
MATHEMATICS OF COMPUTATION 
VOLUME 37, NUMBER 156 
OCTOBER 1981 

Finite Element Analysis of a Scattering Problem 

By A. K. Aziz* and R. Bruce Kellogg** 

Abstract. A finite element method for the solution of a scattering problem for the reduced 
wave equation is formulated and analyzed. The method involves a reformulation of the 
problem on a bounded domain with a nonlocal boundary condition. The space of trial 
functions includes piecewise polynomial functions and functions arising from spherical 
harmonics. 

1. Introduction. In this paper we develop a finite element method for the 
numerical solution of scattering problems for the reduced wave equation. In [4] and 
[9] there are reported various schemes for solving electromagnetic scattering 
problems. [6] and [18] give an engineering discussion of the finite element treatment 
of the radiation boundary conditions. [7] and [101 deal with mathematical aspects 
of the analysis of coupled finite element-boundary solution procedures. 

Here we present a new numerical approximation technique with the following 
features: 

(i) The subspaces are a combination of finite element subspaces inside the 
absorbing domain and spherical harmonics in the exterior domain. In addition to 
introducing a novel way of coupling the spherical harmonics with the field inside 
the body, the method has the feature that no finite elements are required outside 
the absorbing body; see, e.g., [9]. 

(ii) The stiffness matrices are nonsingular and Gaussian elimination without 
pivoting can be used for the solution of the linear system. 

The formulation and the analysis of the present method as applied to the 
reduced Maxwell equations shall be discussed in a forthcoming paper. The problem 
considered here is important in many applications. Our work was motivated by a 
study of the biological effects of microwave radiation. For this problem a computer 
program, FEMS, has been written which uses the method described in this paper. 
A discussion of the program and some numerical results will be presented 
elsewhere. 

In Section 2 we formulate our problem and in Section 3 we give the variational 
formulation and prove a series of lemmas in order to obtain our main result, 
Theorem 3.1. In Section 4 we describe the finite element procedure for our 
problem. We also give in this section an error estimate and a brief discussion of the 
finite-dimensional subspaces involved. 
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2. Formulation of the Problem. Let Q c R3 be a bounded domain with smooth 
boundary r and QO = R3 \ Q be the exterior domain. Let (u, v) and IIu I denote, 
respectively, the inner product and norm in L2(Q). Similarly, let <u, v> and Jul 
denote the inner product and norm in L2(J). We shall use the Sobolev spaces 
Hs(Q), Hs(J), and we let Ilull, and Jul, respectively, designate the norms in these 
spaces. We let n denote the exterior normal to Q and let u, denote the normal 
derivatve of u. Suppose K(X) is a bounded, complex valued function on R3 such 
that 

(2.1) Im K(X) > a > O, xE 

Let f(x) be a function on R3 with f(x) = 0 for x E QO, and let uo satisfy 

zuO(x) + Kouo(x) = 0, x E R3. We shall be concerned with the Problem I: to find 
u(x) in H1c0(R3) satisfying, with lxl = r, 

(2.2) u + K(X)2U =f in R3 \ r, 

u - uo= 0(r - ), r-4oo, 

(2.3) { (U-uO) - iKO(U - uo) = o(r-1), r -oo. 

We shall also introduce an auxiliary problem which we call Problem II+. To this 
end, let s E R1, and g E HS(J) be given. We seek a function v such that 

(2.4) Av, +K V? = O in QO, 

(2.5) v+(x) = g(x), x E F, 

(2.6) v+(x) = O(r-1), r-*>, 
av+/ar + iKOV+ = o(r-1), r oo. 

It is known [11] that the above problem has a unique solution, which can be 
expressed in terms of a Green's function G + (x, y) by 

(2.7) v+(x) = f a (x, y)g(y) dsy. 
a y 

The function G+ (x, y) is smooth for x E QO, y E r, but becomes singular as x -- y. 
It is also known that the normal derivative av+/an is well defined on F, and 
av+ /an E HS l(F). We let K+: HS(J) - H` '(F) be the mapping defined by 
K, g = av,/an. Then for each s E R1, K, is a bounded map from HS(F) into 
Hs - 1(F). Also, K, is a pseudodifferential operator on Hs(I) of order 1. If, in a 
neighborhood N of a point x* E r, the surface F coincides with the plane x3 = 0, 

and, in N, Q lies in the half space X3 < 0, it may be shown, using the Fourier 
transformation, that the symbol of K, at x* is 

(2.8) a?(x*, 21) = 
2 

+ 

For the theory of elliptic boundary value problems with pseudodifferential opera- 
tors, see, for example, [2]. 

3. Variational Formulations. To give a finite element procedure for the approxi- 
mate solution of (2.2) and (2.3), we reformulate the problem by introducing a 
bilinear form. To this end let y denote the trace operator, restricting a function to 
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F. Thus, y: H1(i) -* H 1/2(r) is a bounded operator. Let <g, hI> denote the inner 
product in L2(r), and also the pairing between g e HS(J) and h E H '(1). We 
define a bilinear form on H 1(Q) x H 1(Q) by 

B(u, w) = - (Vu, Vw) + (K2U, w) + <K+yu, yw>. 

Clearly B is a bounded form. Using B, we formulate Problem III: find u E H 1(2) 
such that 

(3.1) B(u, w) = B(uo, w) + (f - \uO - K2UO, w), w E H'(Q). 

Using the following lemma, we see that Problem III gives a reformulation of 
Problem I. 

LEMMA 3.1. Let u solve Problem I, and suppose u E H2(Q). Then u solves III. 

Proof. Set z = u-uO. From Green's formula, 

(f - /\uO- K2Uo, W) = (AZ + K2Z, W) = - (Vz, Vw) + (K2Z, W) + <Zn, w>. 

In QO, z solves Problem II + with g = yz. Hence z, = K+ yz, and we have (3.1). 
Let 

H+ = {u E H2(2): u, = Kyu). 

Then H_ (Q) is a closed subspace of H2(Q). We define mappings 

A,+: H (Q) -H?(Q), A + u = A U + K2u, A _u = lu + K-2u. 

Using Green's formula we have 

(3.2) (A+u, w) = B(u, w), u e H+2(Q), w E H1(Q). 

We show 

LEMMA 3.2. 

(3.3) (A +u, w) = (u, A _w), u E H+(Q), w E H2 (), 

(3.4) all ull S IIA +ull, u E H_2(Q). 

Proof. Let u e H+(Q), W e H_2(Q), So 

(3.5) (A +u, w) = -(Vu, VW) + (K 2U, W) + <Un, W>. 

Let U denote the solution of Problem I + with g = yu, and let W denote the 
solution of Problem 11+ with g = yw. 

Since u,, = K+ u, we have U, = u,, on F. Let BR denote the ball with center 0 and 
radius R, and with surface SR. Choose R so that BR D Q, and let QO,R = BR n QO. 

Then, since AXu + K 2u = 0 in QO, 

I-V U VW+ K2UW] dx + w a- do. 
0O,RSR r 

Inserting this formula in (3.5) and using (2.6), we obtain 

(A +u, w) =-(Vu, Vw) + (K2U, w) 

(3.6) + lim fVU. VW+K UW 1dx + iK UW dS}. 
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Similarly, if w E H 2(Q) and u E H_ (Q), we obtain 

(A_w, u) = -(Vw, Vu) + (K2W, U) 

(3.7) (2- -f dX 
+ iTr [-VW.VU+KoWU] dx-iKoI WUdS1) 

Comparing (3.6) and (3.7), we get (3.3). Setting u = w in (3.6) or (3.7), taking the 
imaginary part, and using (2.1), we obtain (3.4). 

Remark. Using (3.2), (3.4), and a limiting argument, we obtain 

(3.8) alluII2 < |B(u, u)I, u E H1(9). 

The density of H2(Q) in H1(Q) follows from Lemma 3.4 below and density 
properties of interpolation spaces. 

We regard A+ as an unbounded operator on L2(2) with domain H2(Q). With 
this stipulation we have 

LEMMA 3.3. A + is a closed, densely defined, invertible operator on L2(Q) and 

(A+)* = A+. 

Proof. Since H2(Q) contains smooth functions which vanish near r, H_(Q) is 
dense in L2(Q). From (3.4) it follows that A + is (1-1). We show that the boundary 
condition un = K, u covers the operator A + in U. For suppose that, in a neighbor- 
hood N of a point x* E F, the surface F coincides with the plane X3 = 0, and, in N, 
Q lies in the half space x3 < 0. The covering condition at x* requires that if z(t) 
satisfies the equations 

Z,_ (412 + (22)Z = 0, t < O, 

z(t) O- , t -x , 

Z'(0) = a+(X*, I,11 2)z(O), 

then z(t) 0_ . Using (2.8), we easily verify this, so the covering condition is 
satisfied at x*. Since the covering condition is preserved under a change of 
independent variables, it follows that the covering condition holds at each point of 
F. Hence the a priori inequality holds [2, p. 101], and, using (3.4), we obtain 

(3.9) 11 U112 < clIA ull, u c= H+(Q 

From (3.9) it easily follows that A + is a closed operator and that the range of A ? 

is a closed subspace of L2(0). Since Problem I has a solution for all smooth f, the 
range of A + is dense in L2(A). Hence the range of A + is L2(A), and (A )-1 is a 
bounded operator on L2(Q). Setting A +u = f, A _w = g in (3.3), we obtain 

(f, A _g) = (A +f, g), fg E L2(Q) 

Hence (A,-1)* - A1 so, from [17, Chapter 8, Theorem 6.2], (A,)* = A+. 

LEMMA 3.4. [H+(Q), L2()]/2 (). 

Proof. Since H_ (Q) c H2(Q), we see that the inclusion c holds. We must show 
the converse inclusion. We make use of the spaces Hrs defined in [8]. Given 
f C H 1(Q) we must show that there is a function u(x, y) E H2'1(2, R 1) such that 

(3.9) u(x, 0) = f(x), x E Q, 

v3.10) uj(x,y) = K+u(x,y), x E F,y E R1. 
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To this end we must first discuss the operator K+ on the space Hr,s(r, R 1). Let 
-A be the Laplace-Beltrami operator on r; then I + A is positive definite and 

(I + A)+ 1/2: Hr(J') Hrl1(Tr). 
Therefore (I + A) - 112K, is a bounded operator on Hr(T') and may be defined as a 
bounded operator on Hr(J x R 1). Since A is a second order differential operator, 
by [8, Lemma 4.2], 

A: Hr,s(1, R 1) Hr-2,s-2s/r(F, R 1) 

is a bounded operator. Hence, by interpolation, 

(I + A)1/2: Hr,s(F, R 1) -* Hr- ss/r(r, R 1) 
is a bounded operator. Writing K+ = (I + A)1'/2. (I + A)- 112K?, 

K+: Hr,s(F, R') -->Hr-1,s-s1r(1F R) 
is a bounded operator. 

Returning to the solution of (3.9), (3.10) we set fo(x)w = f(x). Since yf E 
H l/2(F), by [8, Lemma 4.1], there is a go(x, y) E H3/2'3/4(F, R1) such that go(x, 0) 
= f(x), x E F. Then we find a u(x, y) E H2'1(2, R 1) such that 

u(x, 0) = fo(x), x E Q 

u(x,y) = go(X,y), x E F,y E R1, 

U,(X,Y) = gI(X,y), x E- J,y E R1. 

Hence u satisfies (3.9), (3.10) and the proof is complete. 
We now establish the "inf sup condition" for the form B. 

THEOREM 3.1. There is a c > 0 such that for each u E H 1(Q) there is a v E H1(Q) 
such that IB(u, v)I > cIIuII1IIvII. 

Proof. Regarding A as a bounded invertible map of H2 (2) -* L2(Q2), we extend 
A + to a map of L2(0) - H2 ()' as follows. If f E L2(A), we consider A + f as a 
linear functional on HZ (Q) according to the formula 

(A + f)(w) = (f, A - w), w E H_(Q)- 

In particular, if f E H+(Q), we see that 

(A+ f)(w) = (A+ f, w), 

so this definition agrees with the previous definition of A +. The extended map is 
also easily seen to be (1-1) and invertible. By interpolation we find that 

A +: [ H+ (Q) L2() ] >/ [ L 2(Q) H_Q 2 
/ 

is a bounded, (1-1) invertible map. From Lemma 3.4 and the dual properties of 
interpolation [5] it follows that A +: H 1(S) -- H 1(Q)i is a bounded, (1-1) invertible 
map. By taking the limit in (3.2), we find that for u E H 1(Q), w E H 1(Q), 

(A +u)(w) = B(u, w), u, w E H1( (Q). 

Now let w E H 1(Q) be given. Select ( E H 1(Q)' such that 
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Let u = A+1i E H1(2). Then from (3.1 1) we have 

B(u, w) = lwillI > cll wll i ul i, 
where c = IA + ilII 1, and where the norm refers to the map A 1: H'(s2)' 1-> (). 

For our estimate we also require 

LEMMA 3.5. There are constants ci > O (i = 1, 2) such that for u E H 1(2) 

I B(u, u) I > ciIIuII|2- c 2. 

Proof. We have 

IB(u, u)I > -Re B(u, u) = (Vu, Vu) - Re(KU, u) - Re<K+yu, yu> 

(3. 12) > c3 
2 

_41IUII2 -Re<K+ yu, yu>. 

Let Q1 be the region between Q and Ixi < R, where R > diameter of Q, and denote 
by U the extension of u to Qext. Then 

[ + Ul ] dx = -J U- ds + <K+ yu, yu>. 
Ix=R ar 

Hence 

(3.13) Re<K+yu, yu> < Ko4 
I U1 dx + fr UUI d. 

Ix=R 

Now we select R so that Ko is not an eigenvalue of the problem 

Az + Xz = O in 21, z(x) = O, x E(= M. 

Then we may consider U as the solution of the well-posed Dirichlet problem 

(3.14) AU + K2U = 0 in Q1, Ugiven on aM. 
We now show that, for any real s, there is a constant c(s) > 0 such that 

(3.15) 11 UIIH.(U,) < C(S)II qIH1-1/2(aQ,). 

(See, e.g., [3, Theorem 2.4.2] for a related assertion.) To prove this, we first note 
that if 4 satisfies 

AO + K 2c=f in21, 4 =g on aM, 

then 

(3.16) II0IIH-+2(Q,) < c1(s)[ IIfIIWHS(,) + IIgIIH-3/2(,)] s > 0. 

Setting 4 = U, we obtain (3.15) for s > 2. Next, we choose 4 so that g = 0. Then, 
by Green's formula, 

L1UfdxL 
U 

Uad ds. 

Hence, using (3.16) and the trace inequality 

11 an ||s/ < C2(s)II(AIHw+2(j2), 5 > 0, 

we obtain 

f Uf dx < C3(S)II UIIH-s-'/2(ag,)IIfIIH)(Q,) 5 > 0. 
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Dividing both sides by the norm of f and taking the supremum over smooth f, we 
obtain (3.15) for s < 0. Now let A be the solution operator for the problem (3.14). 
Thus, we have shown that 

(3.17) A: Hs-l/2(aol) Hs(21) 
is a bounded operator for s < 0 and s > 2. By interpolation we conclude that 
(3.17) is a bounded operator for all s, so (3.15) holds for all s. 

Using (3.15) with s = , and (3.13), we obtain 

(3.18) Re<K+yu,yu> < c5{ ulo+ (1U12+1U12)ds} 

We now use (2.7) and the fact that SR is at a positive distance from F, so 
aG+ (x, y)/any is a smooth function for x E SR, y E F. We obtain 

/lIR (IUI2+IUr2) dS 2C6IUIO. 

Using these in (3.18), 

Re<K+yu, yu> < c7IuI20 < c7tut1l/2 
U c8<0u11, < < 9 1. 

From (3.12) and the inequality IuI120 < e IuII12 + c(e) lu 1g, we obtain the result. 

4. The Discrete Problem. To formulate our discrete approximation to Problem I, 
we specify a finite-dimensional subspace S c H 1( i), and, in analogy with (3.1), we 
seek a u E S such that 

(4.1) B(fu, w) = B(uo, w) + (f - Auo - c2Uo, w), w E S. 

We shall refer to ui as the approximate solution of Problem I, using the subspace S. 
We first show that the approximate solution ui is well defined. 

LEMMA 4.1. There is exactly one u E S satisfying (4.1). 

Proof. The equation (4.1) when written in terms of a basis for S, comprise a finite 
system of linear equations. To show that the system is nonsingular, it suffices to 
show that if z E S and if B(z, w) = 0 for all w E S, then z = 0. Choosing w = z 
and applying (3.8), we obtain 

alIzIl2 < I B(z, z)I = 0. 

To analyze the discretization error u - ui, we shall show that B satisfies a 
discrete form of the inf sup condition. For this we first prove a weak form of the 
inf sup condition that may also be of use in other problems. (See Schatz [14] for a 
similar result.) 

LEMMA 4.2. Let Hi, i = 0, 1, 2, be three Hilbert spaces. Stqpose Ho D H1 with 
compact injection. Let B be a bounded bilinear form on H1 x H2 which satisfies: if 
uECEH1 and B(u, v) = O, v E H2, then u = O. For n = 1, 2,..., let M. C Hi, 
i = 1, 2, be two finite-dimensional subspaces of equal dimension. Suppose M2n c 

M2n+I and U n M2n is dense in H2. Suppose B satisfies the "weak inf sup condition": 
there are ci > 0, i = 1, 2, such that for u C MI n there is a v E M2n such that 

(4.2) IB(u, v)I > [clIIIuIIH, 
- 

C211UIIHJl11V1H2 
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Then there is an integer N > 0 and a constant C3 > 0 such that for n > N, if 
u E Mln, there is a v E M2n such that 

IB(u, v)I > C3IIUIIHIIIVIIH2. 

Proof. Let M2n denote the space of linear functionals on M2n and define a map 
L: M1n -* by 

(Lu)(v) = B(u, v) , v E M2n- 

Then there is an integer N > 0 and a constant C4 > 0 such that if n > N 

(4.3) || UIlHo < C4|LU||~. u2n E MI n' 

For, if (4.3) does not hold, there are sequences n1 -x oc and uj E MI, such that 

IIUillHo = 1, IILujIM ?-0. 

Let vj E M2n be chosen to satisfy (4.2) and normalized so IIVjIIH2 = 1. Then from 
(4.2) it follows that 

IILujl|M,n> I(Luj)(vj)I = IB(uj, vj)I > CIljlujH - C21UjIlHo. 

Hence 

CII|UjIIH, < C2 + 0(), 

so uj is a bounded sequence in H1. Hence, selecting a subsequence, we may assume 
that Uj - u in Hi, uj -* uo in Ho. Let v E H2 be arbitrary and, from density, let 

ij3 EM2,, be chosen so that lIv -jI H2 ?-*0. Then 

B(uj, v)j < jB(uj, 3j)| +IB(uj, v - vj) 

II LuhIl MI3jIH + C||UlluIIH liV - f?IH20. 

Hence B(u, v) = 0 for all v E H2. By our hypothesis, u = 0 which is a contradic- 
tion and proves (4.3). Now, for u E Mln, choose v E M2n to satisfy (4.2) and with 

V 11 2n = 1. Then 

IlLullM2n > |B(u, v)| > cIl|ullHi - C21lulIlHo 

so we obtain from (4.3) 

(4.4) IIUIIH, < c5llLullM2'n n > N. 

Now let n > N, u E Mln, and let v E M2n satisfy 

(Lu)(v) = ILull Mn, IIVIIH2 = 1. 

Then, using (4.4), we have 

| B (u, v) | = || Lul||M2 > C5 || U ||Hl ||V ||H2, 

and the proof is complete. 
We now show that our approximate method gives, in a quasi-optimal sense, as 

good an approximation to the solution as can be expected from the subspace that is 

being used. 

THEOREM 4.1. Let Sj c H '(2) be an increasing family of finite-dimensional sub- 

spaces of H l(2) such that U Sj is dense in H 1(e). Let uj E 5j be the approximate 
solution of Problem I using the subspace Sj. Then there is a constant c > 0, 
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independent of j but depending on the family { Sj}, such that, if u is the solution of 
Problem I, 
(4.5) Ilu-ujlll < c inf{IIu - zlll: z E Sf). 

Proof. In Lemma 4.2, we set H1 = H2 = H'(Q), Ho = H0(Q?). Then, using 
Lemma 3.5, we see that the hypotheses of Lemma 4.2 hold. Using Lemmas 4.1 and 
4.2, we find that there is a J > 0 such that, for j > J, the hypotheses of [3, 
Theorem 6.2.1] hold. Hence there is a c > 0 such that, forj > J, (4.5) holds. Since 
the cases j = 1, 2, . . . , J - 1 are finite in number, we see that (4.5) holds for all j, 
which proves the theorem. 

To find the approximate solution ui using a subspace S, we select a basis {zi}, 
1 < i < m, of S. Setting 

A =[a1j], aij = B(zi, zj), F=[ fi] 

fi= B(uo, zi) + (f- AuO- K2uO, Zi), 1 < i < m, 

and writing ui(x) = E uizi(x), U = [ui], we see that (4.1) may be written as the 
matrix system AU = F. From Lemma 4.1, this matrix equation always has a 
solution. It is important to be able to handle large matrices. In finite element 
programs this is frequently done with sparse matrix routines. The aim of the next 
lemma is to show that the matrix A can be factored without pivoting, so the 
unknowns can be arranged to minimize the storage requirements of the matrix. 

LEmMA 4.3. We may write A = LU, where L and U are, respectively, left and right 
triangular. 

Proof. Let I be a subset of { 1, ... , m), and let A, be the principal minor of A 
obtained by removing column j and row j for each j M I. Let S, c S denote the 
subspace spanned by {zi, i E I). Then A, is the matrix used in finding the 
approximate solution u1 using the subspace S,. From Lemma 4.1, A, is nonsingular. 
Hence [13], [15] the factorization A = LU may be accomplished. 

Our approximate method has a potential difficulty, in that the operator K+, and 
hence the bilinear form B, is difficult to evaluate. We overcome this difficulty by a 
judicious choice of subspaces, which we now describe. Let VN c HI'(fQ0) be a 
finite-dimensional collection of functions which satisfy 
(4.6) Av + K2v =0 in Q0, 

v(x) = O(r- 1), r-* x, 
(4.7) {l (X) - iKov(x) 

= o(r), r -* oo. 

A specific choice of VN arises, for example, from the separation of variables in 
spherical coordinates applied to (4.6). Suppose 0 E U. Let Y,,(, k) be a surface 
harmonic, and let h,l(p) be a spherical Bessel function [1, Chapter 10]. Then 
v(r, 9, 0) = h, (Kor) Ym,n(#' 4) is a particular solution of (4.6), (4.7). We may take VN 
to be the collection of all such solutions with 1 < n < N. 

Regarding the subspace VN we shall make the following 
Assumwtion 1. The set y( UN VN) is dense in H 1'2(P). For the spherical harmonic 

subspaces described above, the density of y(U N VN) in L2(I) has been recently 
proved in [12]. See also [19]. 
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We also require a collection of functions of finite element type. Let there be 
given a decompostion of R3 into simplices of maximum size h. Let Wh be the set of 
restrictions to Q of continuous piecewise linear functions on this triangulation. Let 

Who = Wh n Ho(0). 
The subspace of functions used in our variational principle is formed by 

combining the spaces Who and VN. We describe two ways in which this can be 
done. For the first way, we pick a smooth function D such that ' =1 near r and 

0 _ O near 0. If v E VN, then 'v is a smooth function in S2, so the resulting 
restriction of tv to 2 is in H 1(Q). We also let tv denote this restriction. We then set 

ShN = Who + 'VN. We have 

LEMMA 4.4. If the subspaces VN satisfy Assumption 1, then the collection of all the 
subspaces Sh'N, h > O, N = 1, 2, . . ., is dense in H'(9). 

Proof. Supposing the contrary, we have, for some z E H 1(Q), z & 0, 

(4.8) ff [Vz- Vu + zu] dx = O, u E Wh,o + VN- 

Setting u E Who and using the fact that the union of these spaces is dense in Ho'(9), 
we find that (4.8) holds for all u E Hol(2). Hence -Az + z = 0 in Q, and z has a 
normal derivative z,, on r with zn E H- 1/2(r). Set u = 'v, v E VN. Then from 
(4.8) we obtain 

(4.9) znv do = 0. 

By Assumption 1, (4.9) holds for all v E H1/2(T'). Hence zn = 0, sO z = 0, which is 
a contradiction. 

Using Lemma 4.4, we may apply Theorem 4.1 to obtain an error estimate when 
the subspace ShN is used. This subspace, however, has a certain disadvantage. The 
support of the functions in t VN depends on the support of ', and hence is 
independent of h. As a result, the number of nonzero matrix elements in the 
stiffness matrix is O(h -3). To avoid this problem, we now give a second choice of 
subspace and a modified variational principle which commits a "variational 
crime". 

For given h and N, let PhN: VN --* y((W.) be a linear map such that PhNV - V is 
small on r. To be precise, we assume that 11y(PhNv - v)IIHI/2(D is small. For 
example, if the surface r were a polyhedron, and if the triangulation conformed 
with r, we could define PhN by piecewise linear interpolation. We let Sh2N be the 
collection of all functions v E Wh such that yv E PfhN(VN). In particular, Who c 

Sh2N. We let QhN: Y( Wh) -* VN be a map such that PhNQhN = I. Thus, QhN is a right 
inverse of PhN- We define a bilinear form B on Sh,N by 

(4.10) B(u, w) = -(VU, VW) + (K2U, W) + <K+YQhNU, YW> U, w E Sh,N 

In analogy with (3.1) we define an approximate method as follows. We seek a 
,E S2N such that 

(4.11) B(U7, w) = B(uO, w) + (f- AUo - K2Uo, W), w E ShN. 

We remark that the subspace S,2N depends not only on the spaces Wh and VN, 
but also on the choice of the approximation operator PhN. The bilinear form B 
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depends not only on S02, but on the choice of the right inverse QhN. It is not 
evident that the system (4.11) has a solution u4. If there is a solution, the following 
theorem gives an error estimate for it. To state the theorem, we need another 
assumption on the family of subspaces VN and approximation operators PhN. 

Assumption 2. The set yY(UN PhNVN) is dense in H1/2(r). 

THEOREM 4.2. Suppose that the subspaces VN and maps PhN satisfy Assumption 2. 
Then there is a constant c > 0, which does not depend on h or N, such that if u 
satisfies (3.1) and iu satisfies (4.1 1), then 

(4.12) IIu - uiIl < c inf{IIU - u*11: u* E Sh2} + CII(I - PhN)QhNiIIH /2(r). 

Proof. Using Assumption 2, the proof of Lemma 4.4 shows that U S& is dense 
in H '(a). From Lemma 4.2, B satisfies the inf sup condition on Sh2N. Let u* E Sh2N 
be arbitrary. Then there is a w E Sh2N such that 

cjji4 -u*III < B(u - u*, w), jjwjj1 = 1. 

Hence 
cli i-u*Ii < B(u1- u*, w) = B(ui -u, w) + B(u - u*, w) 

< B(u, w) - Bf(ui, w) + B(ui, w) - B(u, w) + c,jju - u*111. 

Using (3.1) and (4.1 1), we see that the middle two terms of this expression combine 
to vanish. Also, using the properties of K+, 

B(iu, w) - B(ui, w) = <K+yUi - K+yQhNUi, w> < C2j|1 QhN'llHI/2(r). 

Hence we obtain 

Cli|| -U*j/ < C211/i - 
QhNi1IiHI/2(r) 

+ Cl/u 
- 

U*1. 

Since u - = u - u* + u* - ui, we may now use the triangle inequality to obtain 
the asserted result. 

Remark. The last term on the right side of (4.12) is due to the "variational crime" 
that has been incorporated into the bilinear form B. It would be of interest to 
estimate the size of this term. 
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