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Some Convergence Estimates for 
Semidiscrete Type Schemes for Time-Dependent 

Nonselfadjoint Parabolic Equations 
By Huang Mingyou and Vidar Thomee 

Abstract. L2-norm error estimates are shown for semidiscrete (continuous in time) Galerkin 
finite element type approximations to solutions of general time-dependent nonselfadjoint 
second order parabolic equations under Dirichlet boundary conditions. The semidiscrete 
solutions are defined in terms of given methods for the corresponding elliptic problem such 
as the standard Galerkin method in which the boundary conditions are satisfied exactly but 
also methods for which this is not necessary. The results are proved by energy arguments 
and include estimates for the homogeneous equation with both smooth and nonsmooth 
initial data. 

1. Introduction. In this paper we shall discuss semidiscrete Galerkin finite 
element type approximations of the general second order parabolic initial 
boundary value problem (ut = au/at) 

ut + Au = f inQXI, 

(1.1) u=O ona3XI, 

u=v in fort=0, 
where Q is a bounded domain in Rn with sufficiently smooth boundary ag, 
I = (0, to] a finite interval in time, f a function of x and t, and A the uniformly 
elliptic differential operator 

n a ~au~ n au Au = A(x, t)u = - l -ajk(x, t) -k + E bj(x, t)- -- + c(x, t)u, 
j, k= IX1 Xk J=j 

with ajk, bj, and c smooth functions in C2 x I, and ajk = akj. Our purpose here is to 
consider the modifications necessary in order to carry over the L2 error estimates of 
Bramble, Schatz, Thomee, and Wahlbin [4] for the homogeneous equation with A 
selfadjoint, positive, and time-independent to the general situation stated. 

The semidiscrete approximations in [4] were defined by the equation 

Thuh,t + uh = O for t E I, 

where, with h a small positive parameter, { Th} denotes a family of approximations 
of T = A -' with range in finite element spaces { Sh } such that 

(i) Th is selfadjoint, positive semidefinite on L2(Q), and positive definite on Sh; 

There is an integer r > 2 such that 
(ii) tI(Th - T)fII < Ch'SftfL-2 for 2 < s S r. 
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Here and below 1 * Ilk is the norm in Hk(Q) and 11 * 11 = II 110 that in L2(A). The 
approach of [4] was extended to nonhomogeneous equations in Thomee [11] and to 
time-dependent A in Sammon [7]. 

We introduce the bilinear form corresponding to the elliptic operator A, 

n av aw n 
" 

A(V, w) = A(t; V, W) ak + E J b1 y- w + cvw) dx, 

and note that if K > SUP( Ej abIaxj- c) we have 

A(v, v) + KIIvII2 > cIIvI12l for v C Ho(Q) with cl > 0; 

K will be fixed in this way in the rest of this paper. We shall now associate with the 
study of our parabolic equation the elliptic problem 

(1.2) AKU- (A + K)U =f in Q, u = O on a, 

or in weak form, 

AK(U, T) A(u, T) + K(U, p) = (f, p) VqP E Ho(). 

We denote by T = T(t): L2(0) -H2(Q) n Ho(Q) (or H - '(62) - Ho()) the solu- 
tion operator of this problem, so that 

AK(T(t)f, T) = (f, T) Vt E HO4() 

Introducing in (1.1) ui = e- Ku as a new dependent variable, we have 

i, + AK U = f e e Y for t c I, i(O) = v, 

which may now also be written 

(1.3) Tut + u = Tf for t C I, i(O) = v. 

Following [4] we define a semidiscrete (discrete with respect to x) approximation 
of (1.1) in terms of an approximate method to solve the associated elliptic problem 
(1.2): Let {Sh) be a family of finite-dimensional subspaces of L2(A) and Th = 

Th(t): L2(W) Sh an approximation of T with properties to be stated below. 
Consider then as an approximate solution of (1.1) a function Uh: I -+ Sh such that 

uh = eKtiuh where 

(1.4) Thuh,, + Uh = Tj for t C I, uh(O) = vh, 

with vh an approximation of v in Sh. For example, assuming Sh c Ho(), we may 
take for Th the solution operator associated with the standard Galerkin method as 
defined by 

AK(Thf, X) = (f, X) VX E Sh. 

The problem (1.4) then reduces to the standard weak formulation of the parabolic 
equation 

(uh,t, X) + A(uh, X) = (fX X) VX E Sh. 

We shall now describe the conditions which will be placed upon { Th) for (1.4) to 
define a good approximation of the solution of (1.1) and present corresponding 
convergence estimates. The latter will result from considering the following equa- 
tion satisfied by the error e = uh - u = e - Kt(uh - u), namely 

The, + e = p-(Th- T)AKi for t C I, 
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which is obtained by subtracting (1.3) from (1.4). Our hypotheses below, which 
generalize the basic assumptions (i) and (ii) of [4] to the nonselfadjoint time- 
dependent situation, will be the following: 

(ia) (f, T,J) > 0 forf E L2(U) and (X, ThX) > 0 for0 X EE Sh; 

(ib) I(TTJ, g)-(f, Thg)I < C(f, Tf)'1/2jTg Tj. 

There is an integer r > 2 such that 

(ii)k II(Tk( - T('))fII < C/i1f Ils-2 for 2 < s < r, 0 < j < k. 

Here and below we use B(G) to denote (d/dtyB, with B' = B('), for B a function or 
operator depending on t, and similarly for a bilinear form. Note that (ia) implies 
that (1.4) is uniquely solvable for t > 0 since Th-1 then exists on Sh. The assump- 
tion (ib) bounds the degree of nonselfadjointness of Th; for the standard Galerkin 
method it is a simple consequence of the fact that 

IAK(v, w) - AK(w, v) I < C|| vll I - || wll. 
The present condition (ii)o was also used in [4]. 

In Section 3 below we will discuss the validity of our hypotheses for some 
different choices of elliptic approximations { Th), namely the standard Galerkin 
method, the Langrange multiplier method of Babuska [1] which restricts Sh by 
requiring its elements to be orthogonal to a separate finite-dimensional space on 
the boundary, the method studied by Berger, Scott, and Strang [2] and Scott [9] in 
which the elements of Sh vanish at certain carefully chosen boundary points, and 
finally the method of Nitsche [6] in which certain boundary terms are included in 
the bilinear form defining Th. 

Section 2 below contains the derivation of our L2-norm error estimates. We 
begin by proving that in the case of the nonhomogeneous equation with sufficiently 
smooth solution we have under assumptions (ia) and (ii)1 (Theorem 1) 

IIuh(t) - u(t)II < Ch/r { IIVIr + fI 1Utir dTr} for t E I, 

if vh is a suitably chosen approximation of v. We then direct our attention to the 
homogeneous equation. Assuming now (ia), (ib), and (ii)1 we first prove an estimate 
for the case of smooth initial data, compatible with the differential equation, again 
with vh suitably chosen, namely (Theorem 2) 

IIuh(t) - u(t)II < Ch rlVIlr for t E I, 

and then an estimate for nonsmooth data, now with vh the L2-projection of v onto 

Sh (Theorems 3 and 4), 

IIuh(t) - u(t)II < Chrt r/2|v|| for t E I. 

For r > 2 the proof of this latter estimate requires the analogue of (ii)1 to be valid 
for the adjoints of T and Th, so that 

(ii)l( - | Chif -2 for 2 < s < r,j = 0, 1. 

For the standard Galerkin method we find easily 

(X,f) = AK(Xy Thf) VX E Sh, 
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so that Th* is the standard Galerkin approximation of T = (A*)-', and (ii)4 is 
proved in the same way as (ii),. We end Section 2 by showing that similarly for the 
error in the time derivatives, assuming now (ia), (ib), (ii)1 1, and (ii)4, 

IIDt'uh(t) - D,ru(t)jj - Chrtr/2111V1 for t E I. 

The proofs of the nonsmooth data estimates in [4] and preceding work depended 
on spectral representation, whereas, as was the case in [7], our present proofs are by 
energy arguments. The basic step is Lemma 3 below which generalizes the inequal- 
ity (2.8) of [4], used there to prove the smooth data result. 

We end this introductory section by recalling some regularity properties of the 
solution of the homogeneous parabolic equation which will be explicitly used in 
our error analysis below (cf. [10] and [7]). Letting u be a solution of 

(1.9) u,+Au=0 inQ2XI, u=0 onaR xI, 

we define the solution operator E(t, s) for 0 < s < t c I by u(t) = E(t, s)u(s). This 
operator has the properties E(s, s) = I and 

(1 10) E(t, y)E(y, s) = E(t, s) forO < s < y < t E I. 
The solution u(t) = E(t, O)v may be defined even for v c 14(Q); it is smooth for 

t > 0 and for any k > 0, 

(1.1 1) IIE(t, O)VIIk ? CtGk/2jjVj1 for t E I. 

More generally, the solution operator satisfies 

(1.12) IIE(t, S)vIIk < C(t - s)k/|2jv|| for 0 < s < t C I. 
For the solution to be smooth on I, it is necessary to demand, in addition to 

smoothness of v, that this function be compatible with the differential equation and 
the boundary condition at aQ for t = 0, so that the time derivatives of the solution 
for t = 0, as formally computed from the differential equation, vanish at aQ. More 
precisely, set 

= V, V11 ( ) (=) v 

We say that v is compatible of order k with (1.9), where k is a positive integer, if 

vj E Hk-2j(&2) n Ho(Q) forj < k/2. When this holds we have 

(1.13) IIE(t, O)vIIk+j ? Ct j/2I IVlk for] > 0, t E I. 

With v satisfying the corresponding compatibility conditions of order k with (1.9) 
at t = s (which is always the case for v = E(s, O)w if s > 0, w E L2(0l)) we have 
similarly 

IE(t, S)VtIk+j ? C(t - s) Y/IVIlIk forj > 0, 0 < s < t E I. 
During the completion of this paper we learned about related independent work 

by Luskin and Rannacher [5], and Sammon [8]. In [8], L2 error estimates similar to 
ours were derived under inverse hypotheses on {Sh}, and in [5] nonsmooth data 
results of the type described above were obtained without inverse assumptions in 
the case of the standard Galerkin method, using a parabolic duality argument. 

2. The Error Estimates. We shall start the L2-norm error analysis by proving our 
result for the nonhomogeneous equation. Its proof will be based on the following 
lemma. 
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LEMMA 1. Assume that (ia) holds and that 

Thw,+w=g fortEI. 

Then 

llw(t)l l lw(0)11 + C { |g(O)1 1+ ' ||glldTr} for t E I. 

Proof. Multiplying the equation for w by w, we have 

(Thw,, wI) + 
I d 

||W|12 = (g, wt) = d (g w) - (g, w), 

so that using (ia), after integration, 

Iw( t)112 < jIw(0)112 + 211g(t)ll llw(t)ll + 211g(O)jj llw(O)jj + 2 llg,ll llwll dT 

< sup j|w(T)jj { |w(O)|| + Csup Ilg(T)jj + Cf llgtll dTr}. 

This estimate is valid with t replaced by any t1 < t and in particular for t1 such that 

IIW(t1)I = SUP,< II W(T)II. Hence 

IIw(tDII2 S SUP ||W(T)|| {IW(O)II + CSUP j|g(T)jj + Cf ligtl dT}. 

After cancelling a common factor w(t1)II and noting that 

Ilg(T) 1 < llg(O)jj + 
t llgtll dT for T < t, 

we get 

llw(t)ll < llw(t')Il < llw(O)II + C IIg(O)II + t 
llgt1l dTr}, 

which proves the lemma. 
The following is now our error estimate for the nonhomogeneous equation: 

THEOREM 1. Assume that (ia) and (ii)1 hold and that vh is chosen so that 

IIVh - VII < ChrIl VII r. Then, for t E I, 

IIuh(t) - u(t)II < Chr {IIVIlr + f II UtlIr dTr}. 

Proof. We know from Section 1 that e(t) = e`-K(uh(t) - u(t)) satisfies 

Thet + e = p (Th - T)AK L 

Since, by (ii)1, 

IIP(?)II = II(Th - T)AKvII < ChrIIAKVIlr-2 < ChrIl VIr, 
and, with A' the operator obtained from A (or AK) by time differentiation, 

IIptIl < II(T' - T')AK all + II(Th - T)(A'ui +AKU,)II ( Chr(IlUIr + IUtIllr), 
with 

IIU(t)IIr < IIllVr + ' IIUtIIrdT 

the desired result follows at once by Lemma 1. 
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Note that in Theorem 1 we have considerable freedom in our choice of Vh. For 

instance, we could choose Vh to be the elliptic projection of v defined by Vh= 

ThAKV, since 

llvh - vll = II(Th - T)AK.vI < ChriiAKvllr-2 < Ch'IIVII" 

but we could also take vh = Phv, where Ph denotes the orthogonal projection onto 

Sh with respect to the L2 inner product since then 

IIvh - vII= inf i|x - vii < | ThAKv - 
vil < ChrIiVlir. 

X C Sh 

We now turn to the homogeneous equation. Our problem is thus 

u,+Au=O inO2XI, 

(2.1) u=O ona8 xI, 

u(, O) = v in n, 

and, with our previous notation, the error equation now takes the form 

The, + e = p -- (Th - T)i4t. 

We shall first prove some bounds for the time derivatives of Th. 

LEMMA 2. Assume that (ii)k holds with r = 2, k > 1. Then 

I(Tkf,f)l < C((TJ,f) + h2IV1I2), 

and 

Thj')f 11 < C(II TJIll + h2IIf II) forj < k. 

Proof. We shall show the continuous counterparts of these estimates, namely 

(2.2) i(T'f,f)i < C(Tf,f), 

and 

(2.3) || T(')Jf| < CII Tf 11 forj < k. 

Once this is done, the desired results follow easily by (ii)k, as for example for the 

first inequality, 

(TU,f)l =l( T'f, f) + (( Th - T')f, f) < C(( Tf, f) + h211f 112) 

< C((Thg,f) + h211f 112). 

For the continuous inequalities we differentiate the equation 

AK(Tf, p) = (f, T) VT EHo (Q) 

to obtain 

AK( T'f, p) + A'( Tf, ) = 0 Vp E Ho' (4). 

Hence, in particular, 

I(T'f, f)l = iAK(T'f, T*f) = iA'(Tf, T*f)I < CII TfIii I *11 T*fVl 

< C(AK(Tf, Tf)) 11/2(A K(T*f, T*f)) 1/2 

= C(f, Tf)1/2(T*f,f)'/ = C(Tf,f), 

which is (2.2). To show (2.3) we use induction overj. Noting that it is trivially valid 



TIME-DEPENDENT NONSELFADJOINT PARABOLIC EQUATIONS 333 

for j = 0, we assume that it holds for j 1 - 1 with I > 0. Since for any 
p E L2(A), 

1 
(T(l)f, p) = A(T(T')f, T* p) = - ( )A(i)(T(-0f, T*T9) 

1.2 (' (T( )f, A(i* q) 

we have 

I(T(')f, w)I < C z 
I(T(l-i)f,A(l)*T*p)j 

| CII TfILII|| "!iI2 < Gil Tfilj p1, 

which shows (2.3) forj = 1. The proof of the lemma is now complete. 
Our basic lemma for the subsequent error analysis in both the smooth data and 

the nonsmooth data cases is the following. 

LEMMA 3. Assume that (ia), (ib), and (ii)1 (with r = 2) hold and that 

Thw, + w = g fort E I, Thw(O) = O. 

Then, for sufficiently small h, 

(2.4) ft jwjjl dr Cf g . 

Further, for e positive there is a C6 such that, for t E I, 

(2.5) T|w(t)|| < t | dr + c6{IIg(t)II2 + t lf' hgil dT} 

and 

(2.6) |Iw(t)I| < csup (T||gt(T) |) + CeSUp IIg(T) I. 
tCt T<t 

Proof. We multiply the equation for w by w to obtain 

dt (Tw, w) + 211W112 = 2(g, w) + (Thw, w) + [(Thw, w,) - (Thwl, w)]. 

For the second term on the right we have by Lemma 2, for small h, 

I(7'w, w)j ? C(ThW, w) + I|IIW|2, 

and for the last term, using (ib) and the equation for w, 

I(Thw, W) - (ThW, w)j < C(Thw, w)"2/ hThwdl 

S C(T,w, w)1/2(||g|| +|lWll) W C(ThW' w) + C||g|I2 +I4W||2_ 

Hence 

d (Thw, w) +11w112 < C(I1gII2 + (Thw, w)). 

Using Gronwall's lemma and the fact that Thw(O) = 0, this yields (2.4). In order to 
show (2.5) we multiply the equation for w by 2tw, and obtain after some manipula- 
tion 

2t(Thw,, W,) + dt(tIIWII2) = 2 d (t(g, w)) - 2(g, w) - 2t(g1, w) + II W1j2, dt dt 
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and hence, after integration and obvious estimates, 

tIlW(t)II2 < e2ft 21lgt,12 
dr + Ce{tIig(t)II2 + f (igh2 +1iwII2) d}. 

This, together with (2.4), shows (2.5) which obviously implies (2.6) and thus 
completes the proof of the lemma. 

We.are now ready for our error estimates for the homogeneous equation and 
begin by considering the case of a smooth solution: 

THEOREM 2. Assume that (ia), (ib), and (ii)1 hold, that v E Hr(Q) is compatible of 
order r with (2.1), and that ivh - v<i Ch riiVlir. Then 

IIuh(t) - u(t)II < Chrii Vir for t E I. 

Proof. We first note that it suffices to consider the case vh = Phv. In fact, let Uh 

and Uh denote the solutions corresponding to the initial values vh and PhV, 

respectively. Then obviously 

Th(f'h - Uh)t + (Uh 
- 

Uh) = 

and hence, by Lemma 1, for any t > 0, 

IIUh(t) - Uh(t)JI < - PhvlI < IiVh - VII + |iV - PhVil < Ch rilVIr. 

We also note that if vh = Phv, then Th e(O) = 0. For since e(O) = PhV - v is 
orthogonal to Sh, we have by (ib), for any X E Sh, 

I(The(O), X)i = I(The(O), X) - (e(O), ThX)i < C(The(O), e(O)) /2II ThXii = 0. 

In order to complete the proof of the theorem we may thus assume vh = Phv and 
apply Lemma 3. By assumption (ii)1 and the regularity estimate (1.13) we have 

Iip(T)ii = -(Th T)f4t(T)II <Chrll4t(T)1lr-2 < Chrl a(T)IIr < ChrilVl r 

and 

lPt(T) 1l < 1 ( Th' T')i4t(T) || +||( Th - T)i4t,(T) 1l 

< Chr(|i|1t(T)Ir-2 + I4att(T)lIr-2) < Chrl a(T)Ilr+2 < ChrT llV,llr, 

and hence, by Lemma 3, iie(t)ii < Chriivilr, which completes the proof of the 
theorem. 

We shall now proceed to prove our error estimate for nonsmooth initial data. 
The choice of discrete initial approximation will then be restricted to the L2- 
projection Phv. We start by considering the case r = 2 separately. 

THEOREM 3. Assume that (ia), (ib), and (ii)1 (with r = 2) hold, that v E L2(A), and 
vh = Phv. Then 

IIuh(t) - u(t)II < Ch2t-1iIvII for t E I. 

Proof. We shall prove 

(2.6) hIe(t)hI < Ct-1sup {T21lPtll + Tllpll +IIRII + h211ell) 
T<t 

where R(t) = t p dT. Here, similarly as above, we have 

TIIP(T)II = TrI(Th - T)fi1(T)II < Ch2Trj i1(T))j < Ch21IIV|, 
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and 

T21lpt(T)II < T2|(T' - T')i"lI + T2ll(Th - 
T)fi,,lI 

< Ch2T2(11 uQt(T)j + 11 IIJT)1()) s Ch2ljVII. 

Since 

R(t) f| (Th- T)it dT = [(Th - T)fi(T)]t -f (T'- T')a dT, 

we also have 
jjR(T)j 1 <Ch2 Sup ||ui(af)| < Ch211vII, 

U<T 

and the stability of the solution operators gives at once 

lIe(T)II < IIah(T)II + 1i(T) 1 < 2livil- 
Together these estimates show e(t)II < Ct -'h211vii, which proves the desired result. 

In order to show (2.6) we set w = te. We shall demonstrate 

(2.7) IIw(t)ll < C sup {T21lpt1l + TPII +11ThelI}, 
,rt 

and thereafter 
(2.8) lIThe(t) II < C sup { TIrPfff IIRII + h2lIell}. 

Tr < t 

Together these estimates imply (2.6). 
We have from multiplication of the error equation by t that 

Thwt + w = _ tp + The. 

Note that by the error equation and Lemma 2, since h is bounded, 

I =AtIl lItpt + p + Thet + Thell < C(tijptil + IIPII + IIell + || Thell). 
Hence, by Lemma 3, with suitable choice of c, for t E I, 

jjW(t)jj <? SUP(TrIjtjj) + CeSUPIIPII 
1r<t <tt 

< 
I 

sup 11 W(T)II + Csup {T 211ptl + TipIIl+IIThell}, 2 r< r< 
which easily gives (2.7). 

For (2.8) we integrate the error equation to obtain, for =J e dT, 

Thet + e = R + f T,e dT. 

Lemma 3 yields, with Lemma 2, 

ff (t)f S E SUP(TIIR'll + TrIIThe11) + CEsup (|RII+ +f The do) 

S E SUP (TIIpII + CTr1 Thell + CTh2 liell) + C,.sup, IIRII 
T < t T < t 

+ cejt (Q Thell + h2jj ell) da, 

and observing that et = e this shows 

The(t)V s < ? ll + II Ril + f The dT 

< eCsup(TIIThell) + C8supQ(Tjpj + IIRII + th2jjell) + Ceft IlT,ell dT. 
ir<t 
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Choosing e such that eCt0 = ', this gives, for t E I = [0, t], 

IIThe(t)II 6 Csup(Tilpil + IIRIl + h2IIell) + Ct 11 Thell dT, 

which implies (2.8) by Gronwall's lemma, thus completing the proof of the lemma. 
We have finally the following result for general r. 

THEOREM 4. Assume that (ia), (ib), (ii)1 and (ii)r hold, that v E L2(Q), and 

vh = Ph V. Then 

llUh(t) - u(t)II < Chrt r/2||V| for t E I. 

Proof. Recall from the introduction the properties of the solution operator E(t, s) 
of the homogeneous equation. It is easy to see that the adjoint E(t, s)* of E(t, s) is 
the solution operator E(s, t) of the backward problem for the equation 
(2.9) w,-A*w = 0, 

where A * is the formal adjoint of A, so that, for a solution w of this equation, 
w(s) = E(s, t)w(t) for s < t. In particular, then, we have analogously to the 
corresponding property (1.12) of E(t, s), 

IJE(t, s)*vIlr = IIE(s, t)Vllr < C(t -s r/211 vii for 0 < s < t E I. 
We introduce similarly the solution operator Eh(t, s) of the semidiscrete counter- 

part of (2.1) and the error operator for this problem, 
Fh(t, s) = Eh(t, s)Ph - E(t, s). 

With this notation the result of Theorem 3 can be stated as 

1j F,(t, O)v|| < Ch2t -'II vll for t E I, 

and it is clear that then also 

(2.10) IIFh(t, s)vil < Ch2(t - sK'iivii for 0 < s < t E I. 

Similarly, Theorem 2 can be expressed 

(2.11) iFh(t, s)vii < Ch'r]lVr for 0 < s < t EI, 

for v compatible with the differential equation (2.1) at t = s, and since F,(t, s)* is 
the error operator for the semidiscrete analogue of the backward equation (2.9), we 
also have, for v compatible with Eq. (2.9) at s = t, 

II Fh(t, s)*v|| < Ch r|| Vllr- 

After these preparations we are now ready to complete the proof of the theorem 
for r > 2. Since 

11 Fh(t, O)v|| < 11 Eh(t, ?)Pvrll + 11E(t, O)v|| < 2e"I||v|l < C|| v|| 

it suffices to consider the case h2t < 1. Using (1.10) and its discrete analogue, we 
have by a simple computation 

Fh(t, 0) = Fh(t, t/2)E(t/2, 0) + E(t, t/2)Fh(t/2, 0) + Fh(t, t/2)Fh(t/2, 0). 

By (2.11) and (1.11) we have for the first term, since E(t/2, O)v is compatible with 
(2.1) at time t/2, 
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For the second term we conclude, since an operator and its adjoint have the same 
norm, and since E(t, t/2)*v is compatible with (2.9) at time t/2, 

JJ E(t, tl2)Fh(tl2, O)VII < Ch rt -rl2ll Vll . 

Using (2.10) for the third term, we have thus 

IIFh(t, 0)vll < Chrt-r/2llvll + Ch2t-'IlFh(t/2, O)vll. 

By iteration this yields, for 2s > r, 

hF (t, 0)vIl < chrt-r/2llvll + C(h2t- l)sllFh(t 2S 0)vjj < chrtr/211 
This completes the proof of the theorem. 

We complete this section by a nonsmooth data error estimate for an arbitrary 
time derivative. 

THEOREM 5. Assume that (ia), (ib), (ii)1+ 1, and (ii)* hold, that v E L2(0), and that 
Vh = PhV. Then, for each 1 > 0, 

IIuW'(t) - u(')(t)II S Chrt-r/2-111vII for t E I. 

Proof. By differentiation of the error equation we have 

Th e(l) + e(l) p(l) - fi ({)Th'l')e( '). 

Setting w(1)(t) = tl+r/2e(l)(t) and y(,)(t) = tl+r/2p(l)(t), we shall prove 

1+1 1-1 

(2.12) IIW(l)(t)II < CsuP E IIY(i)(T)ll + II'W(i)(T)ll 
T S t i=O i=O 

If this has been done, the conclusion of the theorem follows easily by induction 
since we know from Theorem 4 that 

II W()(T) II = rr/2lle(r)II < Ch ril Vil 

and since, by (ii)+ 1, for each i < 1 + 1, 

jjY(i)(T)I = Ti +r/2IP(i)(T)|| = Ti/r|2 (ThU) - T(i))iV j) 

ChrTi+r2 2 j4('-j)(T) < ChrTi+r/2ll4(rT)112i+r < Ch ||vI|. 
j=O 

To show (2.12) we observe that w(l) satisfies 

ThW(1),t + W(N) = a(l)(t) -y(l)(t) + (I + j)rui(t) -lThw( 

(-I + 2 )w(i - 1) , ( )t' 'ih - i)w(i+ 

-(I+ r )- (-)1-2-iThl1iWi 

Noticing that by Lemma 2, for any E > 0 and h small, 

T^w(h)1 ( C6II ThW(l)ll + eIIW(l)II < C0(jja(.1) 11 + ttw(l_1) 11) + 'Ell W(l1, 
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and using the fact that the Th(') are bounded we find easily, for t E L 
I 1-1 

(2.13) 11 0(1)11 "- C E 11 Y(i)|| + E 11 w(oll + '6||w(1)||. 
i=O i=O 

Since 

W(l),,(T) = T W(l+ 1)(T) + (i + T -Wl), 

and analogously for y() ,t we find similarly 
1+1 

(2.14) TI1a(l),t(T)II ? C E (11y(i,(T)II +IIW(i)(T)II). 
i=O 

We now apply our basic Lemma 3. First, by (2.5) we have 

11W(l)(t),1 < C I110(l)(t)112 + I ft (Ila(n)112 + 211ja()112) dT}) 

and hence, using (2.13) with E sufficiently small and (2.14), 
1 1-1 

11W(j)(t),12 < c E lly(i)(t)112 + E IIW(i)(t)112 

(2.15) i=o i o 

+ 1 tt (1ll IIY112 +'E' IIW(i112) dT) 

Similarly, we have by (2.4), for each i > 0, 

fI w()I2 dT cf (?E llY(j)12 + 
. 

IIW(j)11) d 

Using this with i = 1 + 1 and 1 in (2.15) yields 

I 1-1 

11 W(t)( lA t al()t)+ IIW(i)(t)112 
i=O i=O 

+-! ft (' 1: IIY 112 + 1 IIW W(i)) dr}) 

which implies the desired inequality (2.12). The proof of the theorem is now 
complete. 

3. Applications. In this final section we shall consider several different choices of 
approximate solution operators Th of the elliptic problem and show the validity of 
our hypotheses for these. We shall assume here for simplicity, without restricting 
the generality, that K = 0 so that AK(, *) = A(-, *). The analysis below has several 
points in common with that in [7]. 

I. The Standard Galerkin Method. Recall that, for this method, { Th} is defined 
from a family { Sh} with Sh C Ho(Q) such that 

inf {IIv - xlI + hllv - xlii) 
(3.1) X EESh 

< ChvIvs for v E HS(2) n Ho(0), 1 < s < r, 

by Th: L2(Q) -- Sh and 

A(Thf, X) = (f, X) VX E Sh. 
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We have at once 

(f, ThJ = A(TJ, Tf) > clI T, 2 > 0, 

which shows the first inequality of (ia) and also that equality holds only if Thf = 0. 
Assume that thenf = X E S.. Using the definition of Th once more, we have 

11xl12 = A(ThX, X) = 0, 

so that X = 0 which shows the second inequality of (ia). 
By our definitions we have with vh = Thf, wh = Thg, 

(Tf, g) - (f, Th g) = A(Thg, TJ) - A(Tkf, Thg) 

(3.2) -f E i(tvhwax a h)dx 

bj(2 E ixwh + a VhWh) dx 

< CllvhllI||Wh|| = C||T|lI|Thg|| < C(f, TJ)1 /2 |Thggj, 

which shows (ib). 
We now turn to the conditions (ii)k. We shall show that, for eachj > 0, 

(3.3) jj(T,Y) - T ())fIjq ?< Ch s-q 11.-2 for q = 0, 1, 2 < s < r. 

Forj = 0 these are the well-known standard Galerkin elliptic error estimates and it 
remains to consider the successive time derivatives. We begin by proving the 
Hl-result (q = 1) by induction overj and assume thus that this has been accom- 
plished forj < 1. Letting e = Tf - Tf, we obtain by differentiating the equation 
A(e,X) = Othat 

(3.4) A({)A-)(e(), X) = 0 VX e Sh, 

and hence 

je(')ll j < CA(e l, e() 

= C A(e(W) e(l) -X) 

+ , () [A(l-j)(e(Q), e(l) -x) - A('-j)(e('), e(l)) } 

1 12 -- 

< 11 e(')llj +c E 1 je(i')JII + Cle(l) -Xll.1 
j=0 

Since X E Sh is arbitrary, we obtain, using the induction assumption and the 
approximability assumption (3.1), 

jje(')jj, < C E lei)JI, + C inf jjT(')f - Xlil < ChsI lls-2, 
1=0 X E Sh 
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which is the desired result. In the last step we have applied the estimate 

|| T(llfIIs < Clif ls-2 for s > 2, 1 > 0, 

which is easily proved by induction over I using the fact that w = T(l)f solves the 
elliptic problem 

1-1 

Aw = - 2 A('-')T(')f in Q, w = O on aQ. 
j=O 

We now consider the estimate (3.3) for q = 0. Let m be arbitrary in L2(Q) and 
assume that the estimate has been shown for j < 1. Setting z = T*"p E H2(Q) n 
Hol(), we have, for any X E Sh, 

(e(l), 'p) - A(e(l', z) 

(3.6) =?~ (J) ('i)(eu), z - X) - 2 (I)(e, -A*()z 

and hence 
1 1-1 

(l(e') )l < C2 lleU)ii1 inf liz - xii + C 2 le')il 11Z112 
(3.7) ~~~j=0 xE(=Sh j=0 

< Chsijfls-21iZ112 < ChSiVils-2Ii%11, 

thus completing the proof of (3.3). 
Recall that T* and Th* are simply the operators corresponding to the adjoint A * 

of A, so that (ii)* follows as (ii)1. 
11. Babuika's Method. This method can be formulated as follows ([1], [3]). Let 

{h } be a family of subspaces of H 1(Q), and (h R} a family of subspaces of H 1(8) 
enjoying the approximation properties 
(3.8) inf {iiw - xll + hllw - xlll) < Chsllwlls for 1 < s < r, 

X E 3h 

and 

inf {h 1/2 11w - Xii1H-1/2(asz) 
+ h/2 |w' - X'HI/2(ag)} 

(3.9) XEh 
< ChsJw'JHw(au) for 2 < S < r-2 

and the inverse properties 

||XII I < Ch - 1 {XJJ for X E- eSh, 

and 

IIX |H(aC) 6 h lixtil(a0)for X' E- Sh. 

Then with 8 a sufficiently small positive number we define a family { Sh by 

Sh= {X E Sh; <X, X'> = OVX' E h}, 

where <*, *> is the inner product in L2(ag), and a family { Thj with Th: L2(U) 
Sh by 

(3.10) A(Thf, X) = (f, X) VX E Sh. 

The discussion of our hypotheses will follow that for the standard Galerkin 
method. Condition (ia) is satisfied in the same way as before. Since Sh e: HO(0), we 
obtain an additional term in the integration by parts in (3.2) in the proof of (ib), so 
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that we need to show now also 

(3.11) f bjtjvh Wh ds < CII vhilii |Whil, 

where vh = Thf, wh = Thg, and nj are the components of the exterior normal at au. 
By the properties of ShI S' and the definition of Sh, and using also the trace 
inequality II vII H1/2(a ,) < C II v we have, for a suitably chosen X; E h, 

bjpnjUW ds = f j (bjnjV- .)h ds| 

< C| bjnjVh - X'11H-/2(aS)iiWhiiH1/2(aG) < ChiibjnjVh| Hil/2(ai) lWh || H 1/2(an) 

< Ch|| bjnjVh|| 1 ||Wh||I1 < C||th||ll ||Wh|| * 

For (ii)k it is again known that (3.3) holds for] = 0. In particular, we shall use 
below that, for zjI., = 0, 

(3.12) inf liz - Xi < T - Th)AzIII < Chsliiziis for 2 < s < r. 
XEE Sh 

We begin the proof of (3.3) for j > 0 by showing the H' estimate by induction over 
j. This time, with e = TJ - Tf, (3.4) is not valid since the elements of Sh do not 
vanish on ag. By differentiation of (3.10) we still have 

(3.13) E ( A )(TY)f, X) = 0 VX e Sh, 

and, since 

()A (I -j) TOf = 0 
j== 0 

we obtain now 

(3.14) ((l')(e), x) = JO(J)( a aT)f,XI 

where a/av('-} = 2j,k nj(f-j)a/axk. Therefore, we have to add to the right in the 
estimate (3.5) the term 

(3.15) CE ( ( T()f, ) 

Here by the definition of Sh we have, for the appropriate XE' h 

I( ap('-T)f'x) =|( a-ij) 

(3.16) 11 ap(t ,. - i iHx-iH/2(a) IX1IHl/2(an) 

< ChSlI a TU)f llxii 

< Ch S -if 1s.- 2(e(l)i I1 + 11 e() - Xi 1). 
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We may therefore conclude as from (3.5), using the induction assumption, (3.16), 
and (3.12), that 

(3.17) lle('llII < Chs lIlflls-2 + C inf j|Tj f - X|li S Chs lllIls-2 
X E- Sh 

We now turn to the case q = 0. Similarly to above, since (3.4) is not valid, we 
have instead of (3.6) that, for any X E Sh, and with z = T*p, 

+A (I-(e(i), z - x) + A ( j)(e('), X)] 
1-1 / 1 

- j(e(Z), A *(I-j)z). 

Here, since e(j) =Th0)f on aQ, we have with suitably chosen )' E Sh, for] = 

I(e(), A*(' j)z) - A('j)(e', z)l =(e ( av(iZ ) 

< Cjje~')JjIIH12a -z x ChIje'-'j)II _ 

6 cil(Z)lHl/2aQ)l <-A |H-I/2(an2) 6Cl 1| ap(I-iA |HI/2(a5n) 
< Chsjlflls-211Zjj2 < ChsIfVls-21IT11. 

Further, with X suitable in Sh, forj = o,. . ., 1, 

(3.19) IA('j)(e?), z - X)j < Cite(i)IjjIIz - Xll < ChSlLfIls-2ll1PIl, 
and, with the same X and ? E S' suitable, from (3.9), 

32 |,O({)A'-)(e(), X) = QE. T,)f - X;, z - X) 

< Chs- a 
Tjjz1 

Z xll' < ChSljfljs.2jjlPjj. || aV( 1) S| HS-3/2 (an)I-l 6CS||s 2|q| 

Finally, by the induction assumption, forj = O, . .. , I-1, 

(3.21) l(e(U), A*(l-j)z)l < ClIe(i)'J 1iZ112 < Ch2jIfliis - 21i1ipi 

Together these estimates show 

J(e(i), 4p)| < Chsiflils-2limll 

which completes the proof by induction of (3.7) and thus of (3.3) in the present 
situation. 

As for the standard Galerkin method, we find at once that Th and 17h satisfy 

A(T, T*f) = (p,f) VTe E Ho(g) 

and 

A(X, Th*f) = (x,f) VX E Sh, 

and hence that the above proof of (ii), is easily modified to yield (ii)* . 
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III. The Method of Interpolated Boundary Conditions. For this method applicable 
to a plane region 0 (cf. [9], [2]), Sh consists of continuous piecewise polynomials of 
degree at most r - 1 (with r > 3) on a nondegenerate triangulation of S which 
vanish at the boundary vertices and certain carefully chosen boundary edge nodes, 
and Th: L2(Q) -- Sh is defined as before by (3.10). 

It is shown in [9] that, for X E Sh, 

(3.22) IIXIIH Q(aU) < Chs+3/211XI1 for -1 < s < r - 2, 

and 

(3.23) IIXIILV(aU) < Ch-IlIXII. 
Letting u1 E Sh denote the interpolant of u E Ho(Q) as defined in [9], we also 
quote 

(3.24) llu - ujIIj < Chs-lluIls for 2 < s < r, 

and extract, from the proof of Lemma 6 of [9], 

(3.25) IIUIIIH-q(aQ) = Iju - UIIIH-q(ae) < Chs+qllUljj for 0 < q < r - 2, 2 < s < r. 

Our condition (ia) is satisfied for this method as before, and, as for Babuska's 
method, (ib) will follow from (3.11); we have now by (3.22) and (3.23), 

|JbjnjVhWh ds| < C|| 
thIIL2(aU) II Wh II L,.(aU) 

< Ch3/ || Vh|| ljIIWhIILx < C||th|l llllWhill- 

For (ii)k it remains again to show (3.3) for j > 0 since the case j = 0 is treated in 
[9]. Similarly to Babuska's method, the proof of (3.3) for q = 1 requires an estimate 
for the sum in (3.15). This time we have by (3.22), with 2 < s < r, 

|(av(l j T if, X) < | ap(t j TO'f Hs 312(aa IIXIIH -(s - 3/2)(aa 

< C||T(/)fIIsIIXIIH-(--2)(aQ2, < Ch s-112 
11fils-21XI 

< Chs IIfIIs-1l-2(IIe(l)IIj + IIe(') - xII1) 

and from this the proof may be concluded as before. For the proof of (3.3) for 
q = 0 we again employ the representation (3.18), now with X = z,. Then (3.19) and 
(3.21) are still valid. We have by (3.22), (3.24), (3.25), and the result for q = 1, for 

< ? 1, 

Ije')IIL2(au) = || Th| |)f I - (TWf)II||(aQ) + ( ) II L2062) 

< Ch3"2 I T2)f- (T')f)jl1 + ChslIT?fI|s 

< Ch3/2(11 T)f - T(')f1I + T(')f - (T(I)f))ll) + ChsImIs-2 

< ChsjMjs-2 

and hence 

e(i), az \, e"a) 
az 

< ChSIVfjs-2.jZjI2 < ChSIVIls-21II1II 
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so that 

|O.)(eu=, A i0()z)-A(j (eu), z) ] f 

Finally, by (3.25) we have 

1}=0 (J) (= 'I|| (J) av (,- Z,Ti, Z 

a 
< C11ZIjjH-(s,-3/2)(aE2) 1(I -j) T(j)f| 

j=0 av Hs-3/2(aa) 

< Chs+l/21[f11s-211Z12 < ChsIVIls-21qff1, 

which shows (3.20). This completes the proof of (3.3) as above. 
The proof of (ii)* is again analogous to that of (ii),. 
IV. Nitsche's Method. This method (cf. [6], [3]) uses the bilinear form 

Bh(v w) = A(v, w)-( aw w v , a b + j8h '<v, w>, 

with ,8 a positive constant. Introducing the norm 

Ilivill = IIVvII + h"/2IIVVIIL2(aE1) + 
h"/2IIVIIL2(aQ) 

we assume that { Sh } is a family of finite-dimensional spaces such that I I I is well 
defined on Sh, that Sh satisfies the approximation property 

(3.26) inf { liv - Xli + hillv - Xlii) < ChslIvils for v E Hs(Q), 2 < s < r 
X E Sh 

and that the inverse estimates 

(3.27) IIXIIL2(aE1) < Ch /211xI VX E Sh, 

and 

II VXII L2(asa) 
h h /|ll v a 

hold. For the derivatives with respect to time, we have 

IBW0)(v, w)j < CilivillI * illwill forj > 0, 

and with the appropriate /B, fixed in this manner below, 

Bh(X, X) > CIIIxIII2 Vx E Sh. 

Noting that by Green's formula 

(f, X) = (ATJ, X) = Bh(Tf, X) forf E L2(),x Sh, 

we now define Th: L2(A) -* Sh by 

Bh(T,f X) = (f, X) VX E Sh, 

and quote the error estimate 

(3.28) II(Th - T)fII + hIll(Th - T)fIII < ChsIVls-2 for 2 < s < r. 
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We now turn to the hypotheses of Section 1. We have here 

(f, TJ) = Bh(TIT, TO) > C II T,Jj2 > 0 

with equality only for Thf = 0. If thenf E Sh, we conclude 

l1f112 = Bh(T.J,f) = 0, 

which shows that (ia) is satisfied. With vh = T,J, wh = Thg we have 

( T, g)- (f, Thg) = Bh( Thg, TJ) - Bh( Thf, Tag) 

= A(wh, vh) - A(vh, wh) = - bj a Wh dx + bj b1njVhWh ds. 

Here, using the definition of and the inverse estimate (3.27), the last term is 
bounded by 

CItvhIIL2(aS)IIwhtLI(aS) < CIII VhIII *IIWhII < C(f, TJ) /121| Tag|. 

Since the first term on the right in (3.29) is similarly bounded, (ib) follows at once. 
We now turn to (ii)k. Instead of (3.3) with q = 1 we shall show by induction over 

j the stronger result 

(3.30) IIIe')lIII < Chs-lIIflIsI2 for2 < s < r. 

This is known forj = 0 by (3.28) and we shall assume now that it holds for j < 1. 
We have here 

EO (()Bfl )(e(i), X) = 0 VX E Sh, 

and hence, for any X E Sh, 

111x1112 < CBh(x, X) = C { Bh(X - e x) - X =OE k)BWJ)(e U), x) 

1-1 ~ ~ j= 

< C 111 e(l) -Xill + EIIIe(/)III IliXi. 
j=0 

This yields 

111e("111I < Ill e(l) - Xll + Illxlll < C II( 
) 

-l XIII + I = eU )I 

and thus, by the induction assumption and (3.26), 

Iiie(')iii < C{ inf III-T( )-Xil + hs-flifils-2} < Chs-lilfiis-29 
X E= Sh 

which shows (3.30). For the induction step in the proof of (3.3) for q = 0 we write, 
withz = T*, 

(eW , p) B_(e('), z) B ()B )(e), z - X) - (1BW)(eu), Z). 
_=_ j=O \J 

Here 

BW''j)(e(-'), z) = (e(), A('-j)*z), 
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and we conclude, using the induction assumption, 

I(e(l), ()l < C IE jel I eIllinf iliz - Xliil + ) IIeuII 
j(e('),cp)j C II~IIXESh j=O z2 

< Chslif lls-2IIzI2 < Ch lSflls-211TIl1 
which completes the proof. 

The property (ii)* follows again similarly since 

Bh(X, Th*f) = (XI f) VX E Sh. 
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