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On the Measure of Totally Real 
Algebraic Integers. II 

By C. J. Smyth 

Abstract. For a certain measure S2(a), defined for totally real algebraic integers a # 0, ? 1, 
we find the four smallest values of Q(a). The methods used involve linear programming, and 
the results are verified using Interval Arithmetic. 

1. Introduction. Let a # 0, + 1 be a totally real algebraic integer of degree d, with 
conjugates a = a1, ... , ad, and put 92(a) = (Ild I max(l, Iai1))l/d, a quantity which 
measures the 'average' size of the conjugates of a. Denoting by f, the set of all such 
9(a), we showed in [1] that, from a result of Schinzel, ? has least element 
(I(1 + V5))1/2 _1.2720, and furthermore that there is a number e 1.31427 such 
that C is dense in (e, oo). 

Towards determining the structure of C5 in the gap (((1 + V5))12, e), we prove 
the following 

THEOREM. The four smallest elements of e are S2( I8) - 1.2720, Q2( /2) 1.2982, 

6(/83) 1.3077, and Q(aO7) 1.3098, where /31, ,B2, /83 and a7 = 2 cos(2.7f /7) have 
minimal polynomials x2 -x - 1, x4 -X3- 3X2 + X + 1, x8 _X7 - 7X6 + 4X5 + 

13X4 - 4x3 - 7X2 + X + 1, and X3 + X2 - 2x - 1, respectively. 

The A3i were defined in [1] using the operator H, given by Hx = x - x -1, as 
follows: /30 = 1 and /A > 1 satisfies H/3 = /3A-i (i > 1). Furthermore, 
H(H(H(a7)))= -a7, and there are other a with 9(a) small which are associated 
with fixed points of iterates of H; see [1, Section 6]. 

2. Setting Up the Problem. The principle of the proof of the theorem is a simple 
one: we make a list of n totally positive algebraic integers a' we know of which 
have small values of Q(a'). Suppose these a' have minimal polynomials P1, .. . ., P. 
Then for any totally positive a not on the list, the resultant of a and a' is a nonzero 
integer, so that 

d 

(1) II jPj(a) >1 (j = 1,...,n), 
i=l1 

where the a, are the conjugates of a. Writing 

(2) Ha(X) = X number of ai in (0, x], 
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we can express (1) as 

(3) f logjPj(x)Jdtta(x) > 0 (i = 1, ... , n). 

Furthermore, 

(4) log 9(a) = f log+x dI,La(x), 

where log+x = max(0, log x). 
We therefore pose the following programming problem for a general distribution 

,u(x) on the nonnegative real line (,u(0) = 0, ,u(oo) = 1, ,u nondecreasing): 

[Minimizey = log+x d1i(x) 

(5) 00o 

(subject to f log jPj(x)l d1i(x) > 0 (j = 1, .. ., n). 

Suppose that m = inf, y. Then from (4) 

(6) Q(a) > exp(m) 
for any totally positive a not on the list. Since for any totally real a # 0, a2 iS of 

course totally positive, and Q(a) = Q(a2)1/2, so that 

(7) u(a) > exp( 2m) 

for any totally real a, with a2 not on the list. 
One can in fact show that there is a minimal distribution tUmi. with y = m 

(although we do not need this fact). Depending on the particular list, the minimal 
distribution hin may or may not be of the form t,a of (2) for some totally positive 
a. If it is of the form Pua then the method gives the least value of 9(a) for a not on 
the list, and so serves to find new small elements of 1C. This is the case for instance 

when the list consists of {0, 1). In general, however, timiI need not be of the form 

I'a. Computation indicates that this is the case when we take the list to be 

(8) {o g ,312, 12, ,82 (x a2, a2 (x, -2} 

which we shall use for the proof of the theorem. (Here a60 = 2 cos(2<r/60), and it 
seems likely that Q(a60) 1.3113 is the fifth smallest element of 1C.) We then show 
that 

(9) Q(a) > 1.31040 

for totally real a with a2 not on (8). 

3. Dualizing the Problem. It is possible to solve (5) to considerable accuracy by 

approximating it by a linear programming problem with a finite number of 

variables. However, it is much simpler to consider the dual problem to (5), which is 

(10) Maximize Min g(x, c), 
C.a....aC>O X>O 

where 
n 

(1 1) g(x, c) = log+x- E cj log IP1(x)j. 
j=1 
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To avoid having to quote duality results between (5) and (10), it is sufficient for our 
purposes to simply note that, if M is the maximum for (10), attained for ci = cj* 
(i = 1, ... ., n), then minx>0 g(x, c*) = M so that 

,' 00 

(12) Jo log+x d,i(x) > M + E c*f log IPj(x)l d,i(x) 

for any distribution ,u. In particular 
00 

(13) log+x d,u(x) > M 

for any ,u satisfying the constraints of (5). Since there clearly exist feasible solutions 
to (5) (just take ,u having all its weight at a large value of x), it follows that, for the 
minimum value m of (5), m > M, so that (6) and (7) hold with m replaced by M. 

4. Solving the Dual Problem. To solve (10) for the problem defined by the list (8) 
(i.e., n = 9, and Pi (i = 1, ... , 9) as the minimal polynomials of the elements of 
(8)), we proceeded as follows 

(a) Choose a finite set X of positive numbers on which g(x, c) is likely to be 
small. A natural choice for X is the set of all points midway between two 
consecutive zeros of II=1 Pj(x). 

(b) Solve the standard linear programming problem 

(14) Maximize Min g(x, c), 
C.,..., Cn> O xE X 

obtaining the maximum Mx for ci = c," (i = 1,.. , n). Clearly Mx > M. 
(c) Add all the zeros of g'(x, cX) to X (here ' denotes d/dx). 
(d) Repeat (b) and (c) until Mx stops decreasing. 
It turned out that seven iterations of steps (b), (c) were sufficient to fix Mx 

(= M* say). With the final values of c,X (= cj* say) we then found 

(15) M' = min g(x, c*) 
x>O 

using the zeros of g'(x, c*). Then M' < M < M*. Our actual results were 

(16) M' = 0.5406821213 < M < 0.5406821290 = M* 

and 

c* = 0.2038021734, C* = 0.0085701947, 
C* = 0.3277902688, c6* = C* = 0.0019800436, 

C(* = 0.0446024611, c8* = c* = 0.0008192943, 
C* = 0.0221010719, 

so that for totally real a, with a2 not on the list (8), 

(18) Q(a) > exp( M') = 1.3104113. 

Although the calculations leading to (16), (17), (18) were performed using double- 
precision arithmetic, it is not possible to guarantee the accuracy of the results with 
certainty. Note, however, that once we have obtained the values (17) for the c*,4 we 
can take them as given. The only calculation for which error analysis is required is 
the straightforward calculation of M' in (15). In the next section we describe how 
we repeated this calculation using interval arithmetic and found a rigorous lower 
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bound for M', which gives the rigorous result (9) replacing (18). Since O(A/3) 
(i = 1, 2, 3) and Q(a7) are all less than 1.31040, this proves the theorem. 

5. Use of Interval Arithmetic. We used the Interval Arithmetic Package of J. M. 
Yohe described in [2]. Given an interval I and a real function f, the package 
enables us to say reliably that f(I) belongs to an interval I'. It was most convenient 
to use the package with intervals having single-precision endpoints, and this proved 
to be accurate enough for our purposes. We need the following 

LEMMA. Let f be a twice differentiable function on an interval I, with f " > 0 on I. 
Suppose that 9 E I and that the interval f(9) - I(f'())2/f "(I) belongs to [a, b]. 
Then minXEIf(x) > a. 

Proof. By the Mean Value Theorem, there is, for any x E I, a number ( = {(x) 
in I such that 

f(x) = f(O) + (x - O)f'(O) + 2(X _ -)2f 

= if"(()(x - 0 + f'(0)/f"(t))2 + f(0) -(p ))21f"(() 

> f(0) -(pl))21f 

From our previous calculations (in noninterval arithmetic) we had obtained ap- 
proximations 9, (i = 1, ... , 30) to the 30 zeros of g'(x, c*). Putting Ii = [9i - 2- , 

9i + 2- 14]q we checked using interval arithmetic that g' was of opposite sign at one 
end of Ii from the other, so that I, did indeed contain a zero of g'. It followed that 

(19) min g(x, c*) = min min g(x, c*). 
x>0 i=1,...,30 xEIi 

In order to apply the Lemma, we checked that g"(x, c*) > 0 on Ii and found 
intervals [ai, bi] containing g(9,, c*) - 2(g'(, c*))2/g"(I, c*). Then from (19) and 
the Lemma, 

min g(x, c*) > mn 30 ai = M" say. 

Then since M" < M', we obtained 9(a) > exp('M"), to replace (18). This gave 
(9). 
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