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On Algorithmic Equivalence 
in Linear Fractional Programming 

By B. Mond 

Abstract This paper compares the effectiveness of three published algorithms for solving the 
linear fractional programming problem. 

Consider the problem 

Maximize f(x) _ (c'x + a)/ (d'x + /8) 
subject to Ax < b, x > O, 

where A E Rrxn, b E Rm; c, d E R ; a, / E R and d'x + / > 0 for all feasible 
x. Charnes and Cooper [1], Isbell and Marlow [2], and Martos, in his 'simple' case, 
in [3] and in [4] have each given a technique for solving such a linear fractional 
programming problem when the constraint set is bounded.' Wagner and Yuan [5] 
show that for this problem the methods of Charnes and Cooper [1] and Martos [4] 
are algorithmically equivalent in the sense that the two "algorithms select the same 
nonbasic variables to enter the next trial solution and remove the same basic 
variable from the current solution". 

Here we compare the technique of Isbell and Marlow [2] (which involves the 
solution of a sequence of linear programs) to those of Charnes-Cooper and Martos. 
We point out that they are not equivalent, in that the Isbell-Marlow method only 
checks for optimality of the fractional program at points that are optimal solutions 
of intermediary linear programs; whereas Charnes-Cooper and Martos check for 
optimality of the fractional program at each step of the simplex method. Indeed, 
the Isbell-Marlow method, unlike the other two, may actually reach the optimal 
vertex and not recognize that the point is optimal. It will then proceed, or try to 
proceed, to another (nonoptimal) vertex. If the feasible set is bounded, the 
procedure will eventually return to the optimal point. If the feasible set is un- 
bounded, the Isbell-Marlow method may fail,2 whereas the Charnes-Cooper and 
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' Charnes-Cooper [1] and Martos [4] suggest that if the feasible set is unbounded, the problem can be 

regularized. As described in [4], this involves adding the constraint xI + x2 + * + xn < M for 
sufficiently large M. 

2 We emphasize that solution procedures given by their authors for problems with bounded constraint 
sets are here being used (without regularization) on problems with unbounded constraint sets. Martos [4] 
himself gives an example in which his method fails in such a case. Our point here is that the Martos 
method may succeed where the Isbell-Marlow method does not, and that the Charnes-Cooper will 
(surprisingly) always obtain a finite optimal, if it exists, even though it is necessary, in a sense, to 
proceed through an infinite point before reaching the finite optimal solution. 
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Martos methods will always recognize and stop at an optimal point, if such a point 
is reached. 

We also show that for a problem with an optimal solution at a finite point and 
an unbounded constraint set the equivalence between the Martos and Charnes- 
Cooper methods often breaks down. In such a case, the Martos and Isbell-Marlow 
methods may both fail3 whereas the Charnes-Cooper method will always yield an 
optimal solution. 

We illustrate these differences by simple examples (compare the examples here 
with [4, p. 170]). 

Example 1. 

Maximize (-24x, - 5)/ (5x, + x2 + 1) 

subject to -xl + x2 < 1, xl-x2 < 1, x > 0, 

(1) xI + x2 < 2. 

The sequence of linear programs to be solved by the Isbell-Marlow method has the 
objective function 

R(x) ( -24 - 5Xk)xI - XkX2 - 5 - Xk, where Ak = f(xk). 

Starting with xl = (0, 0), we have X1 = f(xl) = -5, and R(x) becomes xl + 5x2. 
The simplex method proceeds to the point (0, 1) (the optimal solution of the 
fractional programming problem) and then to the point x2 = (1/2, 3/2), the 
optimal solution of the linear programming problem. Now, X2 = f(x2) = -17/5 
and R(x) becomes -7x, + (17/5)x2 + 8/5. 

Solving the linear program with this new objective function, we then return to 
the point x3 = (0, 1). Since this point is optimal for the linear program, we 
calculate 3 = f(x3) = -5/2, and R(x) becomes -(23/2)xl + (5/2)x2 - 5/2. 
Since at (0, 1), the optimal for this new linear program, R(x) = 0, (0, 1) is optimal 
for the fractional program. 

Note that, when starting with a new value of Xk, the initial Isbell-Marlow and 
Martos tableaux and the methods of selecting a column to enter and leave the basis 
are precisely the same. At an initial basic feasible point x k, the last line of the 
tableau, as recommended by Martos [3], [4], is equivalent to the tableau for the 
linear programming problem with objective function [c - f(xk)d]'x which is the 
same as the objective function [c - Xkd]'x of Isbell-Marlow. As indicated, the 
difference between the two methods is that Martos recalculates the last line for the 
new f(xk) at each step of the simplex method, whereas Isbell-Marlow only recalcu- 
late Xk when an optimal solution of the linear program has been obtained. Note, 
also, that if constraint (1) is removed from our example (so that the constraint set is 
now unbounded although the optimal solution is still at (0, 1)), the Isbell-Marlow 
method fails4 entirely since the linear program with R(x) x1 + 5x2 has no 
solution. Here too both the Martos and Charnes-Cooper methods recognize (0, 1) 
as the optimal solution as soon as that point is reached. 

3 See footnote 2. 
4 See footnote 2. 
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Example 2. 

max (-24x, - 7)/ (5x1 + x2 + 1) 
subjectto -xI+x2( 1, xl-x2S 1, xO0. 

Here both the Martos and Isbell-Marlow methods fail5 since their methods will 
proceed from the starting point (0, 0) to the point (1, 0) and then along an infinite 
edge. 

The Charnes-Cooper method [1] requires the solution of the corresponding linear 
program 

max -24y -7t 
subject to -YI + Y2 - t S 0, y -Y2 -t < 0, 

5y1+y2+t= 1, y>O, t 0. 

Finite feasible x of Example 2 relate to feasible (y, t) of the corresponding linear 
program by the equations 

xi = yi/t, x2 = Y2/ t. 

For corresponding finite feasible points, the values of the fractional and linear 
programming problems are equal. The simplex procedure generates the following 
sequence of basic feasible points and corresponding values of xl and x2: 
(y1,y2, t, xI, x2) = (0, 0, 1, 0, 0), (1/6, 0, 1/6, 1, 0), 

(1/6, 1/6, 0, oo, oo), (1/6, 1/6, 0, oo, oo), (0, 1/2, 1/2, 0, 1). 

x = (0, 1) is thus the optimal solution yielding a maximum value of - 7/2. 
Note that the Charnes-Cooper approach must succeed in such cases since their 

method requires the solution of a linear program with the same finite optimum 
value (as the fractional programming problem) at the corresponding finite optimal 
point. Moving along an infinite edge in such a fractional progranming problem 
corresponds in the linear program to proceeding to a vertex with t = 0. Therefore, 
it would appear, that, even for problems with unbounded constraint sets, regular- 
ization (and, [4, p. 172] "all the troubles regularization entails") is not necessary 
when using the Charnes-Cooper method for solving a linear fractional program- 
ming problem. 
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