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Optimal Numerical Differentiation Using 
Three Function Evaluations- 

By J. Marshall Ash and Roger L. Jones 

Abstract. Approximation of f'(x) by a difference quotient of the form 

h-'[alf(x + b1h) + a2f(x + b2h) + a3f(x + b3h)] 

is found to be optimized for a wide class of real-valued functions by the surprisingly 
asymmetric choice of b = (bl, b2, b3) = (I/ V3 - 1, I/ V, I/ V3 + 1). Te nearly opti- 
mal choice of b = (-2, 3, 6) is also discussed. 

1. Introduction. The problem of best approximating the derivative of a function 
at a single point using two values of the function is "best" solved by using the 
difference quotient 

(1) d0(h) = f(x + 2h) - x -h) 

We consider the same problem using three values of the function and arrive at 
three different solutions by interpreting "best" in five different ways. Our best 
difference quotients are 

(3-2 )f(x + ( + )h) +4V3 x +' I) h-(3 (2V3 x ) )h 

(2) d, (h) -3 6h -V3 

(3) d2(h) = f(x + h) + w Y(x + wh) + wf(x + o2h) 
3 h 

where w = -2 + X/ i/2 and 2 = - - i2 are the cube roots of 1, and 

(4) d3(h) = 32f(x + 3h) - 27f(x - 2h) - 5f(x + 6h) 
U3~~~ji) ~120h 

Section 3 below was motivated by the kind suggestion of J. Lyness. 

2. Minimum Truncation Error. Whenever we write f, we will mean either a 
complex-valued function of a complex variable or a real-valued function of a real 
variable. In the former case we assume that f is analytic near x and in the latter 
case that f is five times differentiable at x. The point x will be fixed and the 
variable h will be small. Our assumptions are chosen to guarantee (i) that f have at 
x a Taylor expansion to order h4 with error O(Ihj5) and (ii) that there be a bound 
for the modulus of f."" near x. 
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Consider the general three-point difference quotient 
3 

(5) d(h) = h-1 Y aj(x + bih) = d(a, b)(h). 
i= 1 

Substituting Taylor's theorem, 

f(x + bih) 
= 

f ) hJbi/ + i h5b5 
j=O j 5! 

into (5) and interchanging the order of summation gives 

d(h) = 2 cjhfi- (x)h + 0(h4), 

(6) 3 

Cj 2 ai bi-" j 0 O 1, 29 39 4. 

For d(h) -*f'(x) as h -*0, we must have co = 0 and cl = 1. This motivates our first 
definition. 

Definition 1. A three-point rule for the first derivative is a difference quotient 
d(a, b)(h) of the form (5) where co = X ai = 0 and cl = Y, aibi = 1. 

Definition 2. A three-point rule for the first derivative is of degree k if and only if 
d(a, b)(h) = f'(O) for every polynomial f of degree k. 

LEMMA 1. A necessary and sufficient condition for the three-point rule to be of 
degree 3 is 

CO = Ea, = 0, 

{ci = aibi= 1, 

C2 = ab2 = 0, 
3 b~0. C3 = fiaibi3= 

The proof of this is immediate from (6) above. 

LEMMA 2. No three-point rule is of degree 4. For a three-point rule to be degree 3, 
we must have all b, distinct. 

Proof. For a rule to be of degree 4 would require C2 = c3 = c4 = 0. Write this as 
a matrix equation 

bl2 b22 b32 fa 

Ba= b3 b3 b3 a2 =I?I. 

b4 b4 b4 a3 JL? 

If all bi =# 0, then the Vandermonde-like matrix B is nonsingular, so a = 0, 
contrary to cl = 1. If, say, b3 = 0, the three equations C2 = c3 = 0, cl = 1 lead 
quickly to a similar contradiction. 

Similarly, if, say, b2 = b3, we may as well combine a2 and a3, which implies we 
are dealing with a two-point rule. As above, if both bi =# 0, the two equations 
C2 = c3 = 0 force a to be zero, contrary to cl = 1. The case of b2 = b3 = 0 is 
treated similarly. Thus, for a three-point rule to be of degree 3, we must have all b, 
distinct. 
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LEMMA 3. The three-point rule d is of degree 3 if and only if 

(8) b1b2 + b1b3 + b2b3 =0. 

Proof. The first three equations in (7), co = C2= 0, cl = 1, may be written as a 
matrix equation 

O' 
Ba = I , 

O 

where the Vandermonde matrix B is easily inverted. Substitute the result of this, 

a =[(b2 - bl)(b3 - bl)(b3 - b2) ]'(b2- b2, b2- b2, b- b2- 

into C3 = 0 to obtain (8). 
Definition 3. A three-point rule d(a, b) is said to be normalized if 

min{ lb, - b2j, lb, - b3l, jb2 - b3l} = 1. 

Motivation for Definition 3. The mapping h -* ch for a nonzero constant c, which 
may also be thought of as mapping (a, b) -4 (cla, cb) while leaving h fixed, 
obviously does not change anything of substance. In other words, the set of 
three-point rules d(a, b)(h) partitions into equivalence classes with d(a, b) 
d(a', b') if there is a constant c such that a' = c-la and b' = cb. The quantity 
c4(a, b) is not a class invariant, for if d(a, b) - d(a', b'), where (a', b') = (e-a, eb) 
with 0 <e < 1, we have 

(9) Ic4(a', b')j = j E (elai)(Ebi)41 = 3c4(a, b)l < 1c4(a, b)l. 

By picking e very small, we can find arbitrarily small c4 without really changing 
anything. Some normalization is required to keep the vector b from collapsing to 0. 

In difference quotient (1) or in the standard difference quotient 
(f(x + h) - f(x))/h, a normalization has been achieved by expressing the error in 
powers of the distance between the two arguments. Set 

8 = min{lb, - b2l, lb, - b3l, jb2 - b3l} 

and rewrite the dominant error term in (6) as 

(10) C4f4! h3 =k(3i3) 4!() (8h)3 Gf4(X) (8h)3. 4! 4! ~~~~~~~4! 

A simple calculation as in (9) above shows that G = G(a, b) is constant on each 
equivalence class. 

LEMMA 4. All three-point rules of degree 3 are of the form 

( d(t) t3(t + 2)f(x + (1 + t)h) - (1 + 2t)f(x + t(I + t)h) - (t +1)2(t2 - I)f(x - th) 
t(2t + 1)(t + 2)(t2 - 1)h 

for some value of t, or are obtained from (11) by a transformation (a, b) -4 (c-a, cb). 

Proof. Select representatives from each equivalence class by setting b1 = 1. 
Let t = b2. From (8), b3 = -t/(t + 1). Clear fractions by sending (a, b) -4 

((1/(t + l))a, (t + I)b). Our representative quotient becomes (11). 
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THEOREM 1. Let d be a normalized three-point rule of degree 3. Fix h and restrict a 
and b to be real. Then truncation error is minimized when d = d,. (See Eq. (2).) This 
minimizing rule is unique up to the transformation (a, b) -* (-a, -b). 

Proof. Let d'(a', b') be any normalized three-point rule of degree 3. By Lemma 1, 
we have c2(a', b') = c3(a', b') = 0, so to minimize truncation error we must mini- 
mize Ic4(a', b')I. By Lemma 4, there is a real number t and an equivalent three-point 
rule d(t) = d(a(t), b(t)) of the form (11). Since 

Ic4(a', b')I = Ic4(a', b')/131 = IG(a', b')I = IG(a, b)I = Ic4(a, b)I/83, 

where 8 = mini#j{Ib, - bjl) (see (10)), we see that we must minimize IG(t)l = 

1c4(a(t), b(t))I/8(b(t))3 as t varies over R. 
Substituting the values of a(t) and b(t), as given in (11), into I c4(a, b)I reduces our 

problem to that of minimizing 

(12) IG(t)I = I t2(t + 1)21 - It2(t + 1)21 
min{I I- t21, 12t + 11, It(t + 2)1}3 6(t)3 

Since t is real, we have 

[t2 - 11, _ (v3 + 1)/2 < t <- + 1, (v - 1)/2 < t ' + 1, 
6(t)= It2+2tl,-(V +2) t < -(V + 1)/2, V-2 t < (V3 - 1)/2, 

12t + 11, -oo <t < - (V3 + 2), -V3 + 1 < t < V3 -2, V3 + 1 < t < 00. 

Substituting this into (12) and using the methods of elementary differential calculus 
on each interval yields that 

tmiRn IG(t) 
2 

V 
tER 9 

and that this minimum occurs at t = 1 + /, 1 - , 2(V3 - 1), 2(-V3 - 1), 
- 2, and - - 2. All six values of t give equivalent difference quotients (the 

corresponding b vectors are scalar multiples of one another). Normalizing the 
difference quotient corresponding to t = 2(V3 - 1) by sen ding (a, b) 
((V3 /2)a, (2/1\3 )b) produces difference quotient d1 (see (2)) as the unique (up to 
(a, b) -> (-a, -b)) normalized real three-point rule minimizing truncation error. 

THEOREM 2. Let d be a normalized three-point rule of degree 3. Fix h but allow all 
variables and functions to be complex-valued. Then truncation error is minimized 
when d = d2. (See Eq. (3).) This minimizing rule is unique up to the transformations 
(a, b) -> (e-a, ei"b), 0 < ) < 2X. 

Proof. As in the proof of Theorem 1, we must minimize the function I G(t)I given 
in (12). Since t may be complex, 

F1t2 - 11 onA1, 

(13) 8(t) = it2 + 2tl onA2, 

112t+11 onA3, 
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where A1 is the union of the region enclosed by Cl U C3 with the region enclosed 
by C2 U C4, A2 iS the reflection of A, in the line Re t = and A 

(A, U A2), where 

C ={ + 2 -i O 6 101 < 2 

C2 = - + 2 e 2 < 101 < r} 

C3 = { 1 + ei, 0 < 10I < 6 

C4 = {1 +vX e'9, % X < 10 < 7T}. 

FIGURE 1 

The shaded area in Figure 1 is Al. Substitute (13) into (12), use the maium 
modulus theorem on (GQt))'l to see that the minimum of G must occur on one of 
the three circles of Figure 1, and use the method of elementary calculus on each 
circle, treating G as the appropriate function of 0 on each 9i. The result is 

and that the minimum occurs at t = X and w)2. Again, the corresponding difference 
quotients are equivalent; in fact, both are equivalent to difference quotient d2 (see 
(3)). Notice that, for any nonzero complex constant c - pe"', the mapping (a, b) - 

(c'la, cb), gives an equivalent best complex three-point rule minimizing truncation 
error. Thus the "obvious" best three-point rule here is any one obtained by letting b 
be the three vertices of any equilateral triangle centered at x. (The word "obvious" 
is in quotes since the correspondinig symmetric choice was not the best one in the 
real case above.) 

3. Roundoff Error. 
Motivation for Theorem 3. In the previous section, evaluations were assumed to 

be exact. Here we assume that each computation of the function f may be in error 
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by as much as ? e where c is a small fixed positive quantity. From (5), we see that 
this generates a roundoff error bounded by 

ER = (la11 + 1a21 + ja3j)e Ae 
ER= h h 

Fix a difference quotient satisfying (7). From (6) and (7), we see that the dominant 
term in the truncation error is c4f(4)(x)(4!)-'h3 which is dominated by 

(14) E ~~~~~~~~~IC4 cf4h3 (14) ET 4! 

where f4 = sup{If(4)(y)I : y is near x}. Define the overall error E by E = ET + ER. 

Elementary calculus shows the h which makes E smallest to be given by 

M 8e 1/4 
(h c41f4) for which h we have 

E= 524 (3C)1/4 1I/4 3/4 

THEOREM 3. Let d be a normalized three-point rule of degree 3. Fix h and restrict a 
and b to be real. Then overall error is minimized when d = d,. (See Eq. (2).) This 
minimizing rule is unique up to the transformation (a, b) -* (-a, -b). 

Proof. From (15) it follows that we have to minimize A 3I c41. (Note that (a, b) 
(c-la, cb) sends A -* jcjA, Ic41 -_ 1c-31c41, so that this quantity is constant over each 
equivalence class.) 

Assume a, b, and t are real. Then 

A 31 C41 = (a2 uaI|)3 I aibi4J 

IIt3(t + 2)1 + 12t + 11 + I(t + 1)2(t2- 1)1 2(t + 1)2 

It(2t + l)(t + 2)(t2- 1)1 ) 

08t8/1(t + 1)[(2t + 1)(t _ 1)]31, _1 < t < _I" I < t < 0o, 

= j 8(t + 1)8/t[(2t + l)(t + 2)]31, -oo < t < -2 < t < 0, and 

08/1 t(t + l) [(t + 2)(t - 1)]31, - 2 <, t S - 1, 0 < t < 1. 

By elementary calculus we have 

minA A c = ()3)4 2 

and that this minimum occurs at t = I + V3, 1 - I /3, 4(v3 - 1), 4(-V3 - 1), 
- 2, and -V3 - 2. Thus rule d1 also minimizes the overall error E among all 

real normalized three-point rules. 

THEOREM 4. Let d be a normalized three-point rule of degree 3. Fix h but allow all 
variables and functions to be complex-valued. Then overall error is minimized when 
d = d2. (See Eq. (3).) This minimizing rule is unique up to the transformations 
(a, b) -> (e-ia, eicb), 0 < T < 2X. 
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Proof. Let z = 2t + 1. As in the proof of Theorem 34 we must minimize 
A 31 C41 = F(z) where 

) F) -l 113Z + 31 + 161zl + Iz + 1llIz-31 3 1 

Inspired by the results of Section 2 (see Theorem 2), we were able to guess that the 
minimum would occur for t = w and w2, which correspond to z =V i or 
z = - / i, where F = 1. Because of the symmetries F(z) = F(zD = F(-z), it 

suffices to show that F > 1 at every point of the first quadrant, C , except VX3i. 
Letr = lzl. Forz e C+ anda > 0, wehave Iz + al > r, so, from(16), 

F(z) >((lr r+rr)) 2+ = g(r). 
16 (r(r2 + 9) ) 2 + I 

Direct calculation shows g' > 0 on [9, oo) and g(9) > l, reducing the domain of 
investigation to C + n {IzI < 9} = D. Finally, a combination of evaluating F on 
the points of a mesh containing D, together with bounding grad F away from the 
singularities z = 0, 1, 3, shows F > 1 away from VS i, while a Taylor expansion of 
F about \3? i shows F > 1 on the remainder of D \ {f \3 i}. Thus three-point rule 
d2 also minimizes the overall error E among all normizalized three-point rules. 

4. A Third Rule and Some Remarks. 
Motivation for the Third Rule (see (4)). Estimating the first derivative from an 

equally spaced table adds the constraint that all three bi be integers. Under these 
conditions it is clear from formula (11) that the rule given by (4) is best in a 
number of ways. It is best among integer three-point rules of degree 3 with respect 
to (i) minimizing max{b,} - min{kb}, (ii) minimizing E b2, (iii) minimizing Y lbil, 
et cetera. 

History of Three-Point Rules. Essentially all real three-point rules appearing in 
the literature have been only of degree 2. (However, compare [3, p. 217].) The most 
prevalent of these is (-3f(x) + 4f(x + h) - f(x + 2h))/2h; see [1]. The complex 
rule (with b = (1, w, (2)) seems to be well known; see [2]. 

Comparison of Three-Point Rules. In Table 1 below,f4 is a bound for the modulus 
of the fourth derivative near x. All derivatives have been normalized to make 

minlbi - bjl = 1. 

Observe that the overall error for the rule d3 is only slightly worse than that of 
the rule dl. (By Theorem 3 it must be worse.) 

Generalizations. 1. If we use p > 3 points in our approximating rule, the most we 
can hope to achieve is 

(17) c=1, c0 = c2= cp = 0. 

This follows from a simple linear algebra argument like the one found in Lemma 2. 
Such a difference quotient is easily found in the complex case by letting b be the 
pth roots of unity and solving the Vandermonde system, 

c1 = C , c= C2= = - = 
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for a. Such a quotient appears in [2]. The last equation in (17) holds automatically 
from the p-periodicity. The same result holds in the real case. If p is even, one 
simply finds the appropriate linear combination of f(x + h) - f(x - h), f(x + 2h) 
- f(x - 2h), ... , f(x + ph/2) - f(x - ph/2). This process is essentially Rom- 
berg extrapolation. If p is odd, more delicate arguments are required, but Eqs. (17) 
can still be satisfied. 

TABLE 1 

a 
. Truncation Error Overall Error 

b (see (14)) (see (15)) 

1 o -1- - - - - | f3h2 *167f3h2 
32/3f?/3e2/3 - 04fl3e2/3 

1/2 -1/2 3! 2 

(see (1)) 

3 - 2,/3 4,/3 - 3 - 2X-/3 

6 6 6 ~~~~~~~~~~~~~~~~~2 ~4 3. 0 3 8 
1/4e 3/4. 1l/4C3/4 

d1---- - - --------------------4- - / 3 h .016 f4h p - e3 = 1.17 f4 e 

(see (2)) 

T3 
+ 1 

_..,1 13 

- + 
13 2 5 

-,,/3 N/3 ~ f4~ 3 
fl~/463/4. l4/ 

d2--------------- /-\3 h .008f f4h 9 4! 
(see (3)) . 2 

32 27 5 

40 40 40 
4~~' 4 3 16 1/4 3/4.- 1/4.3/4 

ld3 -- ----- ------ ----- ---- 3 4!- .056 f4/s f e 121f4 

(see 4)3 4!3(375)1 /4 

3 2 6 

3 3 3 

2. Pass now to the dth derivative, d > 2. To approximate f(d)(x) we now need 
p > d + 1. As above, we choose (a, b) in such a way that d(h) is an approximation 
to the dth derivative, i.e., that co = cl = * = cd_ = 0, cd = d! (see (6)) and 
that as many higher order terms be 0 as possible. Again the kind of argument used 
in Lemma 2 shows that we may hope for Cd+l = Cd+2 = * 

' 
* = 

Cd+p_l 
= 0 at 

most. As in the preceding generalization 1, we may achieve this in the complex case 
by letting the components of b be the p pth roots of unity. In the real case, 
however, we cannot always do as well. For example, let d = 2 andp = 3. Here 

2 
[f(x + h) + wf(x + oh) + w2f(x + w2h)]/h2 = f"(x) + 

I 
P)(x)h3 

So CO = Cl = C3 = C4 = 0, C2 = 2, as desired, while an easy calculation shows this 
system to be insoluble with a and b real. 
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