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The Rate of Convergence of Chebyshev Polynomials 
for Functions Which Have Asymptotic Power Series 

About One Endpoint 

By John P. Boyd* 

Abstract. The theorem proved here extends Chebyshev theory into what has previously been 
no man's land: functions which have an infinite number of bounded derivatives on the 
expansion interval [a, b] but which are singular at one endpoint. The Chebyshev series in 
l/x for all the familiar special functions fall into this category, so this class of functions is 
very important indeed. 

In words, the theorem shows that the more slowly the asymptotic power series about the 
singular point converges, the slower the convergence of the corresponding Chebyshev series 
must be. More formally, if f(x), analytic on [a, b), is singular at x = b in such a way that it 
has an asymptotic power seriesf(x) - E a,(x - b)' about that endpoint, then, if 

loglanl 
nr logn'r 

it is proved that the coefficients of the convergent Chebyshev polynomial series on (a, bJ, 
f(x) - I bn Tn(y) wherey = 2[x - 0.5(b + a)l/(b - a), satisfy the inequality 

lim logj(logjbn1) < 2 
n--*o log n r + 2 

It is well known that if a function f(x) is singular about a point, let us say x = 1 
to be definite, then the power series of f(x) about that point is at most asymptotic 
and must diverge. The corresponding series of Chebyshev polynomials on [-1, 1], 
which includes the singularity as an endpoint, is much more robust. If the 
singularity is weak, in the sense that all (left) derivatives of f(x) are bounded at 
x = 1, then it can be proven by a simple integration-by-parts argument [11 that the 
Chebyshev series converges absolutely and exponentially on the interval. Indeed, 
such series, usually in the form of series of shifted Chebyshev polynomials in l/x, 
are enormously useful in approximation theory for representing the large x be- 
havior of Bessel functions and many other common transcendentals. Luke [2] gives 
extensive tables of such approximations. 

Although a Chebyshev series, whose coefficients are O(e -, ), technically pos- 
sesses the property of exponential or "infinite order" convergence for any positive 
/3, the precise value of /8 is obviously of great practical importance. The integration- 
by-parts argument implies only that /8 > 0. When a function has a singularity 
which is not on [-1, 1], it is known that bn - ae - " for some a and X which depend 
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on the location and residue of the singularity [1] (i.e., the coefficients form a 
geometric series, at least asymptotically); when the singularity is at an endpoint, 
this argument implies that the convergence must be "subgeometric," i.e., 8 < 1. 
The goal of this work is to prove a tighter bound on 13. 

For simplicity, it shall be assumed throughout that the singularity is at x = 1 and 
that the desired interval of Chebyshev expansion is [-1, 1]. However, these ideas 
can be generalized to an arbitrary interval [a, bl, with the singularity at x = b, 
merely by making the simple linear change of variable from x E [a, bJ to y E 

[-1, 11 which is given in the abstract. 
The first step in the proof is to formally define the two orders of convergence 

which the theorem will compare. 
Definition. The order r of an asymptotic series I a,,(x - b)n about the point 

x = b is defined by 

(1) r_ li- loglanI 
n-oo n log n 

Thus, the series L (-1)nnn!x" has order 1 while E (2n)!x and Y (n!)2xn both 
have r = 2. The greater the order of the series of f(x) about a given point, the more 
rapidly its derivatives at the chosen point increase with increasing degrees of 
differentiation, i.e., if b = 1, then 

(2) li logf(1) = r + 1 
noo n log n 

from Taylor's theorem. 
Strictly speaking, one must distinguish between left- and right-hand derivatives 

in (2), but this is usually obvious from the context. In the rest of the paper, f(x) is 
assumed to be analytic on [-1, 1], except at x = 1, so clearly (2) should be 
interpreted as the derivative as x -> -. 

Definition. The index of exponential convergence f8 of the Chebyshev series 
E bn T1(x) is the least upper bound of those k for which 

(3) 1 bnI < pe-qnk 

can be satisfied for all n with some finite positive constants p and q. 
This definition implies that, for any function f(x) of index of convergence , 

,8 > 0 (as henceforth assumed), one can find a function R(x; p, q, k) (k </3) 
defined by 

00 

(4) R(x;p, q,k) = p2 e- qnkT( 
n=O 

which, term-by-Chebyshev-term, is greater than f(x) since the Chebyshev polynomi- 
als satisfy the bound I TI(x)I S 1 for all n and all x E [-1, 1]. This in turn implies 

(5) R (n)(1) > If(n)(I)l 

for all n. The grand strategy of our proof will be to estimate R (n)(1; p, q, k) as a 
function of n and k and f(n)(l) as a function of n and r. We will then show that, 
unless k ? 2/(r + 2), the derivatives of f(x) at x = 1 will grow faster with n than 
those of the bounding function R(x; p, q, k), which, according to (5), is impossible. 
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Since (2) already provides all the needed information onf(")(1), the principal task 
of the proof of the theorem is to estimate the magnitude of R(n)(1), which will be 
done by Lemma 3. In order to make this estimate, however, we need to establish 
two simpler results first. 

LEMMA 1. 

(6) Vn) IT ~~~~1/ir(j + n) (6) Tjn)(i) = r(j-n + 1)2nr(n + 1/2) 

Proof. The identity 
n n-i(2 -2) 

(7) Tj()(1) -=O (2k + 1) 

is given by Gottlieb and Orszag [1]. By factoring (j2 - k2) and repeatedly using the 
definition of the gamma function, (7) can be rearranged into (6). 

LEMMA 2. Let the function S(n, q, k) be defined by the sum 
00 

(8) S = 2 e qj)2n. 
j=O 

Then 

(9) log S(n, q, k) < k log(n) + 0(n). 

Proof. The sum can be interpreted as the exact integral of the piecewise 
continuous function defined by 

(10) g(x) =e q2n j x < j + 1, 

i.e., 
00 

(11) S = f g(x) dx. 

Since the integrand of 

(12) I(n, q, k) _f Xq(x+1)k(x + l)2n d 

is everywhere greater than g(x), it follows that 

(13) S SI. 

By making the change of variable x + 1 -- u, 

(14) I = e-q"uu2n du 

(15) f | -qu2n du - e- "u2n du. 

The first integral in (15) is (with a change of variable) the integral definition of the 
gamma function while the second can be bounded by 

1 2n d u2 du, 

which is obviously 1/(2n + 1). Thus, 

(16) I= + r( 2nk 1 )q-(2n+ 1)/k + 0(n'-). 

Applying Stirling's formula to (16) then gives (9). 
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LEMMA 3. Let p, q be positive constants and let 0 < k < 1. Then 

(17) li log R ()(l;p, q, k) S 2 
n-o)co n logn k 

Proof. From (4) and Lemma 1, one has (using R for R(n)(l; p, q, k)) 
00 

(18) R=Q I e k. jJr(j+ n) 

j=O r(j-n + 1)' 

where 

(19) Q 22nr(n + 1/2) 

Now 

(20) jr(j + n) jr(j+ 2n) 
() r(j- n + 1) r(j- n + 1)[(j + n)(j + n + 1) **(j + 2n -1)] 

(21) < 1r(1 + 2n) 

where the last expression follows by replacing each of the factors of j + n + i -1 

in the square brackets in (20) by the smaller factor j - n + i (i = 1, 2, . . . , n). 

Cancelling the common factors shows that 

(22) jr(j + 2n) =j(j + 1) ...(j + 2n-1) 

(23) < (j + 2n)2n, 

where (23) follows by replacing each of the 2n factors in (22) by (j + 2n). 

Combining (20) through (23) with (18) shows 

(24) R <Q y e- ik(j + 2 )2n 

j=O 

Since 

jk+(2n) (j + 2n)k, 0 < k < 1, 

it follows that 

(25) R < Qe q(2n) z e-q(i+2n)k(j + 2n)2n 
j=0 

Since the sum in (25) is equivalent to that defining S (Eq. (9)), but with the first 2n 

terms omitted, it is clear that, using the definition of Q, 

1T 1 /2peq(2n)k 

(26) R < 2_'n+ /)S(n, q, k). 

Lemma 2 and Stirling's formula show 

(27) R < 
2 
k-l)n log n + 0(n), 

and the lemma follows immediately. 
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Armed with estimates of R (')(I; p, q, k), it is easy to prove 

THEOREM. If f(x) is a function which is analytic on [-1, 1], except for a singularity 
at x = 1 where it has an asymptotic power series f(x) - L a,,(x - 1)" whose order of 
convergence is r where r is defined by 

(28) r _ lim og I a 
noo n log n 

then the index of exponential convergence /3 of its Chebyshev series, where ,B is defined 
as the least upper bound of k such that 

(29) |1bj |<S pe-qn 

for some positive constants p and q and all n, must satisfy 

(30) ,B < 2 

assuming this index of convergence exists. 

The theorem can be extended to intervals other than [-1, 1] by a trivial change 
of variables. 

Proof. For every 0 < k </3, 

(31) lf(n)(I)l < R(n )(I; p q k) 

for some positivep, q where the left-hand derivative is implied. Thus, 

(32) 1 + r= lim lf(n)I 
n,oo nlogn 

(33) 2 -1, 

where the inequality follows from (31) and Lemma 3. Taking the least upper bound 
of k gives 

2 
(34) + r< -1, 

which is equivalent to (30). 
A few comments on the theorem are in order. First, the restriction that f(x) be 

analytic on [-1, 1], except at an endpoint, has been imposed because it is well 
known [1] that, if the jth derivative of f(x) is unbounded at some point on the 
interior of [-1, 1], then 

(35) bn - (n-lj+ )), 

and ,B > 0 is impossible. In this event, the only sensible course is to speak of j in 
(35) as the index of algebraic convergence for the Chebyshev series and to dump 
the theorem proved here in favor of these earlier results [1] relatingj to the degree 
of the lowest derivative which is unbounded. 

Second, the restriction that f(x) be singular at an endpoint is also necessary for 
the theorem to improve upon past work. If f(x) is analytic on all of [-1, 1] but has 
a singularity somewhere else in the complex plane, then the index of exponential 
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convergence /8 = 1, and one can in fact obtain the precise asymptotic form of the 
Chebyshev coefficients if the type and location of the singularity nearest to [-1, 1] 
is known [1]. 

It should not be inferred, however, that functions which meet these restrictions 
are rare or exotic. All special functions which have asymptotic power series in l/x 
have corresponding Chebyshev expansions in l/x which meet the conditions of the 
theorem. Thus, the theorem applies to almost half the series in Luke's treatise [2], 
which is the most extensive collection of numerical Chebyshev series to date. 

Third, this theorem is similar both in spirit and proof to the well-known theorem 
of complex variable theory which relates the limlanl/(n log n) of the power series 
coefficients of an entire function to its order. Here, we compare growth of 
derivatives with n to the Chebyshev coefficients rather than growth of the function 
itself with lxl to the power series coefficients, but the basic idea is the same: the 
faster the growth in the property of f(x), the slower the series must converge in 
order to reproduce this growth. The Hermite polynomial convergence theorem of 
Boyd [4] is also similar. 

Fourth, one can often show that the inequality in the theorem can be replaced by 
an equals sign in specific cases. The Stieltjes function, for example, which is 
defined by 

(36) f(x) 1e+ dt, 

has the asymptotic series 

(37) f(x) -f (1 ) n! x' 

and is therefore of convergence order r = 1 at x = 0. This implies that /8 < 2/3, 
according to the theorem, but Luke [2] has shown that the Chebyshev expansion of 
(36) on [0, 1] has 

(38) b O(e_3n2/3) 

i.e., /3 = 2/3 precisely. 
This raises the obvious question: can we strengthen the theorem for all cases by 

replacing the equality by an equals sign? The answer is no; a simple counterexam- 
ple is provided by f(x) = e - l/x2. Its (right-hand!) derivatives at x = 0 are all zero, 
implying that r = 0, but, by applying the method of steepest descents to the 
coefficient integrals, it can be shown [5] that ,8 = 2/3 rather than the upper bound 
of /8 = 1 given by the theorem. 

Nonetheless, it seems reasonable that there does exist a general class of functions 
for which /8 = 2/(r + 2)-perhaps it includes all functions which have nontrivial, 
i.e., nonzero, asymptotic series about the singular point. The obvious goal of future 
research is to strengthen the results of this paper by (i) determining when the 
inequality can be replaced by an equals sign and (ii) obtaining information about 
the constants p and q, i.e., more precise information about the convergence of the 
series than that given by /8 alone. For individual functions, steepest descent can be 
very useful in finding the asymptotic form of the bn [5]. 
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