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Asymptotic Expansions for a Class of
Elliptic Difference Schemes*

By Goran Starius

Abstract. In this paper, we derive an asymptotic expansion of the global error for Kreiss’
difference scheme for the Dirichlet problem for Poisson’s equation. This scheme, combined
with a deferred correction procedure or the Richardson extrapolation technique, yields a
method of accuracy at least O(h%5) in L,, where h is the mesh length.

1. Introduction. In Section 2 of this paper we consider a family of difference
schemes for the Dirichlet problem for Poisson’s equation in n dimensions. The
schemes are based on the standard (2n + 1)-point formula combined with poly-
nomial extrapolation formulas of high degree, k say, at the boundary. Kreiss has
developed an interesting method for proving the convergence of schemes of this
kind, by reducing the stability investigations to one-dimensional problems. In a
recent paper by Pereyra, Proskurowski, and Widlund [2], the stability has been
proved, for 1 < k < 6, by using Kreiss’ method. In the paper [2], it is also proved
that, for k = 6, there exists an asymptotic expansion of the global error of the form

v =u+ h%, + he, + r, 74l = O(K>®),

where v and u are the solutions to the discrete and the continuous problems,
respectively, 4 is the mesh length, e, and e, are smooth functions independent of A,

and || - ||, is the usual discrete n-dimensional L,-norm. The main result of Section 2
is the following extension of the above expansion
(1.1) v=u+ h',+ h'e,+ heg+ 1, |, = O(h*),

which is obtained by a refined stability investigation with respect to the inhomoge-
neous term in the boundary condition. By using three or four different mesh
lengths, (1.1) guarantees that we get an error of order O(h°) or O(h%*), respectively,
by the Richardson extrapolation method. A deferred correction method is very
likely less costly to use since it only requires one mesh length; see [1]. For a
description of the latter method and for several numerical experiments see [2].

Finally, we point out that the kind of meshes used in this paper are not suitable
for Neumann problems, for which we instead suggest the use of composite mesh
methods; see [3] and [4].

2. An Asymptotic Expansion of the&Global Error for Kreiss’ Method. We begin
this section with a brief account of Kreiss’ difference scheme for the Dirichlet
problem for Poisson’s equation. Almost the same notations will be used as in [2],
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where also a more thorough description of the method can be found. The
continuous problem is denoted by

- > du/ax?=f(x), x€Q
(2.1) i=1
u(x) =g(x), xeaq,
where the region € is an open, bounded subset of the n-dimensional, real
Euclidean space R" with the smooth boundary dQ. The smoothness requirements
needed for the solution will be apparent later.
A uniform grid R, is defined by
Rf={x€R"|x,=xO+nhn=0%I1x2,...},
where & > 0 is the mesh length and (x{®, x{?, . . ., x®) is a fixed point in R". Let
Q, = € N R} and define ©f to be the set of gridpoints x € 2, such that at least
one of the points x + he, i = 1,2,...,n, is not in ,, where the vector ¢, is the
unit vector in the direction of the positive ith coordinate axis. The points in 2} are
called irregular gridpoints. For each x € §,, we initially apply the second-order
difference approximation

(2.2) 2no(x) — 3, (vo(x — he) + v(x + he)) = h¥H(x).
i=1
For an irregular gridpoint x, this formula is modified in the following way. Assume

that x — he; & ,. Then ov(x — he;) shall be eliminated from (2.2) by using a
polynomial exirapolation formula of a fixed degree k

k
~o(x = he) = 2 Bolx + h(j — e) = —5(x*),
Jj=1 0
23) i+1_ S [k .
B_]=(-—1), .—]—:(1)’ .]-132’~°~’k9

aa=(1-5)2-95)3—5) - (k—s)/k!,

where x* is the intersection of 3Q and the line segment between x — he; and x and
hence x* = x — he, + she;, where 0 < s < 1. It is now easily seen that the coeffi-
cient matrix 4 of the difference scheme can be written as

n
A= P'4P,
i=1
where the matrices 4; correspond to diffrences in the ith coordinate direction and
are the direct sum of matrices of the form

C+B8) (=1+8) Bs---s B

-1 2 -1...

0 -1 2
2 =1 0
-1 2 -1

BowiiBy (-1+5) (+4)
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The matrices P, are permutation matrices corresponding to different orderings of
the gridpoints.

In [2] it was proved that, for 1 < k < 6, there is a constant C, independent of A,
such that

(2.4) wTBw > Ch%/ (diameter(R))*- ww,

for all vectors w with dimension equal to the order of B. Since 4, is a direct sum of

matrices of the type B, it immediately follows that (2.4) is valid with B replaced by

A;. It also immediately follows that

(2.5) vTAv > nCh?/ (diameter())* - v o,

for all vectors v, which implies that

(diameter(£2))>
nCh?

where the spectral matrix norm has been used. By using this estimate it was proved
in [2] that

(2.6) 1471 <

b

v=u+ hl%, + h'e, + r,,

172
||r,.||2=( S |r,.(x)|2h") < o(h*3),

xEQy

2.7)

where e, and e, are smooth functions independent of A. In order to get a more
complete asymptotic expansion for the global error, we need a sharper stability
result, with respect to the inhomogeneous term in the boundary condition, than the
one that follows from (2.6).

Let [Qf] denote the set of grid functions y defined on {, with y(x) = 0 for
x & QF. We shall now prove that, for 1 < k < 6, there is a constant C,, indepen-
dent of A, such that

(2.8) vTAv > nCh/diameter(Q) - v, for dv =y €[Q}].
From this estimate it immediately follows that
(29) 47yl < diameter(2)/ (nCyh) - lI¥l, ¥ €[]

We shall now prove (2.8) by first proving a similar inequality for the matrices of
the type B. Let us consider the system of linear equations

( 8o/ % ]
0
(2.10) Bw = .
0

ng/ &0,

which is a discretization of the one-dimensional problem —:z” =0, z(0) = g,
z(a) = gy, where a is a positive constant and z(x) = go(a — x)/a + gyx/a. Let us
introduce the gridpoints x, = xo + vh, v =0,1,2,..., N + 1, where N is the
order of the matrix B. Further —x, = sh and xy,, — @ = §h, where s and § are
the quantities appearing in o, and &, respectively. The system (2.10) can now be
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written as
-w,_, +2w,—w,,, =0, v=12,...,N,
d 1 & i 1
—Wo = 2 Biwj - a_go’ “WNe = 2 ijN+l—j - ngv-
J=1 0 J=1 0
Since'z is a linear function, w, = z(x,), for k > 1, i.e.
(2.11) w, = gfa = x,)/a + gyx,/a.
From (2.10) and from the above expression for w,, we get

a—x X a— x X
T 2 1 1 v 2 N
aw ' Bw = + R _ + g2 N
8o o 308N( . ) ) 8N .

of @ — x 1{x, a-—xy S X 1(Xx)  a—xy
-—=|— + ——s|\—+—}
>g°( a0 2\% T & ME 2\t Ty

Since a — x; > (N — )h, xy > (N — )b, x, = (1 — s)h, and a — xy, = (1 — §)h
and further 0 < ap, &y < 1, ap/(1 — 5) > 1/k, and &y/(1 — 5) > 1/k, we get

(2.12) wTBw > W(gé + g%

Let us now consider the quantity w”w which, according to (2.11), can be written as

=82 (7 e 3 (2))

v=1

<ma 5 (422)n S (2)h)(+ a0

v=1 v=1

5+ 20 3

v=1

< 2((N+1)h) (8 + 82).

By using (2.12) and the above inequality, we easily get

wTBw > 3h(1 — (k +2)/ (N + 1))/ (2a) - wTw,
where we also have used that (N + 1) > a. For later references we write this
inequality as

(2.13)  w™Bw > hC,/diameter(R) - w™w, C,=3/Q(k+3)), N>k +1.

Note that (2.13) is valid only for w satisfying (2.10). The inequality (2.8) can now
be obtained in the same way as (2.5).
Let us for functions y € [Q}] define the following n — 1-dimensional L,-norm

b= ( 2 |y<x)|2h"-')'/2-

xEQ}

We can now write (2.9) in the following way
(2.14) Av =y €[QF] = |lvll, < diameter(R)/ (nC, V) ||,
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where || - ||, is the norm defined in (2.7). For later use we also write down the local
truncation error to the extrapolation formula (2.3)
- 1)"
2.15 i___ k+1 (k+1)
(2.15) KT 1 sh** 'y .

We shall now derive the improved version of the asymptotic expansion of the
global discretization error and consider for definiteness the case k = 6. We make
the Ansatz

v =u+ h%, + h'e, + h%q + r,,
where e,, e,, and e; are smooth functions, independent of h, satisfying the

boundary condition ¢, = 0, on 3%, ¢ = 2, 4, 6. We shall prove that ||,||, = O(h*?).
For the solution u of (2.1), we have

(2.16)  Au = B + G + h%,(u) + h%(u) + h¥l(u) + O(K")G, + O(K°),

where the /, are differential operators of order ¢ with constant coefficients, t = 2, 4,
6, and 8, G and O(h")G, belong to [©2}] and correspond to the inhomogeneous
boundary condition and to (2.15), respectively. We note that the difference scheme
is given by A4v = h’f + G and further that

(2.17) Ae, = hLe, + h'l(e) + h¥(e) + O(h"), =246,

where L is the differential operator defined in (2.1). By multiplying the Ansatz for v
by 4 and by using (2.16) and (2.17), we get that

3
Av = Au + D, h*de, + Ar,
=1

= h¥ + G + h,(u) + Kl(u) + h¥(u) + O(K)G, + O(h®)
+h%Le, + h®(e,) + h®l(e,) + O(h°) + hLe, + h¥ (e,)
+0(h'%) + hPLeg + O(h') + Ar, = h’f + G.

By determining e,, e,, and ¢4 by

Ley + l(u) =0,  Le, + l(e;) + I(u) =0,
Leg + ly(ey) + lg(ey) + lg(u) =0, =0 ondQ, ¢=24656,
we get
Ar, = -G,0(h") + O(K°).
Since G, € [©}] and |G|, = O(1), it follows from (2.14) and (2.6) that
(2.18) lIralls = O(K®),
which is the main result of this paper.
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