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Automatic Selection of Sequence Transformations 

By J. P. Delahaye 

Absact. Some methods of automatic selection of sequence transformations for accelerating 
the convergence of sequences are presented. Two theorems show the efficiency of these 
methods. This is confirmed by numerical experiments. 

Introduction. When faced with the great number of various methods for accel- 
erating the convergence of sequences [3], [41, [5], and also with the problem of the 
choice of parameters for some of them (Richardson process [8], p-algorithm [2]), 
the user is in a quite difficult position. If some precise information about the 
behavior of the sequence to be accelerated is known, it is possible to determine the 
most powerful acceleration method, but, even in this case, several possibilities 
remain. The user can (if he has plenty of time!) try all the methods and choose the 
best one with the help of some test problems. 

In practice, however, it happens very often that the choice is arbitrary and thus is 
not the best one for the problem. 

In this paper some automatic processes for selecting a good method of accelera- 
tion among several sequence transformations are proposed. All these processes 
work with the following scheme: 

At the nth step the various transformations "in competition", A1, A2,...,Ak, 
are applied to the sequence (Sj) of a metric space E. The transformed points 
A (n) , . . ., (n) are obtained. Then, one of the transformed points 
A (n), (..., A(n) is selected by using various tests (several are defined and 
studied). This point must be the best one at this step. 

The use of these automatic selection methods is more expensive than the use of a 
single transformation for accelerating the convergence because it is necessary to 
use, simultaneously, several transformations. However, this is not a drawback 
because acceleration transformations are generally not expensive. 

In the first section we present various general methods for selection, and we give 
some examples. In the second section we prove two theorems which legitimize the 
proposed methods. The numerical results of the third section confirm the practical 
efficiency of these methods. 

1. General Definitions for Selection Methods. 
1.1. Count Coefficients. Let (n) be a relation (true or false depending on i and n) 

defined for all i E { 1, 2, . . ., k} and for all n E N, n > nO. 
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Let us set the following count coefficients: 
= JO if n < no or if 6An) is not true, 

if n > no and if 6,(n) is true, 

r(n) = card{q E {O, 1, ... , n)ln > no and 6@(n) is true), 

0 if n < no or if %(n) is not true, 
2r(") = max{q E { 1, 2. *,n-nO+ 111 

5 <,- l), .I . , I are true), if n > no and if l is true. 

Note that, even if iRtn) is not defined, the count coefficients exist when n < nO and 
become zero. We have the following properties: 

Vi E {1, 2, .. . , k}, Vn E N: 
n 

-rn) O E r(n); 0 < Or(n) < 2r(n) < lr(n); n > nOo lr(n) < n-nO +1- 

It is possible to define other count coefficients. For example, a coefficient can be 
defined such that @(n) has more importance than 64(i" 1), 6n"- 1) has more impor- 
tance than 'R"n-2) etc. Let Al,A2,...,A A be k sequence transformations. We 
denote by A (")(Sm) A (n (Sm)q A Sm), respectively, the sequences obtained by 
applying these transformations to the sequence (Sm). For convenience, we shall 
also write A,(n) instead of A (n)(Sm). All the sequences in this paper are sequences of 
a metric space (E, d). If we substitute the relation 6Jt(n) for the relation (C4")): 
A -n) = A("-1) (which is defined only if n > 1), we obtain other count coefficients 
denoted by c(i) lc() 2ci 1)C 

Let / E N. If we substitute the relation 6Wn) for the relation 

max d(Ai A/2q ) = mnm max d(A5n ),A5(-l)) 

(which is defined only if n > I + 1), we obtain other count coefficients denoted by 
I di tdi(n), fri(n). When I = 0, we denote by 6i4( ) the relation Tn)'i and by Oj(n) ld.(n) 

2d,(n) the associated count coefficients. 
Remark. The theorems proved in the following sections concern only the rela- 

tions &?n) and j;I n. However, it is possible to define other relations. 
In particular, for methods based on interpolation (Richardson process [8], 

p-algorithm [4], etc.), we can use the relation 

d(Sn, Sn) = min d(Sn, Sni), 

where Sni is the value at xj of the interpolation function which takes the values 

Sn-k' Sn-k+1. 
I I 

, 
I Sn-I at X-njk' Xnj-k+l ... , Ixnj I ((xn) (x2) . . . , (xnk) are k se- 

quences of parameters; for example, in the Richardson process it is assumed that: 
Vm, n: n # m X xj, X and limn12 xy = 0). Such methods are more expensive 
than the methods studied in this paper, because the calculation of S' practically 
implies the determination of the interpolation function. However, some of the 
obtained results may oe of interest [7]. 

1.2. Selection Methods. Let f E {0, 1, 2}. With the help of the coefficients fr(n), 
we define a new transformation A which selects at each step, one of the transfor- 
mationsAi (i E {1, 2, . .. , k}). 
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Step n of the Transformation A = fR(AI, A2, .. ., A,). We compute frn), 

f . r. ., ). Let i(n) be the smallest i such that 

fr(n)= max fr(n) 
I 

<j<k J 

We choose A (n) = A (n) 

When applied together with the above count coefficients and k sequence trans- 
formations, this scheme defines new sequence transformations denoted by 

0C(A1, A2, . .. , Ak), QC(AI, A2, . .. , Ak), 2C(A1, A2, . . ,Ak), 7D(A1, A2, . . .A 

D(A1, A2, ... , Ak), ?D(A1, A2, .. ., A,). If I = 0, the last three transformations 
are denoted by OD(A1, A2, . .. , Ak), 'D(A , A2, . .. , Ak), 2D(A1, A 2, .. ., Ak). 

Remark 1. Sometimes it is possible to compute recursively the count coefficients. 
For example, the computation of lC(n) need A . . . A A(n); but, in fact, it is 
possible to do it only with 1c n-1), A,(n), A(n- I), because of the obvious relations: 

In) = IC(n - l) if A(n) A (n - l) 

IC(n) = IC(n - 1) + 1 if A(n) A (n - 1) 

Remark 2. In a selection method of sequence transformations, it is desirable to 
have a normalization, i.e. an eventual shift of the index such that the computation 
of A,(n) uses, at each step, the same points of the sequence (Sn); for example, points 
among SO, S1, . . ., Sn. The calculation of E(n) uses Sn, Sn+,1 Sn+2 [3], hence, if 82 is 
one of the sequence transformations "in competition", we write A(0) = S0; A = 

S1; A ) = (n-2) for n > 2. 

When this normalization is respected, the new obtained sequence transforma- 
tions are also normalized. 

Remark 3. It is possible, in practical cases, that one of the used transformations 
can no longer be applied (for example in the case of division by zero). In such a 
case two kinds of strategies can be employed. 

When this is the case for the transformation Aj at the step no: 
(10) For all n > no, only the transformations Ai with i #j are considered. 
(20) For all n > no, we take 

n) A(no); (9,n) ,5 6{o) 

Remark 4. Methods of selection among a finite number of transformations are 
the only ones studied herein. However, it is possible to study the case of an infinite 
number of transformations. Such methods are studied in [7]. 

ExamWle 1. Let A1, A2 be two given sequence transformations. 0D(A1, A 2) is the 
sequence transformation A which, at the step n, produces the more stable one of Al 

or A2; i.e. 

A(n) = A(n) if d(Ain), Ain-1)) < d(A n) ASn-1)) 

A (n) = A 2n) if d(A Sn), AS n- 1) ) < d(A in), Ai in - 1)) 

QC(AI, A2) is the sequence transformation A which, at the step n, produces the less 
frequently changed one of A1 or A2; i.e. -A(n) = A(n) if in the first n steps 
A(q) = A(q- ) is more frequently true than A q) = Aq- l); A(n) = A(n) if not. 

ExamWle 2. Selection among Richardson processes [3], [4], [8]. Let (tn) be a 

sequence of real numbers such that limn, tn = 0 and i #j =X ti #L tj. The 
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Richardson process with parameters (tj) is the calculation of T(n) = P(n)(O), where 
p(n) is the unique polynomial such that 

J k (tn) = Sn; Pkc tn+l) = Sn+l; ... ;Pkc )(tn+k) = Sn+ks 

d?Pkn) < k. 

When k is fixed, we obtain a sequence transformation. But usually it is interesting 
to consider the diagonal transformation n -Tn . For example, with three se- 
quences of parameters (tn), (xn), (Yn), we obtain three diagonal transformations 

(T(n)), (X(n)), (y(n)) which can be denoted by A("), An) A("). Below, we shall see 
that the new transformation 'D(AI, A2, A3) is an interesting one, because it "plural- 
izes" the extrapolation properties of A1, A2, A3. In such an example it is not 
necessary to "normalize" the sequence transformations A1, A2, A3 because, at the 
step n, each of them uses the same points Sn, Sn+ 1, . .. , S2n. 

Example 3. Practically, the most interesting methods are the selections among 
transformations as various as possible. We shall see, in the third section, a few 
computational experiences with fD(A 1, A2, A 3, A4, A5 A6) where 

A 1 is the Richardson process [3], [8], 
A2 is the E-algorithm [3], [10], [11], 
A3 is the p-algorithm [2], 
A4 is the Overholt process [3], [9], 
A5 is the 0-algorithm [1], [3], 
A6 is the iterated A2 [4]. 

2. Two Results on Selection Methods. 
2.1. Exact Transformations. We recall a few definitions which are used below. We 

say that the sequence transformation A is regular for the family S of convergent 
sequences if 

V(Sn) " :nM Sn = lim A (n). 
n--3oo n--+oo 

We say that the sequence transformation A is semiregular for the family S of 
convergent sequences if 

V(Sn) E S [ 3nO E N, Vn > nO A (n) = A(n+1)] 

3mo E N, Vm > moA(m) = m Sn]. 

We say that the sequence transformation A is exact for the fam4ty S of convergent 
sequences if 

V(Sn) E S 3mo E N, Vm > mo: A(m) =lim Sn. 

We have 

[A exact] [A regular] =[A semiregular]. 

Results concerning these properties are known for most of the acceleration meth- 
ods ([3], [4], [6], etc.). 

THEOREM 1. Let 1, S2 ... I Sk be k families of convergent sequences. For each 
i E { 1, 2, . . . , k}, let A, be a sequence transformation, exact for c, and semiregular 
for SI U S2 U . . . U Sk. Then the transformations lC(A1, A2, . .. , A 09 

2C(A1, A2, . .. , Ak), D(A1, A29 ... , Ak), 1D(A , A2, ... , Ak) are exact for c5 U S2 

U ... U Sk 
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Proof. We indicate a proof only for 1C(A 1, A2, ... , Ak) denoted by A. One can 
easily adapt this proof to the other cases. 

Let (Sm) E 1u U .2 . U k. Let I0 be the set of integers io such that Ai0 is 
exact for (Sm). From the assumptions there is at least one element in Io, but it is 
possible that there are several ones (because we have not supposed that the , are 
disjoint). Since Io is finite, there exists po E N such that 

V io E Io Vp >po: A,w = S (S = lim Sm). 

Hence, for each p > p0, io E Io, we have 

(*) lP) > P - Po 

Contrarily, if i 4 Io, there exists an infinite set of integers p such that 

A(P) #AK-1) 

(this, from the assumption that A is semiregular). Consequently, there exists an 
integer pI > p0 such that, for each i Io0,p > p1, 

(* *) lC(P~~1) < p _-po 

From (*), (**) we obtain that, for everyp > P , i(p) E IO, and then A(P) = S. 
Remark 1. Theorem 1 tells nothing about the selection methods ?C and O?D, and it 

is possible, by counterexamples, to prove that generally the theorem is not true for 
?C and OD. 

Remark 2. The integer p1 in the proof cannot be determined without other 
assumptions; but in practice p1 is close to the index p such that there exists i: 
A,(w)= S. 

Remark 3. Negative results concerning sequence transformations for accelerating 
the convergence show that the assumptions of semiregularity are essential [7]; 
without similar assumptions, no theorem such as Theorem I is possible. 

2.2 Transformations for Accelerating the Convergence. We assume, in this section, 
that all sequences (Sn) are convergent and verify 

3nO E N,Vn > no: S, # lim SmandSn #S,+,. 

We say that the sequence transformation A accelerates the convergence of (Sn) 
(resp. A-accelerates) if 

lim d(A(n), lim Sm)/d(Sn, lim Sm) = 0 

(respectively limn ><x0 d(A "n 1), A(n))/d(Sn+ 1, Sn) = 0). When A accelerates (resp. 
A-accelerates) all the sequences (Sn) of the family 5, we say that A accelerates 5 
(resp. A-accelerates S). We say that the sequence transformation A is fair for S if, 
for every sequence (Sn) E 5, 

(F1) either A accelerates and A-accelerates (Sn), 
(F2) or 3e > 0, 3nO E N, Vn > no d(A("+'), A(n))/d(S0+1, S") > 

When E = R, a sufficient condition such that A be fair for S is: all the sequences 
in S are monotonic, and the sequence (d(A (n + 1), A ("))/d(Sn+1, SO)) is always 
convergent to some limit 1. The reason is that either 1 = 0 and then A accelerates 
and A-accelerates (see [3]) or 1 > 0 and then (F2) holds. 
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THEoREM 2. Let I E N. Let A1, A2, .. ., Ak be k sequence transformations. For 
each i E ( 1, 2, . . . , k}, we assume that A, accelerates and A-accelerates Si, a family 
of convergent sequences, and that A, is fair for 51 U 52 U U * Sk* Then the 
transformations ?D(A1, A2, ... , A,), 'D(A1, A2,k. . ., Ak), 2D(A1, A2, .. ., Ad) accel- 

erate 51 U 52 U ... U Sk 

LEMMA. Let (Sn) be a convergent sequence with limit S. Let (A in)), 

(A(n)),... , (A()") be k sequences which accelerate the convergence of (Sn). Let i: 
N { 1, 2, . . . , k}. Then the sequence (A (n) accelerates the convergence of (Sn). 

Proof. Let e E R+*. For each i E {1, 2, . .. , k}, there is m, E N such that 
Vm > mi: d(Afm), S)/d(Sm, S) < e. Letting M = max{m,ji E {l, 2, ... , k}}, we 

obtain 

Vm > M: d(A,m ), S)ld(Sm, S) < E 

Remark. The lemma is not true with A-acceleration. Here is a counterexample: 
S = l/n, A(n) = l /n2 A) - l/2n2, i(n) = (3 + (-_)n)/2. We have 

lim d(A n + 1), A in)) / d(S+1, S) = 0 
n-)oo 

lim d(A n+1), A"))/d(Sn+1, SO) = 0, 
n--+oo 

lim d(A (n +l ), A (n)) )/d(Sn+ 1, Sn) = 1/2. 

Proof of Theorem 2. We indicate a proof only for ID(A1, A2,..., Ak) denoted by 
A. One can easily adapt this proof for the other cases. Let (Sn) E ' I U S2 
U ... U Sk. Let S be its limit. Let I0 be the set of integers i E { 1, 2, ... , k} such 
that A, accelerates and A-accelerates (Sn). From the assumptions Io is nonempty. If 

j 4 I., there exists ei E Rt* and n1 E N such that 

Vfn > nj, d(Aj(n + 1), A (n)) / d( Sn + 1, Sn) > E>j. 

We write E = min{ejlj 4 IO}, N = max{njlj 4 IO); we obtain 

Vn > N, Vj M IO: d(An+ 1), Aj())/d(Sn+1, SO) > E. 

Similarly there exists N' > N such that 

Vn > N', Vi E- IO: d(AXl) Al )/(n+1" Sn) < E 

This implies that, for each n > N' + 1, i(n) E IO. From the lemma we can conclude 

lim d(Ai(n,) S)/d(Sn, S) = 0. 
nl-400 

Remark 1. The assumptions of Theorem 2 are often satisfied in practice, but 
generally it is difficult to show that they are satisfied for specified transformations 
A, and large S. Nevertheless, this theorem justifies and explains the efficiency of 
the selection methods ID as we shall see in the practical cases of Section 3. 

Remark 2. We can generalize the notion of fair transformations; we say that the 
sequence transformation A is h-fair (h E N) for S if, for every sequence (Sn) E 5, 

(Fl) either A accelerates and A-accelerates (Sn), 
(EF2) or 

3e > 0, 3no E N Vn > no max d(A(n-r+ 1), A(n-r))/d(Sn+ 1, SO) > E. 
0<r<h 
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We obtain [A fair] < [A 0-fair]. If h > h', [A h'-fair] X [A h-fair]. The assumption 
"A h-fair" is more often true than the assumption "A fair". However, Theorem 2 
with 1 > h is still true. 

3. Computational Experiences. The computational experiences presented here 
were made with C. Brezinski's codes [4], and I would like to take this opportunity 
to thank him, for his excellent advice and support. 

Example 1. In Table 1 we present the first 10 steps for the 8 transformations in 
competition (see Section 1, Example 3) when they are applied to the sequence 

Sn = 2(2 + 4( I 4) 3 2 
+ 2n 

I 2 34 -( (2n - ) 2 
-.22005074 *.-.-. Sn/=l\21/l~ .3 4l'l*3* ...(2n-) 

\ 

The selected transformation by the method OD at the nth step is indicated with an 
X. We see that this chosen transformation is always among the transformations R, 
p, or 9, which are here the transformations which accelerate the convergence. 
Consequently, we can say that the choice is correct. The method 1D is also correct; 
at the step n with n > 3, the chosen transformation is always the p-algorithm. The 
method 2D gives exactly the same results that the method OD. 

TABLE 1 

sn R(1 /n) (n) Ov. e it. 

.125 .125 .125 .125 .125 .125 .125 

.16015625 .19531250 .16015625 .16015625 .16015625 .16015625 .16015625 
______ * . .. ...1 2 2 2 2 2 

.17645229 .21582031 .19046336 .22077047 .19046336 .17643229 .19046356 
2 53 5 6 3 

.18577830 .21959093 .19838255 .22035281 .20227823 .21918327 .19858255 
________ 2 5 (1) 4 5 5 

.19183451 .22002856 .20570155 .22004511 .20782237 .21966574 .20936274 
,_________ 2 6 . 1 L 5 3 4 

X 
.19607526 .22005258 .20871905 .22004902 .21095162 .21984779 .21158726 

__________ 2 6 (1 ) L 5 1 3 4 
X 

.19920946 .22005113 .21158833 .22005079 .21293141 .22005077 .21590176 
_______ __ C3 L 6 2 1 4 

X 
.20161980 .22005076 .21305538 .22005076 .21428050 .22005078 .21659597 

1 6 1 5 ?iL. 4 
X 

.20353087 .22005074 .21447121 .22005074 .21524960 .22005077 .21839937 
1 6 1(1) 5 3 4 

.20508314 .22005074 .21529441 .22005074 .21597591 .22005078 .21861073 
__ __ _ 1 6 -1 ) 5 3 4 

Since we know that S = .22005074, we can determine, at each step, the exact rank 
of each transformation (this rank is indicated in Table 1 by a number under each 
transformed point). For example at step 4 (the first significant one) the p-algorithm 
gives .22033281 and this is the best transformed point; the rank of the p-algorithm 
at step 4 is consequently 1. The method OD chooses the p-algorithm at step 4; this is 
the best possible choice. At steps 5 and 6 the choice is still the best possible, but at 
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step 7 ?D chooses the Richardson process whose rank is 3. The rank sequence of 
chosen transformations is (1, 1, 1, 3, 3, 1, 1). This is not the best possible rank 
sequence, which is (1, 1, 1, 1, 1, 1, 1). However, it is a good rank sequence because 
all ranks are S 3, and there are only three sequence transformations accelerating 
the convergence of (Sn). For the two following examples, we have only indicated 
the rank sequence of the chosen transformation when the method OD is applied. 

Example 2. S,, = exp(-Vn /1OV )/n. 

TABLE 2 

0 1 2 3 4 5 61 7 8 9 1 01 12 131 4 15 16117 18 19 20 21 22 2) 4 

- . - __ _ _ _1- - -_ - . _-- 2 l l 3 3 l l l l 1 2 2 3 3 3 3 3 3 3 X2 2 

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 

-3 -3 2 31-3 -1-1 4 2 3- i - 2--3- 
1 2 - 2-2 2 

Only three transformations accelerate (Sn): e-algorithm, p-algorithm, and A2 

iterated. When n is large enough, at each step n, ?D chooses one of these three 
transformations. 

Example 3. S2n = (1/2n), S2"+1 = (4n + 5)/(2n + 2)2. 

TABLE 3 

__= =-I31 4 5 6 7 8 [910 11 12 13 14 15 16 17 18 1920 21 22 23 24 

25 26 27 28 29 30 31 32133 34 35 36 37 38 39 40 41 42 43 44 45 6 47 48 4 

-2-2-222 2 12 2 2[2 212 2 2 2 2 2 2 2221 2 2 2 2 2 2 

Only two transformations accelerate (Sn): c-algorithm and p-algorithm. The best 
one (e-alg.) is not chosen because the transformed sequence is alternating; when n 
is large enough, the choice at the step n is the p-algorithm. 
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