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Numerical Stability for Some Equations 
of Gas Dynamics 

By A. Y. Le Roux 

Abstact. The isentropic gas dynamics equations in Eulerian coordinates are expressed by 
means of the density p and the momentum q = pu, instead of the velocity u, in order to get 
domains bounded and invariant in the (p, q)-plane, for a wide class of pressure lawsp(p) and 
in the monodimensional case. A numerical scheme of the transport-projection type is 
proposed, which builds an approximate solution valued in such a domain. Since the 
characteristic speeds are bounded in this set, the stability condition is easily fulfilled and 
then estimates in the Lw-norm are derived at any time step. Similar results are extended to 
the model involving friction and topographical terms, and for a simplified model of 
supersonic flows. The nonapplication of this study to the gas dynamics in Lagrangian 
coordinates is shown. 

1. Introduction- The isentropic gas dynamics equations in Eulerian coordinates 
may be written 

(1.1) aP + a (pu) = 0, (p = density), 

au a U 2 1 a 
(1.2) a a 2) + [P(P)] =o, (u =velocity). 

for (x, t) E ]0, 1[ x ]0, + oo[. By using the momentum 

(1.3) q = pu, 
we get the system 

ap aq 
(1.4) at ax 

q2 
(1.5) aq + ax [qP + p(p){ = ? at ax- p 

Both models are nonlinear hyperbolic systems for p > 0, when the pressure p is 
an increasing function in C2(]O, + oo[) of the density p. We also suppose that p(O) is 
zero and 

(1.6) VP > 0, pp"(p) + 2p'(p) > 0. 

From this last condition, both systems are genuinely nonlinear (see [4], [5]). Note 
that the hypotheses include all functions p(p) = p with y > 0. Initial data po 
(nonnegative) and uo are prescribed in L'(]O, 1[). Moreover u and thus q by (1.3) 
are assumed to be zero for any t > O at x = O and at x = 1. 
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Regular solutions are obviously the same for both systems. It is not true for the 
solutions with shocks (i.e. discontinuous solutions) which may occur though the 
model is claimed to be isentropic. It is well known that the solutions with shocks 
given by the (p, q)-model are the correct ones. Moreover, the (p, q)-model has 
domains invariant, bounded, and convex in the (p, q)-plane. This property is not 
always satisfied by the (p, u) model, particularly for the functions p used in 
practice. We shall thus mainly consider the (p, q)-system, for which the Riemann 
problem is solved in Section 2. 

A numerical explicit scheme is proposed in Section 3. It consists of two steps, the 
one a transport of the exact solution computed from constant piecewise ititial data 
during a time interval of length At, the other an orthogonal projection in L2(]0, 1[) 
on the same class of constant piecewise functions. The stability in the L'-norm is 
deduced from the properties of convexity and boundedness of the invariant sets for 
the (p, q)-model, provided that a stability condition (of Courant-Friedrichs-Lewy) 
is satisfied. The scheme we get this way is a variant of the Godunov scheme; see [3]. 
The same results are stated in Section 4 for the Lax-Friedrichs scheme and for the 
Glimm scheme. 

A generalization of these schemes to a model including friction and topographi- 
cal terms is studied in Section 5. We prove that the L'-norm is growing slowly 
enough, so that computation is possible up to any time t, with the stability 
condition always satisfied. 

In Section 6 we try to apply the same technique to the simplified supersonic flow 
equation 

(1.7) a>2 ~a4[X( ax )] =0 
withf E C2(R), decreasing on ]-oo, O[ and increasing on ]O, + oo[. 

This problem is hyperbolic only for u = aw/ax positive. We show that nonex- 
istence may occur near the sonic value u = 0, for (1.7). We then propose a new 
formulation of this problem by using the variables p = u and a momentum 
q = uaw/at, for which existence for the Riemann problem is proved for p > 0. The 
results of Sections 3, 4, and 5 are suitable here, and with hypotheses similar to (1.6). 
Note that the variable q has no well-known physical meaning. 

Similar results were stated in [10] for (1.7) withf increasing on R, f(O) = 0 and If I 
convex; this is a nonlinear model for strings which are not hardly stretched. 
Bounded and convex invariant sets exist in the phase plane, without any transfor- 
mation on the functions u = aw/at and v = aw/ax. However, these results are not 
applicable for gas dynamics in Lagrangian coordinates, which we may write 

(1.8) au a aV = au 

Here v (= p 1) is the specific volume, u is the velocity and p is the pressure. The 
system (1.8) has convex invariant domains in the (v, u)-plane, for p(v) = v-7 with 
1 < y < 3, but they are unbounded. By using a momentum q = uv, a new 
conservative form of (1.8) appears, for which invariant sets are bounded and 
convex in the (v, q)-plane. Unfortunately, the characteristic speeds may be infinite 
in these domains, and then the stability condition will never be satisfied for v close 
to zero. Thus, the transformation q = uv has no interest for (1.8). 
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2. The Riemann Problem. This problem will be used for the construction of 
numerical schemes. It consists in finding the solution (p, q) of (1.4), (1.5) with 
initial conditions on R, which are constant on ]-oo, O[ and on ]O, + oo[, and given 
by 

(2.1) (po(x), qO(x)) f (p_,p+u+) forx<O, 
~(p+,p+u+) forx>O, 

with p_ > O, p + > O. 
The solution to this problem is given by two waves of different speeds, and the 

value in between is a constant. Such a wave may be a rarefaction or a shock wave. 
We first analyze a rarefaction wave, corresponding to a couple (p, q) of functions 
which are continuous and monotone with respect to w at any time level t. They are 
given by the Riemann invariants, and we obtain them easily by writing q as a 
function of p (i.e., by eliminating x) in (1.4) and (1.5) we get a first-order 
differential equation, giving two solutions that we combine with the initial data 
(2.1) to get 

(2.2) f q = p(u+ +P1(p) - PI(P+)), 
q = p(u -P1(p) + P1(pA), 

with P1 defined by 

(2.3) Pj(p)=f y 

Each invariant in (2.2) describes a wave, the first one is called of the first kind, 
the second one of the second kind. A first kind wave is always faster than a second 
kind wave, and the sign of their speeds is generally different (for subsonic stream). 
In (2.2), q is a convex function of p for the plus sign (first kind), and a concave one 
for the minus sign (second kind). From the scalar theory, such rarefaction waves 
only occur if p is increasing on a first kind wave, decreasing on a second kind 
wave. 

A shock wave corresponds to a discontinuous solution of (1.4) and (1.5) and is 
ruled by the well-known Rankine-Hugoniot jump condition. A discontinuity curve 
of equation x = x(t) must satisfy 

(2 2 

(2.4) x'(t) = q_- q_ = q, +p(pi)-q21P(P2) 

where (p1, q,) and (P2, q2) are the values on each side of the jump. We thus obtain 

q2 as a function of P2, with (p1, q,) fixed, namely 

q, P2I2 
(2.5) q2 = 

TP2 + j- p(P2-P,)(P(P2)-P(PWj 

As before the plus sign corresponds to a shock wave of the first kind, the minus 
sign to a second kind wave. Note that the jump condition for (1.1) and (1.2) gives 
other shock waves, the speeds of which are different from those given by (2.4). 
Moreover, the shock waves must satisfy an entropy condition, in order to be 
physically meaningful. This is deduced from the scalar theory (see [5], [6]). Since 
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the system is genuinely nonlinear from (1.6), this condition is 

(2.6) { p(x -0, t) > p(x + 0, t) for the first kind, 
( p(x - 0, t) < p(x + 0, t) for the second kind. 

The Riemann problem is solved by drawing in the (p, q)-plane the two curves 

S+(p+, q+) 

(2.7) ( ~~~~[pu+ +PI(P) - PI(P+)] if 0 < p < p 

S_(p_, q-) 

(2.8) = {( q); q = {p[u_ -P1(p) + P1(pi)] if0 <P <P_ 

l Iq -,/p -(p) p )(p(p)]- if j>_ l 

in which q+ = p+u+, q = p_u_. The curve (2.7) describes the states which can be 
connected to (p +, q +) by a first kind wave, the curve (2.6) the states connected to 
(p_, q_) by a second kind wave. Thus the constant state of the solution between 
these two waves is given by the intersection (p, 4) of these two curves, such that 
p > 0 for s&(p, q_) lying below S+(p+, q+) for p > p (i.e., take another (p, q) 
than the trivial one if possible). We shall also need the value of the solution on the 
line x = 0; it is a constant (p, qS) given by the formula 

(p+, q+) if X+(p+, q+) < 0, < p+, or if < q+, p> p+ 
(p(., q_) if X9 (p_, q) > f , < p, or if > q_, > p_, 

S+(p+, q+) n {X+(p, q) = 0) 

(2.9) (ps, qs) =if X+(p, 4) < 0 < /+(p+, q+), < p+, 
S-(p-, q-) n {(X-p, q) = ?} 

if X-(p, 7) > 0> X(p-, q), <p , 
(p, 4) in other cases, 

with A + (p, q) and A (p, q) given by 

(2.10) X+(p, q) = q + p(p), (p, q) = q- p(p) 
p p 

These values X + (p, q) correspond to the speed of each kind of wave. By writing 
u = q/p and c = p-(p) (= sound speed), we get X+ = u ? c. They are of 
opposite sign for Jul < c (i.e., for subsonic stream) and then (p, 4) is often selected 
in (2.9). 

We have the following 

THEOREM 1. The Riemann problem (1.4), (1.5), (2.1) has a unique solution, which is 
valued in the bounded convex set of the (p, q)-plane 

(2.11) K(Ro) = {(p, q); p > 0, Iql + p(PI(p) - Ro) < }, 

for any real positive number Ro such that 

(2.12) Max{lu+1 + P,(p+), lu-I + PI(p4)} < Ro < lim P,(p). P-*.oo 
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Moreover, the solution is equal to (p, q,), given by (2.9), for x = 0 and satisfies 

(2.13) (p(x, t), q(x, t)) =f(p,q4 for x <-X(R&)t, 
(.) (p+ q+) for x > X(Ro)t, 

with 

(2.14) X(Ro) Sup f il + p) 
(p,q) E K(Ro) P ) 

Proof. The set K(RO) is obviously convex from (1.6) and bounded from (2.12) 
since Ro is strictly less than the upper limit of P1 (which is often infinite), and since 
we get for p < 1 by the Cauchy-Schwarz inequality 

(2.15) P|PI(P)I < P(j 2(f p (y) dyc<) < pp(1) 

which implies that pIP,(p)j ->0 if p -> 0. This proves the theorem as long as the 
existence of a solution is concerned since from (2.12) the intersection giving (p, qj) 
is never empty. Uniqueness is deduced from a result of T. P. Liu (see [11]), since 
the entropy condition (2.6) is fulfilled. 

Obviously, K(RO) contained the initial values from (2.12). Since its boundaries 
are Riemann invariants, from (2.2), the rarefaction waves are valued in K(RO). Now 
we have to show that it is also true for a shock wave. For a shock wave of the first 
kind, we have an inequality between the shock curve q2(p2) given by (2.5) and the 
Riemann invariant q(P2) starting from the same point (p1, ql) with P2 > P1. Namely, 
by the Cauchy-Schwarz inequality, we have 

1P2 1 
V q(P2) = q7 P2 + J P 

p' dy P2 

(2.16, 
Pi Pi y )(,) 

(2.16) 
~~~~~~~~~1/2 1/2 

IP2d P \1 

qP2+ -d ) J'Y~Y 2q2(P2). 
Pi i Y 

It follows that the values of a shock curve (2.5) always lie on the inside of the 
convexity of the Riemann invariant starting from the same point (pj, q,), and then 
belong to K(RO). We have the same for a shock wave of the second kind. 

Let us now show (2.13). This is obvious when only rarefaction waves occur. The 
speed of a first kind shock wave, given by (2.4), may be estimated as follows. We 
multiply (1.6) by (p - P1), with p > P,, so as to get 

(P - p1)(Pp"(P) + P'(P)) + pp'(P) > Pp'(P). 

Integration on ]PI, P2[ yields 

(P2 - P1)P2P'(P2) > P1 [ p(P2) -P(P1)], 

which gives 

> Pi (P2) - P() 
P2 P2 -PI 

When adding q2/P2, we get exactly 

(2.17) 1 x'(t)I < 1X+ (P2, q2)1 (< X(Ro)), 
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which means that a shock wave is slower than a characteristic line along which the 
value (P2, q2) is travelling. The same arguments are suitable for a shock wave of the 
second kind. Since the solution was already shown to be given by (2.9) for x = 0, 
the proof of Theorem 1 is complete. 

The inequality (2.15) may not hold for the (p, u)-model (1.1), (1.2). For example, 
if p(p) = p2 (i.e., the shallow water equations), the shock curves are lying on one 
side of the Riemann invariant for the (p, u)-model, and on the other side (the 
correct one) for the (p, q)-model, since the convexity of the Riemann invariant is 
changed by the transformation q = pu. This example was studied in [8] or [9]. 

3. Stability in the Lo-Norm for a Numerical Scheme. Let I E N; h = 1/I is the 
space mesh size. We consider the space 

Vh = {v E L(]O, l[), v = Constant on Ii 1/2 =]ih, (i + I)h[, 
(3-1) 0~~~~~~~~~~~ < i < I- } 

and the orthogonal projection on Vh, associated to the L2-norm, which is nothing 
but the average on each Ii+ 1/2- We use it to approximate the initial data by putting 

(3.2) Pp+'/2= hf, p(x)dx, q%112 = h|, p0(x)u0(x) dx, 

fori=O,...,I- 1. 
The time mesh size is At = rh, where r is a real positive number corresponding to 

the ratio of mesh sizes and to be used in a stability condition with the maximal 
speed of the waves. This ratio is a constant only when the L?-norm of the solution 
is uniformly bounded since the speed of the waves is depending on the values of 
the solution. At time level t, = nAt with n E N, we suppose we know the ap- 
proximate solution (pf, qn) E V h x Vh, the values of which are denoted by 
(PAn /2, qi+n on '+1/2 for i = 0, . . ., I- 1 with Pin+1/2 nonnegative. 

We shall compute the approximate solution at time level tn + by a two-step 
method. The first step uses the result of Section 2 to build the exact solution on the 
strip ]O, l[ x ]ttn, tn +I[, and the second step is an orthogonal projection of this 
solution on Vh X Vh. Fortunately we only need the values given by (2.9) and thus 
this method gives an explicit scheme of order one of accuracy, which is a rather 
good performing scheme with a low damping. This looks like the natural generali- 
zation of the Godunov scheme or of the upwind scheme used for the scalar 
equation; see [3], [6], [7]. 

This scheme is as follows. First we compute for i = 1, .. . , I-1, 

(3 4) (paOn, qin) E S+(,in+ 1/2, qi+ 1/2) n s(P,in1/2, qi-1/2) 

such that S_ lies below S+ for p > pin, as for (p, 4) above. We take the line 
{ q = 0) instead of S+ for x = 0 or of S& for x = 1, at the boundaries. Namely, we 
get 

(3.5) (pn, 0) E S+(Pn/2, qn/2) n {q = 0), q = 

(3.6) (PI"I 0) E S_(P-l1/2, q7-12) n {q = 0), 
again with S_ below the line {q = 0) for p > pn or S+ above this line for p > p'. 
The arguments for (3.5) and (3.6) come from the resolution of a "half Riemann 
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problem" on ]0, + c4 x ]0, + oo[ or on ]-oo, 0[ x ]0, + oo[, which is performed as in 
Section 2. Note that the solution of such a problem has only one wave; of the first 
kind with a positive speed in the first case, of the second kind with a negative speed 
in the second case. Obviously Theorem 1 is also valid for such problems. 

Then for i = 1, . . . , I - 1, we compute the stationary values 

(3.7) (pi, qi ) (ps qs) 

given by (2.9) with 

(P+' q+) = (Pi+ 1/29 q+1l/2) (p-' q-) (P.-1/2, qiL.-1/2), (p, q) = q qi ) 

The values given by (3.5), (3.6), and (3.7) are exactly the values of the solution on 
each segment {ih} x ]tn, t,+,[, provided that At is small enough so that two waves 
cannot meet each other before t + . This will be ensured by a stability condition of 
the Courant-Friedrichs-Lewy type which uses (2.13). 

Now, for the second step, we compute the averages of p and q on each li ,+1/2 at 
time t +4- They are directly obtained by a Green's formula on (1.4) and (1.5). We 
getfori=0,...,I-1, 

(3.8) + = Pnl/2 - r(q+I qi- ) 

[ +p+ 
2 Pi(qi)2 

(3.9) qi~12= q1fl 112 (q1 ) -1 __ (pin 
Pi+1 pppin 

The first step corresponds to a transport phase given by (3.4), (3.5), (3.6), and 
(3.7), and the second step to a projection phase, given by (3.8) and (3.9). We have 
built a "transport-projection method", for which we have the following 

THEOREM 2. For po E L'(]0, 1[) nonnegative and uo E L'(]0, 1[) such that 

(3.10) Ro= Sup {Iuo(x)I + P1(p0(x))} < lim P1(p), 
xG] o,l1[ P--+ 

and provided the stability condition 

(3.11) rX(RO) < 

holds with X(RO) given by (2.14), the scheme (3.4) (3.5) (3.6) (3.7) (3.8) (3.9) works up 
to any time t., n E N. Moreover, the values of the approximate solution always lie in 
the bounded convex set K(RO) defined in (2.11). 

Proof. From Theorem 1 and since (2.12) is obviously satisfied, the existence of a 
solution on each strip ]0, l[ x ] t, tn l[ computed from given values in Vh X Vh is 
ensured. The Riemann problems have no interaction between themselves before 
time t +I by (2.13) since (3.11) holds. All values of the solutions of these Riemann 
problems belong to K(RO) which is a bounded convex set. Thus their projections on 
Vh X Vh given by (3.8) and (3.9) also belong to K(RO). Theorem 2 is proved. 

This theorem states that K(RO) is a numerically invariant set for (1.4) and (1.5). 
The property to have such convex invariant sets which are also bounded is inherent 
to the (p, q)-model. On the other hand, this is not true for the (p, u)-model for 
p(p) = pY with 0 < y < 3. This is shown in [8], [9] for the shallow water equations 
(i.e., (1.1), (1.2) with p(p) = p2). Boundedness is true for y > 3; see [ 11. 

Note that (3.1 1) is stronger than the Courant-Friedrichs-Lewy stability condition 
since it involves the factor 2 instead of 1. This comes from the fact that we have 
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not studied the interaction of two waves of different kind; thus we have to project 
before they meet. Otherwise existence would not be proved on the whole strip 

]0, I[ x ]tn, tn+ [. However, the values given by (3.7) may be also valid for the case 
rX(R0) < 1, and the conclusions of Theorem 2 still seem to hold. 

4. The Lax-Friedrichs and Glimm Schemes. Theorem 2 may be extended to the 
Lax-Friedrichs scheme and to the Glimm scheme rather easily since they can be 
presented as two-step methods: transport and projection for the first one, transport 
and random interpolation for the second. 

Let I be an even number. For h = 1/I, we consider the spaces 

(4.1) Vh, = {vL'(]0, 1[), v = constant on](i - I)h, (i + I)h[n]0, 1[ 

fori + v odd), 

for v = 0 and v = 1. The initial data are projected on Vho by putting 

(4.2) ? 1 (i+)h (x) dx, qi p0(x)u0(x) dx 
1i-)h (i-I)h 

for i = 1, 3, ... , I- 1. 
As before we introduce the sequence tn = nrh and suppose we know all the 

(pin, qin) for n even and i = 1, 3, . . . , I - 1. We solve the problem (1.4), (1.5) on 
the strip ]0, 1[X]tn, tn+ [, starting from these values at time t,. This solution is 
constant on each triangle 

Tin3 = ((x t); Ix -ihl +-It- tl < ht 

if rh is small enough, which we shall ensure by the stability condition of Courant- 
Friedrichs-Lewy. Then we project this solution on Vh/ at time tn+I by averaging on 
each ](i - I)h, (i + I)h[n]0, 1[ for i even. Now we solve once again (1.4) (1.5) on 
the strip ]0, 1[ x ]tn+,I tn+2[, and then project on V0, and so on. Since the solution 
on each strip is constant on each Tjn for j + n odd, the averages on ](i - I)h, 
(i + I)h[ at time tn+,, that we denote by (pin+', qin+'), are easily computed by a 
Green's formula on the set ](i - I)h, (i + I)h[X]tn, t,H+[. This gives the well- 
known Lax-Friedrichs scheme, for i + n even, 

(4.3) p =l+l(pinl + 1) _ r 
(qin q 

(4.4) qp+l = 1 (/n + qIL) - 
r (= 22)2 ( n_ 1 

P'~P,u - 1-i 1 
,11 

The boundary values are taken in account only for n even, that is 

n ( (q p(pn ()) 
(4.5) pg+l= _(n- rqn), qon - (1) l(~ 

at x = 0, in which 

(4.6) (pn, 0) = S+(P1, q n) n {q = 0), 
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as in (3.5), with S+ above {q = 0} for p > p'. By the same arguments at x = 1, 

p4n+1 
I 

- rq,-1) 

q 2 
q r 

pjn l) 

(4.8) (PI, 0) E S_((pI1 qn-1) n {q = 01. 
We have the following result: 

THEOREM 3. For po E L??(]O, 1[) nonnegative and uo E L??(]0, 1[), such that Ro 
satisfying (3.10) exists, andprovided that the C.F.L. stability condition 

(4.9) rXO(RO) < 1 
holds, the Lax-Friedrichs scheme (4.3), (4.4) with (4.5), (4.6), (4.7), and (4.8) for the 
boundaries, works up to any time tn, n E N. Moreover, the values of the approximate 
solution always belong to the bounded and convex set K(RO). 

The same arguments as above are used to prove this theorem since from (2.13) 
the solution is constant on each Tjn,j + n odd, in each strip if (4.9) holds. Thus we 
do not give any details of this proof here. Note only that the right C.F.L. condition 
is accepted here. For each interval inside 10, 1[ has a length 2h, it is not less 
restrictive than (3.11) when Vh is used. The natural damping for this scheme is 
rather important and increases as r decreases, which was not the case for the 
scheme (3.8) (3.9). 

The Glimm scheme uses the same spaces V.0 and Vh, as in the Lax-Friedrichs 
scheme, but a random interpolation is performed instead of an L2-projection at 
each time t,. This is done as follows. A sequence of random numbers 

00 

a0,a 1, ...* a, EA II [0, 1] 
i=o 

is given, and we take 

(4.10) (pn+ 1 qnf+ l) = (pn(Xn, ttn+ ) q (Xn, tn+ 1)) 

for xn = (i + 1 - 2an)h and i + n even. In (4.10) (pn, q") is the solution of (1.4), 
(1.5) computed in the strip ]0, 1[ x ]t,1, tn+ I[, starting from the data (pjn, qjn) at time 
tn or given by (4.2) for n = 0. We have the same conclusions as in Theorem 3, with 
the same C.F.L. condition. The convexity of K(RO) is not explicitly needed here, 
but seems to be a necessary condition for invariance and thus is required implicitly. 

Note also that the Lax-Friedrichs scheme and the scheme given in Section 3 have 
the property of the conservation of the mass, that is, respectively, 

(4.11) E pfl+lji = j pfb, = * * * = E p?h, =fI po(x) dx, 
i+n even j+n odd k odd 0 

where hi is the length of ](i - I)h, (i + l)h[n]0, 1[, and 

E PA+/2h E Pi+,1/2h = i * =2 
(4.12) o<i<I-i<I_ f1 1 p<i Id1 

P0( nx) dlx 
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This means also the conservation of the Ll-norm of p, since p is nonnegative, for 
we have the invariance of K(RO) c {(p, q), p > 0). The conservation of the mass is 
only approximately satisfied when one uses the Glimm scheme. An analogue of the 
Glimm scheme may also be built by using the space Vh, that is by taking a random 
interpolation on each Ii+ 1/2 at time tn instead of a projection. The result of 
Theorem 2 would hold for it. 

5. Introduction of a Second Member. We consider now the system 

(5.1) at + aq = 

aq +a (q +2 p 
(5.2) t+ p(P)) + b(p, q)q + a(x)p = 0, 

with 

(5.3) a E C([ 0, 1]), b E C?(]O, oo[ X R) 

and satisfying 

(5.4) V(p, q) E K(RO), 0 < b(p, q)lql < ko(Ro) 
for any Ro > 0 and for some constant ko(RO). The function a corresponds physi- 
cally to the slope of the topography and b to a friction term. We find usually 
b(p, q) = I qI/p, satisfying (5.4) with 

(5.5) ko(Ro) = (Roxk + p()), p* = 

The same schemes as above are studied now. Since the L?-norm of the solution 
may grow, we have to work with a sequence rn defined by 

(5.6) rn = (tn+l - tn)/h. 

The sequence rn may decrease to spare the stability of the scheme. We shall show 
that rn is decreasing slowly enough to have the sequence tn divergent. Thus any 
time T E ]0, + oo[ can be reached. From (5.4) b is nonnegative and thus works as a 
damping term, preserving K(RO). The increasing of the norm can only come from 
the term a. 

For the scheme studied in Section 3, the only difference from above is to replace 

(3.9) with 

(5.7) [1 + rnhb(pi12, q/.+12)]q/i++i/2 = q/,.I++ - rnhai+i12p.in++112. 

In (5.7) ai+1/2 is a((i + 2)h), /in++j/2 the value computed in (3.9) and Pin+2in 

(3.8). The treatment of the boundary conditions is the same. 
Now for the Lax-Friedrichs scheme or for the Glimm scheme, we denote by qfn+1 

the value computed in (4.4), or in (4.10), and replace it with 

(5.8) [ 1 + rnhb(pin, q/n) ] q,n + 1 = -,n + I - rnha(ih)p/n + 1, 

without any change on the boundaries. We have the following result. 

THEOREM 4. With the same hypotheses as in Theorem 2 and in Theorem 3, 
respectively, and provided that PI(p) tends to infinity with p, the three schemes studied 
above give approximate solutions belonging to the bounded convex set K(R,) at any 
time tn where Rn is defined by 

(5.9) Rn = RO + IaIL-tnf 
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The stability condition becomes 

(5.10) rnX(Rn) A-2 (or 1 respectively), 

at time tn. The parameters rn may be chosen such that the increasing of the sequence tn 
behaves like V-ih if p does not grow faster than a polynomial near infinity. Namely, 
we have for p(p) = pl +2a/(I + 2a), a > 0, 

(5.11) r=l(aRn + 1)-i. 

Moreover, we cannot be sure to go beyond the time 

(5.12) T= (PI(+ oo) - RO)/IaIL 

if PI(p) is bounded on ]1, + ox. 

Proof. If (Pin++k/2' qin+1/2) from (5.7) belongs to K(R"), and, since 

I 21 <I 1+1/2 + rnfhIaILX' 

it is obvious by taking Rn + 1 = Rn + rnhIaI L' instead of RP in (2.11) that we obtain 
the computed values (Pin++l 2, qjn++,'2) lying in K(R,+ l). The arguments apply to both 
the other schemes and thus we get (5.9) in each case. This sequence Rn satisfies 
(5.9). To estimate rn, we have, by using (2.14) and (2.1 1), 

X(Rn) = Sup [MP + p = Sup {R -P1(p) + } 
(p,q) E K(R.) P P 

n 

which gives by (1.6) 

X(Rn) = ( n P-)(R 

Thus (5.10) holds for 

(5.13) rn (2 )-. 

Now, for p'(p) = p2a we have P1(pn) = a -l((pn)a - 1), and thus aRn + 1 = 

,(pn) , which gives (5.1 1) by using (5.13). Since Rn is given by (5.9), we have 

(5.14) t,2+1 - 
- 2(+ (tn+1 +tn) > h>ch 

=2(l + aRl + atn|aILO) aIaIL|, + (aR0 + l)/tn 

where c is a constant. With the same arguments we have for some constant c' 

(5.15) 2 3h/2 7 'h 
(t2+ I-t2 n 

alaILX + (aR0 + l)/ tn 

A summation on n gives, from (5.15) and (5.14), 

(5.16) V--h < tn < - cn 

Finally, if P1 is bounded, we have to compute with a convex set K(Ro + IaIL.OT) 

which is unbounded by reaching time T given in (5.12), and (3.10) does not hold 
any more. This completes the proof of Theorem 4. 

The hypothesis on the behavior of p near infinity is satisfied in all the physically 
meaningful applications as long as p may become so large. In practice the growth 
of Rn is not very important in the other cases. 
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Note also that term a may be replaced with any bounded continuous function of 
(x, p, q) on ]0, I[ x [0, + ox[ x R and Theorem 4 is still true. 

6. Application to a Simple Supersonic Model. We consider now the equation 

(6.1) aJ9 _ a I a3w 2- 

at2 
= ax 2 ax) J' 

which takes the form of a hyperbolic system of two equations by putting 

(6.2) u = aw v aw 

We get 

au __av 
(6.3) 

(6.4) av a (u2 ) 

This system is hyperbolic for u > 0 only, corresponding to a supersonic phase. 
Note that we may consider t as a time variable though this model involves 
effectively a stationary two-dimensional problem, i.e., x and t are both space 
variables. The variables u and v correspond to the components of a. 

For that system we try to solve a Riemann problem near the sonic value velocity 
u = 0 and find a discontinuity on v with respect to u though u is still continuous. 
Thus (6.4) is satisfied but not (6.3). As a matter of fact a Dirac mass appears along 
the characteristic line u = 0, and we shall get rid of it by multiplying (6.3) by u and 
(6.4) by v and sum them. A new conservative form appears, involving the variables 
p = u and q = uv, which is rather near the system (1.4), (1.5). 

This Riemann problem is the following: solve (6.3), (6.4) with the data 

(6.5)(U(X,0), Vx' 0 f (1, a) for x <O, 

(6.5) (u(x, 0), v(x, 0)) - (1, -a) for x > 0, 

where a is a constant to be defined later. We find a solution given by 

a for x <-t, 

(6.6) u(x, t) = Min( 2, V(X, t) 
= 3 (3 )for 

-v(-x,t) forx>0. 

Obviously u is a continuous function but for a > 2 v has a jump at x = 0 
(corresponding to u = 0). 

We now write the (p, q)-system; we get 

(6.7) at - a () = 

aq a p3 q2 "0 
(6.8) at - Tx (3 2p2 J 

The Riemann invariants for this system are given, respectively, by 

(6.9) v = v0??+2 u3/2 2q p(v0+2p3/2), 
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for vo constant. Expressed in terms of (u, v) such invariants can cross the axe u = 0 
in the plane (u, v) at any point (0, v) with v =# 0. This is producing some 
discontinuity on v. Moreover, for the (p, q)-model, the point (0, 0) only belongs to 
the intersection of the axe {p = 0) with any Riemann invariant, hiding all discon- 
tinuity on v since q is still continuous. As a matter of fact q is given by 

(6.10) q(x, t)= xlxl [a + I)] for x < t 

in the previous example. Moreover, the convexity of the Riemann invariants is not 
changed. A set limited by them exists in both cases and is bounded and convex. 
Then all the results of Sections 2, 3, 4, and 5 apply here. We can generalize it for 

(6.11) f 

withf E C2(R), decreasing on ]-oo, 0[, increasing and convex on ]0, + oo[. We also 
write p = aw/ax and q = paw/at to obtain the system 

(6.12) ap _ a (q ) 
at ax p 

(6.13) at ax F(p)+2p2 0 

with F(p) = fPyf'(y) dy. 
This system is of hyperbolic type for p > 0. The Riemann invariants are given by 

(6.14) q = p(vo ? Fo(p)), 
in which 

(6.15) Fo(p) =f f(y) dy. 

The convexity property is true if f satisfies 

(6.16) Vp > 0, 4f'(p) + pf"(p) > 0, 

obtained by derivating twice q in (6.14). This condition is similar to (1.6) and the 
application of the results of Sections 2, 3, 4, and 5 are still suitable here. We find 
that the values of the approximate solution always lie in the set 

(6.17) K(Ro) = {(p, q); p > 0, IqI + pFo(p) - pRo < 0), 

if Ro is such that the initial data belongs to K(RO), that is 

(6.18) Ro= Sup {Ivo(x)I + Fo(ujx))} 
xE]O, 1[ 

for vo E L?(]0, 1[), uo E L?(]0, 1[) nonnegative. The boundary conditions are 
v = 0 (or q = 0) as above. Since the speed of the waves is estimated by 

(6.19) X(RO) = Sup { f } = Fo1(RO) 
(p, q)EK(Ro) 

the stability conditions are to be written as 

(6.20) rX(R0) = rFC l(RO) < 2 (or 1). 

The image of K(RO) in the (u, v)-plane is also a bounded convex set if f is convex 
on ]0, + so[, but it contains other points (0, v) than (0, 0). This may be a source of 
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trouble, as above for f(u) = u2/2. Nevertheless, the numerical schemes studied 
here are applicable and stable in this set, as shown in [6], [10]. The invariance of 
such sets was stated in [1], from another point of view than the numerical one. See 
also [12], [14]. Other generalizations of the upwind scheme are studied in [13]. We 
also recall that (6.16) may involve the stability in a bounded convex set in 
which X(RO) defined by (6.19) is unbounded, as for f(p) = -p - with 2 - V3 < y 
< 2 + \3?. Such an example is given by the isentropic gas dynamics equations in 
Lagrangian coordinates, as seen at the end of Section 1. 

The author wants to thank Professor P. A. Raviart who gave him the idea of 
breaking some well-known schemes to two steps in order to study them as 
transport-projection methods. This paper generalizes [8], [9], the results of which 
were found for an oceanic model with obstacles near the surface. This research was 
supported by C.N.E.X.O. under contract No. 80.2212. 
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