over 
the set X,, A2, .. ., XN; see [11]. 

4.2. An Exact Expression for E(m). The following theorem gives an expression for 
e(m) in terms of m + 1 eigenvalues of A. 
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THEOREM 4.2. Let m < N - 1. Then there exist m + 1 eigenvalues which, without 
ambiguity, can be labelled A1, A2, I ., +I such that 

m+l m+l A -- 

(4.6) e(m) E II | - 

We omit the proof of this equality. An analogous result will be proved in a 
forthcoming paper dealing with the convergence of Arnoldi-like methods for 
computing eigenelements. 

The result does not specify which are the eigenvalues A1, ... ., XM+,I but it still 
gives an interesting indication. If the origin is well separated from the spectrum, 
then e(m) is likely to be very small. Indeed, if A1 is, for example, the eigenvalue the 
closest to zero, among those eigenvalues involved in the theorem, then, in general, 
we shall have IAkI > IAX - AkI, k = 1, . . . , N, as seen in Figure 1. Therefore, 

m+1 IAk I 

k-2 AXk 
- Il 

and it is seen from (4.6) that e(m) will be small. There are particular distributions of 
the eigenvalues where e(m) is known exactly (for m = N - 1). But, in general, the 
result (4.6) is not useful for giving an estimation of the rate of convergence. Upper 
bounds for e(m) must be established for that purpose. 

Im(X) 

___\__ Re (A) 

? k' 

0 

FIGuRE 1 
4.3. Bounds for e(m). In the real case one usually obtains bounds for e(m) by 

majorizing the discrete norm maxj ,NIP(?)I by the continuous norm max,.,iIp(X)I, 
where I is an interval (or the union of two intervals) containing the eigenvalues X. 
and not zero. 

In the complex case, however, one encounters the difficulty of choosing an 
adequate continuum containing all the eigenvalues and not zero. An infinity of 
choices are possible, but, except for some particular shapes such as circles, 
ellipses..., there is no simple expression for the minimax quantity 

minpEPm ;P(O) I maxz e D I P(Z)I 
We first deal with the simplest case where all the eigenvalues of A are real and 

positive. The next case to consider is, naturally, the case where the eigenvalues are 
almost real. The general case will be considered in Subsections 4.3.3 and 4.3.4. 
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4.3.1. Case of a Purely Real Spectrum. 

THEOREM 4.3. Suppose that all the eigenvalues of A are real and positive and let 

X;\. and Xm. be the smallest and the largest of them. Then 

(4.7) I(1 - TM)Z*II < a/Tm(y) 

where a is as before, y = (Ama + .mjn)/(.mac- Xi), and where Tm is the 
Chebyshev polynomial of degree m of the first kind. 

This result is an immediate application of a well-known bound for (4.4) when the 
At are real [2]. It is also possible to establish some results when the eigenvalues are 
known to lie in two or more intervals; see [21, [101. 

Inequality (4.7) shows that the generalized Lanczos method converges at least as 
rapidly as [Tm(y)f-- (y + Ay2 - 1 ) such that the rate of convergence is 
bounded by y + v-1 . 

Finally, note that similar results can easily be obtained if all the eigenvalues are 
purely imaginary or if they lie on a straight line of C, containing the origin. 

4.3.2. Almost Purely Real Spectra. In the following we shall assume that the 
spectrum lies inside a certain ellipse which has center c on the real line and foci 
c + e, c - e where e is the eccentricity. Furthermore, we shall assume that the 
origin is not inside that ellipse (see Figure 2). Let us denote by E the closed domain 
bounded by the ellipse defined above. Consider the variable transform z'= 
(c - z)/e; then E(M) satisfies the inequality 

(4.8) pe m zemaEx 

p(c/e)= I 

where the domain E' is bounded by the ellipse centered at origin with eccentricity 
one and major semiaxis a/e. It was shown by Clayton [4] that the above minimax 
is realized for the polynomial Tm(z')/ Tm(c/e). 

Im(z) 

e DI 

a |rV_ 

Re (z) 

FIGURE 2 
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THEOREM 4.4. Assume that the eigenvalues of A lie within an ellipse with center c 
on the real axis, foci c + e, c - e, and with major semiaxis a. Suppose that the origin 
is not inside this ellipse. Then 

(4.9) E(m) <Tm 
(a/e) 

I Tm(c/e)l 

In view of (4.10), this inequality is a simple corollary of Clayton's result. Since 
the proof is tedious, we shall give a direct proof of (4.9) and bypass Clayton's 
result. 

Proof. Considering the particular polynomial Tm(z')/ Tm(c/e), we get from (4.8) 

(4.10) (m) < max Tm(c/e) 

By the maximum principle, the maximum on the right-hand side is realized for z' 
belonging to the boundary aE' of the ellipse E' centered at the origin and having 
major semiaxis a/e and eccentricity one. Thus, (4.2) becomes 

(4.11) E(m) < maix ITm(Z')I. 
ITm(c/e)I z'E8-E' 

Consider now the transform u: w *->z' = (w + l/w). It is known [11], [17] that 

when w belongs to the circle Cp, centered at the origin and having radius p, z' will 
belong to the ellipse aEp having eccentricity one and major semiaxis (p + p-1)/2. 

We may take p = a/e + (a/e)2-1 such that aEp is just ME'. Tm(z) can be 
defined by Tm(z) = ch(m u), where u and z are related by ch(u) = z. Setting 
eu = w, we see that another definition for Tm(z) is Tm(z) = (wm + w"')/2, where 

w and z are related by (w + w')/2 = z. Hence, 

nmax I Tm(Z')| = max - Iwm + w n = max - meimO + pineiinG. 
zle W ~ w EECp 2 G E=[0,27TJ]2' 

It is easily seen that the above maximum is just 

1(mm)1[(~a (a)2 )in( (a) )m] 

2(pM + p m) = _ ( + )- + ( a -\- 

a 
mteJ 

which completes the proof. L 
The upper bound Tm(a/e)/ Tm(Ic/al) for ei(m) is asymptotically equivalent to I 

ale +V (ale)2- 

Iclcel +\0ce2 

so that an upper bound for the asymptotic rate of convergence is given by 

(4.12) Idc + - 

a + a2 e2 
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When the eigenvalues are all real, then the ellipse degenerates to the interval 

[A1, AN], and we shall have e = a = (AN - A1)/2, c = (A1 + AN)/2 such that T will 
become y + y2 - 1 with y = (AN + Al)/(AN - A1). This means that the result 
(2.17) coincides with that of Corollary 2.1 when the spectrum lies on the real line. 

Consider now the family of all ellipses having center c and major semiaxis a, and 
let the eccentricity decrease from a to zero. Then the ellipse will pass from the 
interval (c - a, c + a) to the circle with center c and radius a. It is easily seen 
that the bound (4.12) for the rate of convergence will decrease from 

Tmax = Ic/al + V(c/a)2 -_1 to Tmin = Ic/al. Therefore, we may assert that the 
convergence is likely to be better if the eigenvalues are close to the real line and 
that, when the spectrum has a circular shape, the convergence is likely to be slower. 
Note that the comparison is made for the same relative separation Ic/al from the 
origin. The above comments are confirmed by a numerical example in Subsection 
5.1. 

Before considering the more general case where the ellipse containing the 
spectrum does not stretch along the real axis, let us point out that inequality (4.9) 
cannot be improved, as Clayton's result shows. By this we mean that if one replaces 
the discrete set {1, . .. , XN) by the set of all points contained in an ellipse of the 
form described in Figure 2, one cannot find a better inequality than (4.9). 

4.2.3. Spectrum Contained in an Ellipse. If the spectrum lies inside an ellipse with 
center c and foci c + e, c - e, where now both c and e are complex, it is easily 
seen that the proof of Theorem 4.4 is still valid. Therefore, we can establish that 

(4.13) E(m) < I Tm(a/e)I 
IlTm(c/e)l 

where c, e are the center and the "eccentricity" and are complex, while a, the 
(complex) major semiaxis, is such that c + a and c - a are the coordinates of the 
two points of the ellipse situated on the major semiaxis. Note that a/e is real while 
c/e is not. The interpretation of (4.13) will, therefore, not be easy in general. It can 
be shown, however, that the right-hand side of (4.13) converges to zero as m -o cc; 
see [12]. The next subsection gives a result which is weaker, in general, but easier to 
interpret. 

4.3.4. Spectrum Contained in a Circle. In this subsection we shall assume that the 
spectrum lies in a certain domain bounded by a circle having center c and radius a. 
Furthermore, let us assume that the origin lies outside the circle (cf. Figure 3). Then 
we have 

THEOREM 4.4. Suppose that there exists a disk D(c, a), with center c and radius a, 
that contains all the eigenvalues of A and not the origin. Then 

(4.14) E(M) a 

Proof. Consider the particular polynomial p(z) = [(c - z)/c]m. p has degree m 
and satisfiesp(O) = 1. Hence, by (2.13), 

E(m) < max >()j< |-A | < E| a 
j=I,N c ic 
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The coefficient Ia/cl in (2.21) is smaller than one, and one can even choose an 
"optimal" circle for which la/cl is the least. The optimal center j should minimize 
max N,, I(c - Xj)/cI over all complex c, c :# 0, and the optimal radius J is 
simply max - .NIc- 1 The inequality (2.21) is the best bound possible for e(m) 

that can be obtained by replacing the discrete set (X1, . .. , XN} by the disk D(c, a) 
in the formula (2.13). This is due to the next theorem, proved by Zarantonello in 
[22]. 

THEOREM 2.3. The polynomial ((c - z)/c)m is the polynomial of degree m having 
least uniform norm over the disk D(c, a) when a < Ici. Furthermore 

a M 
min max = -| 

p E Pm z E D(c,a) C 
p(O)=l 

5. Numerical Experiments. The experiments described in Subsections 5.1 to 5.4 
have been performed on the Prime 650 computer of the Department of Computer 
Science at the University of Illinois at Urbana-Champaign. The computations have 
been made in double precision, using a 48-digit mantissa. 

5.1. The purpose of this first experiment is to illustrate the comments of 
Subsection 4.3.2 on the convergence properties in the case of complex eigenvalues. 
Let us consider the block-diagonal matrix A, whose diagonal blocks are 2 x 2 and 
have the form 

[k k] Dk [ k e -k d] k = 1,29...,.n. 

The dk and ek are chosen in such a way that the eigenvalues Xk = dk ? iek of A lie 
on the ellipse having center c = 1 and major semiaxis a = 0.8. The eccentricity e 
varies from e = 0 to e = 0.8. The real parts dk of the eigenvalues are uniformly 
distributed on the interval [c - a, c + a]. In other words 

dk = 0.2+ k-i 

ek = 
(a2-e2)2/2[ -(k2)]", k = I, 2, . ..., n, 

where c = 1; a = 0.8; 0 < e S 0.8. The number of blocks is n = 40,so that A has 
dimension N = 80. 
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We compare, for different values of e, the estimated logarithmic rates of 
convergence Pest = Log(T), where T is given by (4.12), with the "actual" logarithmic 
rates - (l/m)Log(llx* - x(m)II), where x* and x(M) are the exact and the ap- 
proximate solutions, respectively. The method used was Arnoldi's algorithm de- 
scribed in Subsection 3.1. The right-hand side b of the system Ax = b was the 
vector b = Af where f = (1, 1, . . ., 1)T so the solution is equal to f. The starting 
vector xo was set to zero. The next table gives the results obtained when m = 30 for 
various values of e. 

TABLE 1 

e 11 x* - x(m)II Pact Pest 

0.00 2.68 x I0-V 0.199 0.223 
0.10 2.38 x 10-3 0.201 0.224 
0.20 2.11 x l0-3 0.205 0.228 

0.30 1.69 x 1i-3 0.212 0.237 
0.40 1.18 x O-3 0.225 0.250 

0.50 6.71 x 10-4 0.243 0.270 

0.60 2.62 x 104 0.275 0.303 

0.70 4.22 x 1i-' 0.335 0.367 
0.75 6.40 x 10- 0.398 0.432 

0.79 1.62 x 10-7 0.521 0.555 

0.80 1.55 x 1010 0.753 0.693 

Note that in passing from e = 0.79 to e = 0.80 the spectrum of the matrix A 
becomes purely real and consists in 40 double eigenvalues, which explains the jump 
in the actual rate of convergence. 

The values Pact and Pest of Table 1 are plotted in Figure 4. 
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5.2. We shall compare, in the following experiment, the method of conjugate 
gradients applied to the problem A HAx = A Hb with the iterative Arnoldi algo- 
rithm. Consider the block-tridiagonal matrices 

A = -I * * I] with a 

anda = -1 + 8; b =- 1-. 
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Conjugate gradients for A TAx = A Tb (upper curve) and 

iterative Arnoldi method. 
m = 10 middle curve, m = 20 lower curve 

These matrices come from a discretization of partial differential equations 
involving a nonselfadjoint operator; see [12], [18]. When 8 is small, the matrix A is 
almost symmetric. The conjugate gradient algorithm was run for the following 
case: 8 = 0.01, B has dimension 10, and A has dimension 200. The right-hand side 
b was set to Af, wheref = [1, . . ., IfT, and the initial vector was chosen randomly. 
We have compared the results with those obtained with the iterative Arnoldi 
method using 10 steps per iteration (m = 10) and 20 steps per iteration. The initial 
vector, as well as the right-hand side, is the same as above. Figure 5 shows, in a 
logarithmic scale, the evolution of the error norms obtained for the same total 
number of steps. Notice that although the total number of steps required to achieve 
convergence is smaller with Arnoldi's method, the total amount of work required in 
this example is in favor of the conjugate gradient method because the cost of 
computing Av is not high. The method of Arnoldi will be appropriate whenever the 
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cost of computing Av dominates all the other costs in each step, but this will not 
always be the case. Figure 5 also shows that, when the matrix by vector multiplica- 
tion is costly, it may be advantageous to choose m as large as possible. 

5.3. In the previous example, the matrix treated is nearly symmetric and so the 
use of the incomplete orthogonalization method without correction is more suit- 
able. Takingp = 2, and starting with the same initial vector as in the experiment of 
5.2, yielded a rapidly decreasing sequence of residual norm estimates. No restart 
was necessary, and convergence occurred after 90 steps with a residual norm equal 
to 4.6 x 10-1". Clearly, the amount of work required here is far less than that 
required by either of the methods compared in 5.2. 

5.4. We shall now compare the incomplete orthogonalization methods with and 
without corrective step on the 100 x 100 block-tridiagonal matrix A of Subsection 
5.2, obtained by taking 8 = 0.2. In a first test an iterative method based upon the 
incomplete orthogonalization algorithm with correction (Algorithm 3.4) was tried. 
As soon as the estimate f8hm+ I,mIe:NymI of the residual norm stops decreasing or 
when the number of steps reaches the maximum number of steps allowed, mm, = 

40, the algorithm is halted, a corrective step is taken, and the algorithm is either 
stopped (if the residual norm is small enough) or restarted. For the present 
example, the algorithm halted first at m = 20 and gave a residual norm of 1.8. 
After the correction step, the residual norm dropped down to 6.2 x 10-3. In the 
second iteration the algorithm halted at m = mmax = 40 and gave the residual 
norms 9.6 x 10-5 before the correction and 1.14 x 106 after. 

It is important to mention that, here, the corrective steps necessitate the use of 
the bidiagonalization algorithm to compute the corrective column Sm, which is 
usually very expensive. 

The results obtained with the incomplete orthogonalization method without 
correction are by far superior from the point of view of the run times. Algorithm 
3.5 was first tested with p = 2. At the first iteration the residual norms decreased 
from 7.6 to 1.8 at the 15th step and then a restart was made. At the second iteration 
the residual norms kept decreasing rapidly to 2.1 x 106 at the 60th step. The test 
with p = 4 yielded a steadily decreasing sequence of residual norm estimates and 
therefore no restart has been necessary. The final residual norm obtained at 
m = 60 was 7.88 x 10-7. 

5.5. Finally, we shall describe an experiment on a more difficult example 
considered in [19]. The runs reported below have been made on a CDC CYBER 
175 computer using a word of 60 bits and a mantissa of 48 bits (single precision). 
The problem Ax = b treated has dimension N = 1000 and the nonzero part of A 
consists of 7 diagonals 

(The nonzero elements of the first row and first column of A are Al,, A12, 

A1,10, A1,,1, A21, Aj,0, A1O,O.) The problem originated from the simulation of 
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a reservoir and is known to be badly conditioned. It has been solved in (18] by 
using Chebyshev iteration combined with a preconditioning technique. The matrix 
A was first decomposed as A = LU + F where M = LU is an approximate LU 
decomposition of A provided by one step of the SIP algorithm described in [211. 
Then Richardson iteration was run for the problem M-Ax = M-'b, yielding the 
sequence of approximate solutions 

(5.1) x(k+l) = x(k) + tkM-lr(k), 

where r(k) is the residual b - Ax(k) and tk is an acceleration parameter. The 
acceleration parameters were first chosen a priori and, as the iteration proceeded, 
they were periodically adjusted in such a way that the iteration (5.1) matches the 
(optimal) Chebyshev iteration [12] for the problem M-1A = M-lb. After 60 steps, 
the residual norm has decreased by a factor of (see [19]): 

11 r(60) 1/ 1r(0) 1 2.025 x 10-5. 

The initial vector xo was generated randomly. Note that an important part of the 
calculations lies in the computation of a few eigenvalues of A, as these are needed 
for determining the optimal parameters tk. 
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Convergence of Algorithm 3.5 on exanWle of Subsection 5.5. 

Upper curve p = 2, lower p = 4 

Two runs have been made with Algorithm 3.5, the first with p = 2 and the 
second with p = 4. The same preconditioning matrix M = LU as above has been 
used. Figure 6 shows the evolution of the residual norms IIM-Ax(k) - M-'bI and 
confirms the remarks ending Section 3. In either case, no restart was necessary 



LARGE UNSYMMETRIC LINEAR SYSTEMS 125 

and, at the 60th step, the actual residual norms lb - Ax(k)lI decreased by a factor 
of 

llr (60)11/ 1 1 r?) 11 4.44 x 10-7 forp = 2 
and 

I I r'60) rlo/ I I 1.62 x 10-7 forp = 4. 
Clearly, here the choice p = 2 is more suitable than p = 4. Note that, with p = 2, 
each step of Algorithm 3.5 requires about 21 N operations, while each step of the 
first method requires an everage of 16.7 N operations per step [19]. Considering 
that it takes 40 steps for the second method to get the residual norm reduced by a 
factor of I Ir40)II/Ilr)II 3.3 x I0-5, it is easily seen that the total number of 
operations is about 16% less with Algorithm 3.5. Thus, the total numbers of 
operations are comparable. The first method requires, however, 5 N more memory 
locations than the second. (These are used to estimate the eigenvalues of M -'A.) 
Let us mention that on another example, similar to the present one, the Chebyshev 
iteration failed to converge, while the I.O.M. gave the solution without any 
problem with p = 2. 

Acknowledgments. The author is indebted to Professor P. Saylor for providing 
the example treated in Subsection 5.5, and to the referee for his valuable remarks 
and his careful corrections. 

Department of Computer Science 
University of Illinois at Urbana-Champaign 
Urbana, Illinois 61801 

1. W. E. ARNOLDI, "The principle of miniized iterations in the solution of the matrix eigenvalue 
problem," Quart. Appl. Math., v. 9, 1951, pp. 17-29. 

2. 0. AXELSSON, Solution of Linear Systems of Equations: Iterative Methods, Lecture Notes in Math., 
vol. 572 (V. A. Barker, Ed.), Springer-Verlag, Berlin and New York, 1977, pp. 1-5 1. 

3. A. Bj6RK & T. ELFVING, "Accelerated projection methods for computing pseudo inverse solutions 
of systems of linear equations," BIT, v. 19, 1979, pp. 145-163. 

4. A. CLAYTON, Further Results on Polynomials Having Least Maximum Modules Over an Ellipse in 
the Complex Plane, UKAEA Report AEEW-7348, 1963. 

5. P. CONCUS & G. H. GOLUB, A Generalized Conjugate Gradient Methodfor Non-Symmetric Systems 
of Linear Equations, Report STAN-CS-75-535, Computer Science Dept., Stanford University, 1976. 

6. D. K. FADDEEV & V. N. FADDEEVA, Computational Methods of Linear Algebra, Freeman, San 
Francisco, Calif., 1963. 

7. A. S. HOUSEHOLDER, The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964. 
8. M. A. KRASNOSELSKHI ET AL., Approximate Solutions of Operator Equations, Wolters-Noordhoff, 

Groningen, 1972. 
9. C. C. LANczos, "Solution of systems of linear equations by minimized iterations," J. Res. Nat. 

Bur. Standards, v. 49, 1952, pp. 33-53. 
10. V. I. LEBEDEV, "Iterative methods for solution of operator equations with their spectrum on 

several intervals," Z. Vycisl. Mat. i Mat. Fiz., v. 9, 1969, pp. 1247-1252. 
11. G. G. LoRENrz, Approximation of Functions, Holt, Rinehart & Winston, New York, 1966. 
12. T. A. MANTEUFFEL, An Iterative Method for Solving Nonsymmetric Linear Systems With Dynamic 

Estimation of Parameters, Report UIUCDCS-R-75-758, Dept. of Computer Science, Univ. of Illinois at 
Urbana-Champaign; Ph.D. thesis, 1975. 

13. C. C. PAIGE, "Bidiagonalization of matrices and solution of linear equations," SIAM J. Numer. 
Anal., v. 11, 1974, pp. 197-209. 

14. C. C. PAIGE & M. A. SAUNDERS, "Solution of sparse indefinite systems of linear equations," SIAM 
J. Numer. Anal., v. 12, 1975, pp. 617-629. 



126 Y. SAAD 

15. B. N. PARLETr, "A new look at the Lanczos algorithm for solving symmetric systems of linear 
equations," Linear Algebra Appl., v. 29, 1980, pp. 323-346. 

16. J. K.- REID, "On the method of conjugate gradients for the solution of large sparse systems of 
linear equations," in Large Sparse Sets of Linear Equations (J. K. Reid, Ed.), Academic Press, New 
York, 1971. 

17. T. J. RIVIIN, The Chebyshev Polynomials, Wiley, New York, 1976. 
18. Y. SAAD, "Variations on Armoldi's method for computing eigenelements of large unsymmetric 

matrices," Linear Algebra Appl., v. 34, 1980, pp. 269-295. 
19. P. E. SAYLOR, Richardson's Iteration With Dynamic Parameters and the SIP Approximate 

Factorization for the Solution of the Pressure Equation, Society of Petroleum Engineers of AIME Fifth 
Symposium on Reservoir Simulation, Denver, Colorado, 1979, SPE 7688. 

20. G. W. STEWART, Introduction to Matrix Computation, Academic Press, New York, 1973. 
21. H. L. STONE, "Iterative solution of implicit approximations of multidimensional partial differential 

equations," SIAM J. Numer. Anal., v. 5, 1968, pp. 530-558. 
22. R. S. VARGA "A comparison of the successive overrelaxation method and semi-iterative methods 

using Chebyshev polynomials," J. Soc. Indust. Appl. Math., v. 5, 1957, pp. 39-46. 
23. H. E. WRIGLEY, "Accelerating the Jacobi method for solving simultaneous equations by 

Chebyshev extrapolation when the eigenvalues of the iteration matrtix are complex," Comput. J., v. 6, 
1963, pp. 169-176. 


	Cit r103_c106: 
	Cit r99_c102: 


