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Some Convergence Estimates for
Semidiscrete Type Schemes for Time-Dependent
Nonselfadjoint Parabolic Equations

By Huang Mingyou and Vidar Thomée

Abstract. L,-norm error estimates are shown for semidiscrete (continuous in time) Galerkin
finite element type approximations to solutions of general time-dependent nonselfadjoint
second order parabolic equations under Dirichlet boundary conditions. The semidiscrete
solutions are defined in terms of given methods for the corresponding elliptic problem such
as the standard Galerkin method in which the boundary conditions are satisfied exactly but
also methods for which this is not necessary. The results are proved by energy arguments
and include estimates for the homogeneous equation with both smooth and nonsmooth
initial data.
1. Introduction. In this paper we shall discuss semidiscrete Galerkin finite
element type approximations of the general second order parabolic initial

boundary value problem (4, = du/dt)
u+ Au=f inQ X I,
(1.1) u=0 ondQ X I,
u=v inQfort=0,
where £ is a bounded domain in R” with sufficiently smooth boundary 9%,
I = (0, t°] a finite interval in time, f a function of x and ¢, and A the uniformly
elliptic differential operator

n

Au = A(x, hu = - D, ;—(ajk(x, t)gl—l—) + i b(x, t)g—u + c(x, f)u,
k=1 9% X j=1 X

with a;, b;, and ¢ smooth functions in Q x I, and ay = a;. Our purpose here is to

consider the modifications necessary in order to carry over the L, error estimates of

Bramble, Schatz, Thomée, and Wahlbin [4] for the homogeneous equation with 4

selfadjoint, positive, and time-independent to the general situation stated.

The semidiscrete approximations in [4] were defined by the equation
Tu,,+u,=0 fort €l

where, with 4 a small positive parameter, { 7,,} denotes a family of approximations
of T = A" with range in finite element spaces {S,} such that
(i) T, is selfadjoint, positive semidefinite on L,({2), and positive definite on S, ;
There is an integer r > 2 such that
@) (T, — DSl < Ch*||fllj—p for2 <s <r.
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Here and below || - ||, is the norm in H*(Q) and || - | = || - ||, that in L,(f). The
approach of [4] was extended to nonhomogeneous equations in Thomée [11] and to
time-dependent 4 in Sammon [7].

We introduce the bilinear form corresponding to the elliptic operator A4,

z dvo Iw = dv
A(v,w) = A(t; v, w) = a,— — + b,—w + cow| dx,
(o) = 4( ) fﬂ(j,k2=1 7 o dx; jgl 7 9% )
and note that if k > sup(3 = ; 0b;/3x; — c) we have
A(v, v) + «||o|? > ¢||v|} forv € Hy(RQ) with ¢, > 0;
k will be fixed in this way in the rest of this paper. We shall now associate with the
study of our parabolic equation the elliptic problem
(1.2) Au=A+ku=f inQ, u=0 ono%Q,
or in weak form,
A(u, 9) =A(u, 9) + k(u, 9) = (£, 9) Vo € Hy(Q).
We denote by T = T(¢): L,() > H*(Q) N Hy(RQ) (or H ™ '(Q) > HJ(Q)) the solu-
tion operator of this problem, so that
A(T()f, @) = (f, 9) VYo € Hy(D).
Introducing in (1.1) # = e~ *u as a new dependent variable, we have
g+ Ag=f=e™f fort €1 i0) =,
which may now also be written
(1.3) Ti, + i = Tf fort € I,i(0) = v.

Following [4] we define a semidiscrete (discrete with respect to x) approximation
of (1.1) in terms of an approximate method to solve the associated elliptic problem
(1.2): Let {S,} be a family of finite-dimensional subspaces of L,() and T, =
T,(1): LyQ)— S, an approximation of T with properties to be stated below.
Consider then as an approximate solution of (1.1) a function u,: I — S, such that
u, = e"ii, where
(1.4) T,iy, + @, = T,f fort € I,#,(0) = v,
with v, an approximation of v in S,. For example, assuming S, C Hy(£2), we may
take for 7}, the solution operator associated with the standard Galerkin method as
defined by

A(TWf,x) = (£, x) VX E S,
The problem (1.4) then reduces to the standard weak formulation of the parabolic
equation

(o X) + Ay, X) = (f; X) VX E S
We shall now describe the conditions which will be placed upon {7} for (1.4) to
define a good approximation of the solution of (1.1) and present corresponding
convergence estimates. The latter will result from considering the following equa-
tion satisfied by the error e = &, — i = e~ “(u, — u), namely
Tye, +e=p=(T,— T)A 4 fort €I,
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which is obtained by subtracting (1.3) from (1.4). Our hypotheses below, which
generalize the basic assumptions (i) and (i) of [4] to the nonselfadjoint time-
dependent situation, will be the following:

(ia) (L Tf)>0 forfe Ly2) and (x, T,x) >0 for0O+#x € S,;

(ib) (T, 8) = (. Tug)| < C(f, Tf)' || Tys]|-
There is an integer r > 2 such that
(i1) 4 (T — TO)f|| < Ch¥|f|s-2 for2<s<r,0<,<k

Here and below we use BY to denote (d/dtyB, with B’ = B®, for B a function or
operator depending on ¢, and similarly for a bilinear form. Note that (ia) implies
that (1.4) is uniquely solvable for ¢ > 0 since 7, ! then exists on S,. The assump-
tion (ib) bounds the degree of nonselfadjointness of 7}; for the standard Galerkin
method it is a simple consequence of the fact that

|4, (v, w) — A, (w, v)| < C||o||; - ||W||-
The present condition (ii), was also used in [4].

In Section 3 below we will discuss the validity of our hypotheses for some
different choices of elliptic approximations {7}, namely the standard Galerkin
method, the Langrange multiplier method of Babuska [1] which restricts S, by
requiring its elements to be orthogonal to a separate finite-dimensional space on
the boundary, the method studied by Berger, Scott, and Strang [2] and Scott [9] in
which the elements of S, vanish at certain carefully chosen boundary points, and
finally the method of Nitsche [6] in which certain boundary terms are included in
the bilinear form defining 7.

Section 2 below contains the derivation of our L,-norm error estimates. We
begin by proving that in the case of the nonhomogeneous equation with sufficiently
smooth solution we have under assumptions (ia) and (ii), (Theorem 1)

t -
l(6) = u()]| < Ch{ |, +fo lul, dr} foree L,

if v, is a suitably chosen approximation of v. We then direct our attention to the
homogeneous equation. Assuming now (ia), (ib), and (ii), we first prove an estimate
for the case of smooth initial data, compatible with the differential equation, again
with v, suitably chosen, namely (Theorem 2)

lun(2) — u(D)|| < Ch'||v||, fort € I,
and then an estimate for nonsmooth data, now with v, the L,-projection of v onto
S, (Theorems 3 and 4),
lun(£) — u(t)|| < Ch't™"?|v|| fort € I
* For r > 2 the proof of this latter estimate requires the analogue of (ii), to be valid
for the adjoints of T and T}, so that
(i)F ||(T;,“U) - T’*‘U’)f|| < Ch|f|s—2 for2<s<r,j=01

For the standard Galerkin method we find easily
(6 f) = A THf) VX E S,
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so that T} is the standard Galerkin approximation of T™* = (47", and >y is
proved in the same way as (ii),. We end Section 2 by showing that similarly for the
error in the time derivatives, assuming now (ia), (ib), (ii),, ;, and (i),
| D/uy(£) = D/u(1)| < Ch't=">~'||o|| fort €L

The proofs of the nonsmooth data estimates in [4] and preceding work depended
on spectral representation, whereas, as was the case in [7], our present proofs are by
energy arguments. The basic step is Lemma 3 below which generalizes the inequal-
ity (2.8) of [4], used there to prove the smooth data result.

We end this introductory section by recalling some regularity properties of the
solution of the homogeneous parabolic equation which will be explicitly used in
our error analysis below (cf. [10] and [7]). Letting u be a solution of

(1.9) U+ Au=0 inQ@xI, wu=0 ondQ XI,
we define the solution operator E(t, s) for 0 < s <t € I by u(t) = E(¢, s)u(s). This
operator has the properties E(s, s) = I and
(1.10) E(t,y)E(y,s) = E(t,s) forO<s<y<tel

The solution u(f) = E(t, O)v may be defined even for v € L,(R); it is smooth for
t > 0 and for any & > 0,

(1.11) | E(t, 0)o|lx < Ct™*2|v|| fort€E I
More generally, the solution operator satisfies
(1.12) IE(t, s)o|lx < C(t = s)*?|v| forO<s<reL

For the solution to be smooth on 7, it is necessary to demand, in addition to
smoothness of v, that this function be compatible with the differential equation and
the boundary condition at 9€2 for z = 0, so that the time derivatives of the solution
for ¢t = 0, as formally computed from the differential equation, vanish at 3. More
precisely, set

!
Vo =0, V1 =— 2 ({)A(l_j)(o)”j'
j=0\J
We say that v is compatible of order k with (1.9), where k is a positive integer, if
vy € H*"%(Q) N Hy(Q) forj < k/2. When this holds we have
(1.13) | E(t, 0)0)|xs+; < Ct77?||v||, forj >0t €I
With v satisfying the corresponding compatibility conditions of order k with (1.9)
at ¢ = s (which is always the case for v = E(s, O)w if s > 0, w € L)(R)) we have
similarly
IE(, s)v|lkss; < C(t = ) 7?|o)x forj>0,0<s<t€EL

During the completion of this paper we learned about related independent work
by Luskin and Rannacher [5], and Sammon [8]. In [8], L, error estimates similar to
ours were derived under inverse hypotheses on {S,}, and in [5] nonsmooth data
results of the type described above were obtained without inverse assumptions in
the case of the standard Galerkin method, using a parabolic duality argument.

2. The Error Estimates. We shall start the L,-norm error analysis by proving our
result for the nonhomogeneous equation. Its proof will be based on the following
lemma.
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LEMMA 1. Assume that (ia) holds and that
T,w,+w=g fortel
Then

t -
Iw(e)] <)) + ¢ { 5@ + f lsdar} forte L.
Proof. Multiplying the equation for w by w,, we have

1d 2 d
(Thwt’ W,) + EE“w" = (g’ wl) = E(g’ W) - (gu W),

so that using (ia), after integration,

IO < WO + 2] w0 + 25O 1#O)) +2 [ gl I#] dr
< sup [w(o){ [ + Csup ()] + C [ i ar .

This estimate is valid with ¢ replaced by any ¢, < ¢ and in particular for ¢, such that
Iw(epll = sup,, [|w(7)|. Hence

t
(eI < sup wm)]- {IwO] + Csup e+ [ "l ¢r -
T<t T<t 0

After cancelling a common factor ||w(t,)|| and noting that

()| < || 2(O)]| + fo “lell @ forr <t
we get
() < i) < wO)] + C {15+ [ )] @},
which proves the lemma.

The following is now our error estimate for the nonhomogeneous equation:

THEOREM 1. Assume that (ia) and (i), hold and that v, is chosen so that
llo, = ol < Ch'||v||,. Then, for t € I,

t
lus(6) = u()] < S { o] + ar.

Proof. We know from Section 1 that e(?) = e “(u,(¢) — u(?)) satisfies

T,e, + e=p=(T,— T)Aa.

Since, by (ii),,
le(O)[| =[I(T} — T)A,0| < Ch'|Aco]|, -, < Ch||0]|,s
“and, with 4’ the operator obtained from A (or 4,) by time differentiation,
lodl < (T = T)A| + (T, — T)A'E +AG)| < Ch(Jlu]l, +[|u],),
with
t
[« <ol + [l @,

the desired result follows at once by Lemma 1.
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Note that in Theorem 1 we have considerable freedom in our choice of v,. For
instance, we could choose v, to be the elliptic projection of v defined by v, =
T,A,v, since

lon = oll = (T = T)A,o] < ChA,0],—5 < Chol]
but we could also take v, = P,v, where P, denotes the orthogonal projection onto
S, with respect to the L, inner product since then

low = oll = inf |x = of <|Tydeo = of < CHoll
We now turn to the homogeneous equation. Our problem is thus
u +Au=0 inQ X1,
(2.1) u=0 ondQ X I,
u(-,0) =0 in{,
and, with our previous notation, the error equation now takes the form
T,e, + e=p=—(T, — T)i,.
We shall first prove some bounds for the time derivatives of 7,,.

LEMMA 2. Assume that (i), holds withr = 2,k > 1. Then
(T DI < C(Tf, 1) + KT,
and

1T < CUTAI+ KAL) Jor) < k.

Proof. We shall show the continuous counterparts of these estimates, namely

(2.2) |(T'f, )] < C(TH, ),
and
(2.3) " T(’)f|| < C|Tf|| forj <k.

Once this is done, the desired results follow easily by (ii),, as for example for the
first inequality,

(T, DI =(TA 1) + (T = TN < (T ) + KYf)
< (T f) + RIAP). |
For the continuous inequalities we differentiate the equation
A(TS, ¢) = (f,9) Vo € Hy(Q),
to obtain
A(T'f,9) + A(Tf, ) =0 Vo € Hy(R).
Hence, in particular,
(TS, )| =|ALT'f, T*f)| =|A'(Tf, T*N))| < C| TS |- | T* s
< C(AL(TS, T) /(AT T+)"?

= C(f, THAT*. )" = C(TF. ),
which is (2.2). To show (2.3) we use induction over j. Noting that it is trivially valid
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for j = 0, we assume that it holds for j </ — 1 with / > 0. Since for any
P E Lz(ﬂ))

(9%, ) = 4197, T09) = = 3 (1)a0(7¢-27, 729)

i=1
l
o
=

we have

5
[(TF, 9)| < CE (T2, 4O*T*¢)| < CYTf||- | T*oll> < CI TF- |19,

which shows (2.3) for j = I. The proof of the lemma is now complete.
Our basic lemma for the subsequent error analysis in both the smooth data and
the nonsmooth data cases is the following.
LEMMA 3. Assume that (ia), (ib), and (i), (with r = 2) hold and that
Tw,+w=g fortel, T,w(0) = 0.
Then, for sufficiently small h,

t t
24 w|>dr < C 2 dr.
@4) J i< cf s
Further, for € positive there is a C, such that, for t € I,

2
2 & [t 2 2, 1 e 2

@9 I <5 [ el dr+ Gl + 5 [ el o)
and
(2:6) WD) < esup (rllg(n) + C.sup ||g(7)]-

T<!t T<!t

Proof. We multiply the equation for w by w to obtain
d ,
E(T,,w, w) + 2||w||2 =2(g, w) + (Tyw, w) +[(T,w, w,) — (T,w,, w)].
For the second term on the right we have by Lemma 2, for small A,
|(Tyw, w)| < C(T,w, w) + %||w||2,
and for the last term, using (ib) and the equation for w,
[(T,w, w,) — (Tyw,, w)| < C(T,w, W)l/zu T,
< C(T,w, w)'*(|g]| +|w]) < C(T,w, w) + Clg|f* + 3|w|>
Hence
d
— (Tow, w) +|w|* < C(lgl]” + (Tyw, w)).

Using Gronwall’s lemma and the fact that 7, w(0) = 0, this yields (2.4). In order to
show (2.5) we multiply the equation for w by 2¢w, and obtain after some manipula-
tion

21Ty w) + -2 (1WI7) = 25 (15, w)) — 28, %) = 21(gs W) + Wl
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and hence, after integration and obvious estimates,
t 4
I < & [*2la)’ dr + C{AlgOI + [ (1l +IwlP) ar ).

This, together with (2.4), shows (2.5) which obviously implies (2.6) and thus
completes the proof of the lemma.

We.are now ready for our error estimates for the homogeneous equation and
begin by considering the case of a smooth solution:

THEOREM 2. Assume that (ia), (ib), and (ii); hold, that v € H'(R) is compatible of
order r with (2.1), and that ||v, — v|| < Ch"||v||,. Then

l|un(£) — u(D)|| < Ch'||v||, fort eI

Proof. We first note that it suffices to consider the case v, = P,v. In fact, let i,
and #, denote the solutions corresponding to the initial values v, and P,v,
respectively. Then obviously

T, — i), + (&% — &) = 0,
and hence, by Lemma 1, for any ¢ > 0,
l(5) = (D] < llow — Puv]l <[ty = o] +[lo — Pyo| < Ch'|0].

We also note that if v, = P,v, then T,e(0) = 0. For since e(0) = P,o — v is
orthogonal to S, we have by (ib), for any x € S},

|(T,e(0), )| =|(T,¢(0), ) = (e(0), Tyx)| < C(T;e(0), (0))"/*| Tyx|| = .
In order to complete the proof of the theorem we may thus assume v, = P,v and
apply Lemma 3. By assumption (ii), and the regularity estimate (1.13) we have

eI =[(T% — T)a(r)|| < Ch|ja(r)|,-, < Ch7|a(r)||, < Ch"||v||,,
and
(DI < N(Tw = TYa(0)]| + (T, — T)i(7)|
< Ch(J|a(T|, 5 + (7], —2) < Ch7i(7)||;42 < ChT™ |0,

and hence, by Lemma 3, ||e(?)|| < Ch||v||,, which completes the proof of the
theorem.

We shall now proceed to prove our error estimate for nonsmooth initial data.
The choice of discrete initial approximation will then be restricted to the L,-
projection P,v. We start by considering the case r = 2 separately.

THEOREM 3. Assume that (ia), (ib), and (ii), (with r = 2) hold, that v € L,(Q), and
v, = P,v. Then

un(2) — u()|| < CR%~Yo| fort € I
Proof. We shall prove

(2.6) el < = sup {=*o| + rlloll + | R|| + A|e] },

where R(?) = [{ p dr. Here, similarly as above, we have
tlle()|| = 7[(T, — T)a(r)|| < Ch?||d(7)|| < Ch?|v|,
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and
o0 < 2Ty — TYa| + 7|(T,, — T)d|
< Ch272(|| ﬁ,(fr)|| +||ﬁ,,(fr)||) < Ch2||v||.
Since

R(2) =f0’ (T, — T)d, dr =[(T, — T)i(r)], —fo’(T,; — T"Yi dr,

we also have
IR()] < Ch? sup Ja(o)| < CHlo],

and the stability of the solution operators gives at ohce

eI <l ()| + [l#()] < 20|
Together these estimates show ||e(?)|| < Ct~'h?||v||, which proves the desired result.
In order to show (2.6) we set w = te. We shall demonstrate

(2.7) WOl < C sup {7|lo]| + 7llo|| +| Thel }
<t
and thereafter
(2.8) | The(n)]| < C sup {7|lp|| +||R|| + h*|e||}.
<t

Together these estimates imply (2.6).
We have from multiplication of the error equation by ¢ that

T,w,+w=p=tp+ The.
Note that by the error equation and Lemma 2, since 4 is bounded,
161I=te, + o + Tie, + Tyl < Clello]| +[loll + el + ] el
Hence, by Lemma 3, with suitable choice of ¢, for ¢t € I,

[w(®)] < esup(r||A]l) + C.sup||a|
T<!t T<t¢

1
<5 sup ||w(r)| + Csup {7’o)|+ llo]| +||Tpell},
T<t T<t

which easily gives (2.7).
For (2.8) we integrate the error equation to obtain, for é = [j e dr,

t
T,é + &= R+f T)e dr.
0
Lemma 3 yields, with Lemma 2,
16(0)|| < esup (7| R’|| + 7| Tye|]) + C,sup (||R|| +” [ Tie do")
<t T<t 0
< esup(7||p|| + Cr|| T,e|| + Crh?|le||) + C,sup || R|

T T<I

+C [ (I Tyell + #]el) do,
0

and observing that &, = e this shows
~ ’ 7
el <0& +I1RI +| [ Tie ar

t
< eCsup (|| Tye|)) + C,sup(7|p|| + || R|| + th*|e|) + C, fo | Tye| dr.
T<t T<!t
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Choosing e such that eCt® =1, this gives, for t € I = [0, 1°],
t
ITae()]| < Csup (el + | Rl + #lel) + [ Toel o,
T<t

which implies (2.8) by Gronwall’s lemma, thus completing the proof of the lemma.
We have finally the following result for general .

THEOREM 4. Assume that (ia), (ib), (i), and (i)} hold, that v € L,(), and
v, = P,v. Then
u,(£) — u(t)|| < Cht="?|0|| fort € I
Proof. Recall from the introduction the properties of the solution operator E(z, s)

of the homogeneous equation. It is easy to see that the adjoint E(z, s)* of E(¢, s) is
the solution operator E(s, t) of the backward problem for the equation

(2.9 w, — A*w =0,
where A* is the formal adjoint of A, so that, for a solution w of this equation,
w(s) = E(s, )w(f) for s < t. In particular, then, we have analogously to the
corresponding property (1.12) of E(z, s),
IE2, s)*ol, =|| E(s, )0, < C(t — s)"?|v]| forO<s<t€EL
We introduce similarly the solution operator E,(¢, s) of the semidiscrete counter-
part of (2.1) and the error operator for this problem,

F, (¢, s) = E,(t, s)P, — E(t, s).
With this notation the result of Theorem 3 can be stated as
| Fn(t, 0)v]| < CR%~Y||o|| fort €1,
and it is clear that then also
(2.10) | Ea(t, )o|| < Ch*(t — 5)7Y||o| for0<s<teL
Similarly, Theorem 2 can be expressed

(2.11) | (2, s)o|| < Ch||v||, for0<s<t€I,

for v compatible with the differential equation (2.1) at ¢ = s, and since F,(¢, 5)* is
the error operator for the semidiscrete analogue of the backward equation (2.9), we
also have, for v compatible with Eq. (2.9) ats = ¢,

| Fu(, $)*0|| < Ch'||0),-

After these preparations we are now ready to complete the proof of the theorem
for r > 2. Since

| E(2, 0)0|| < || Ex(2, 0) P, o|| + || E(£, O) o] < 2e%0]| < C|lo]|»

it suffices to consider the case A% < 1. Using (1.10) and its discrete analogue, we
have by a simple computation

F,(t,0) = F,(¢t,t/2)E(t/2,0) + E(t,t/2)F,(t/2,0) + F,(t,t/2)F,(t/2, 0).
By (2.11) and (1.11) we have for the first term, since E(¢/2, O)v is compatible with
(2.1) at time ¢ /2,

IFa(t, 1/2)E(2/2, O)o|| < Ch|| E(t/2, O)v||, < Cht™"/Y0|.
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For the second term we conclude, since an operator and its adjoint have the same
norm, and since E(¢, ¢/2)*v is compatible with (2.9) at time ¢/2,

| E(t, t/2)F,(t/2, 0)v| < Ch't™"/Yv|.
Using (2.10) for the third term, we have thus
| Fu(t, 0)o|| < Cht="2||v|| + Ch% || F,(2/2, O)v|.
By iteration this yields, for 2s > r,
| Eu(2, 0)o|| < Cht="2||v|| + C(K%™")|| F(2- 277, 0)o|| < Ch't~"/?||v).

This completes the proof of the theorem.

We complete this section by a nonsmooth data error estimate for an arbitrary
time derivative.

THEOREM 5. Assume that (ia), (ib), (i), ;, and (i)} hold, that v € Ly(Q), and that
v, = Pyv. Then, for eachl > 0,

[usP(e) = uP(D)|| < Cht=> " |o| fort €L

Proof. By differentiation of the error equation we have

-1
T,ed + e® = o0 = S (1 ) TG=Dgl+D),
i=0 ‘1
Setting w (1) = t'*7/%"(f) and v,,(1) = 1'*"/?p")(), we shall prove

I+1

-1
@) pweOl<csn| S @i+ S o |

If this has been done, the conclusion of the theorem follows easily by induction
since we know from Theorem 4 that
W (D)l = 72e(n)|| < Ch"|0],

and since, by (ii),, ;, foreachi <7+ 1,

i

D ( Jl )(T;Y’ — TO)a)

Jj=0

o™l = o) = '+

i
< ChrHE S ||l (1)|,_y < CRTH () i, < CH|0))-
j=0

To show (2.12) we observe that w,, satisfies

r ’
Tyway.e + way = oa(t) = vay(t) + (1 + 5)7(1—0(0 — IT;wq,

r ‘& I\ i—1—igqi-i)
O R S

i=0
"< Il — 1\, 1-2-ip—1-9)
- (l+5) > ( . )t T} Wity
i=0 l
Noticing that by Lemma 2, for any ¢ > 0 and 4 small,
I Tawall < CITawoll + ellwall < Cloa-pll +Iwa-vl) + elwal,
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and using the fact that the 7, are bounded we find easily, for ¢ € I,

/ I1—-1
(2.13) lowll < C( 20 vl + 20 ||W(i>||) + ef|we)-
Since
. ry _
Wy (1) = 77 wiay(1) + (1 + E)"’ lW(:),

and analogously for y;,, we find similarly
1+1

(2.14) o] < € 20 (eI +Iwa (D).
We now apply our basic Lemma 3. First, by (2.5) we have
2 2, 1 pt 2
IwayOI” < C{||°(1>(t)|| + 7[0 (lowl® + 7low.) df}’
and hence, using (2.13) with ¢ sufficiently small and (2.14),

! -1
Iway (DI < C{ Py lra®I + p Iwea®I®
(2.15) =0 =0

I+1

+l d 2 2+Iil 2 &
L2 ol + 2 Ivol?) 4

1

Similarly, we have by (2.4), for each i > 0,

P ) p i ) i—1 )
[ Iweol? ar < cf (2 ol + 2 Iwel ) dr.
0 0 j-=0 j=0

Using this with i = / + 1 and / in (2.15) yields

/ -1
ool < cf 2 ol + S Iroof

1 ' I+1 N 1—1 )
+< (2 vol’ + = wol )d}
0 i=0 i=0

which implies the desired inequality (2.12). The proof of the theorem is now

complete.

3. Applications. In this final section we shall consider several different choices of
approximate solution operators 7}, of the elliptic problem and show the validity of
our hypotheses for these. We shall assume here for simplicity, without restricting
the generality, that k = 0 so that 4, (-, -) = A(-, -). The analysis below has several

points in common with that in [7].

I. The Standard Galerkin Method. Recall that, for this method, {7}} is defined

from a family {S,} with S, C H(8) such that

inf {[lo = x|+ Ao~ x|}
(3.1) XE Sy
< Ch*||v||s forv € H* () N Hy(Q),1<s<r,

by 7,: L,(2) —> S, and
AT, x) = (LX) VX ES,
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We have at once

(f, Tf) = A(Tof, Tuf) > c| Tufl > 0,
which shows the first inequality of (ia) and also that equality holds only if 7, f = 0.
Assume that then f = x € S,,. Using the definition of 7}, once more, we have

x> = 4(Tyx, x) =0,

so that x = 0 which shows the second inequality of (ia).
By our definitions we have with v, = T,.f, w, = T,g,

(TS, &) — (f, T,8) = A(T)8, T,.f) — A(T,f, T;;8)

ow, dvy,
_]S; ? Ib.(a—xj-vh —a;jwh) dx

(3.2) 2 %b.
= —fﬂ ; (2bj_8—x';w" + a—xjju,,w,,) dx
< Cllollwill = CITALITugll < CCF Tuh)' 2| Tisl,
which shows (ib).
We now turn to the conditions (ii),. We shall show that, for each j > 0,
(3.3) I(TY — TO)f|, < Ch*79||f||s—2 forg=0,1, 2<s<r

Forj = 0 these are the well-known standard Galerkin elliptic error estimates and it
remains to consider the successive time derivatives. We begin by proving the
H'-result (¢ = 1) by induction over j and assume thus that this has been accom-
plished for j < Il. Letting e = T,f — Tf, we obtain by differentiating the equation
A(e, x) = 0 that

!
(3.4) S (I.)A("j)(e(j), X) =0 VxeES,
j=o\J
and hence
DI} < CA(e®, e
[Ca[F ,
= C{A(e(’), e® — x)

(3.3) + Iil (’ )[ AC-D (D, e — ) — 44D, e"))]}
j=0 \J

1 o2 Cl—l DE + Clle® = |
<5l + 20 1€l + Cle X[
j=

Since x € S, is arbitrary, we obtain, using the induction assumption and the
approximability assumption (3.1),

-1
N2 . -
[0 < €S P} + € int. [TOF = x|y < OB,
j=0 XESy
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which is the desired result. In the last step we have applied the estimate
I T(’)f||s < Q|f|}s—2 fors >2,1 >0,

which is easily proved by induction over / using the fact that w = TUf solves the
elliptic problem

-1
Aw == AYNTOf inQ, w=0 ondQ.
Jj=0
We now consider the estimate (3.3) for ¢ = 0. Let ¢ be arbitrary in L,(2) and
assume that the estimate has been shown for j < /. Setting z = T*¢ € HXQ) N
H}(), we have, for any x € S,,

(D, ) = 4(e?, 2)

(3.6) _ é ( JI.)A("f)(eU), roy) - Iil ( Jl)( eV, 4*(=Dy),

Jj=0 j=0

and hence
! -1
1D, @)| < C (€] inf [z = x|+ C = [e?] |zll2
j=0 XES) Jj=0

< Chf[ls—2llzll2 < CROSf 52|l
thus completing the proof of (3.3).
Recall that 7* and T} are simply the operators corresponding to the adjoint A4*
of A4, so that (i)} follows as (ii),.
I1. Babuska’s Method. This method can be formulated as follows ([1], [3]). Let
{S,) be a family of subspaces of H'(R), and {5} a family of subspaces of H 109)
enjoying the approximation properties

(3.8) inf {|w = x|+ Alw = xlh} < Chw|, forl<s<r
X h

(3.7)

and

inf {A™'2W = Xlu-ren + BW = X|aven)
(3.9) X €%
< ChO|\W|| ey for3<s<r-—3,
and the inverse properties
Ixlli < Ch7Yx| for x €S,
and
IX Nl zricamy < CRH|X | Loy for X' € &
Then with § a sufficiently small positive number we define a family {S,} by
Sk = {x € Sau; <6 x> = 0V¥X € §;},
where < -, - is the inner product in L,(3%), and a family {7},} with T}: L,(2) —»
S, by
(3.10) AT, x)=(fix) VXES,
The discussion of our hypotheses will follow that for the standard Galerkin

method. Condition (ia) is satisfied in the same way as before. Since S, & Hy(S2), we
obtain an additional term in the integration by parts in (3.2) in the proof of (ib), so



TIME-DEPENDENT NONSELFADJOINT PARABOLIC EQUATIONS 341

that we need to show now also

b.no,w, ds
h"h
’I;ﬂ JJ

where v, = T,f, w, = T,g, and n; are the components of the exterior normal at 0.
By the properties of §,, S/ and the definition of S,, and using also the trace
inequality ||v]| 412g) < Cllvll;, We have, for a suitably chosen x; € &,

(3.11) < Clloallswall»

S Brvewsn as|=| [ (B, = xg)w, ds

< Cl|gmo, — X’"H-'/’(an)u Will /209y < Ch| bj”j"h"H'/z(an)“whuﬂ'/’(an)
< Chl|gm, || |wall, < Clloallsl[wl-

For (ii), it is again known that (3.3) holds for j = 0. In particular, we shall use
below that, for z|,o = 0,

(312 inf |z = x|y <|(T ~ T)dz], < Ch* |z, for2<s<r.
XE Sy

We begin the proof of (3.3) for j > 0 by showing the H! estimate by induction over
J- This time, with e = T,f — Tf, (3.4) is not valid since the elements of S, do not
vanish on 9%. By differentiation of (3.10) we still have

!
(3.13) > (’.)A“—D( T9f,x) =0 Vx E S,
j=o\J

and, since

> (;)A(l—j) TOf = 0,

Jj=0

we obtain now

(3.19) jéo(l')A(l—j)(em’ X) = - é (1)< 0 70, x>,

J F=\VIAW G

where 9/3v) = 3, naf 3 /3x,. Therefore, we have to add to the right in the
estimate (3.5) the term
(s

l
(3.15) CEO P,

Here by the definition of S, we have, for the appropriate x; € &,

l( av(?_f) T4 X>| =|< 31}3”’) o1 =% X)I

0 )
Df — o
a,,u—j)T f x,“H

<

|X H'23Q
(3.16) Il

-—I/Z(aﬂ

< Ch*™!

wa|| Il
Hs—!/l(an)

< =21l + [ = x]1)-

=N
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We may therefore conclude as from (3.5), using the induction assumption, (3.16),
and (3.12), that

3.17) eVl < Ch* 7Y fls—2 + Cxigg. |TOF - x| < CR* Y| fls—2

We now turn to the case ¢ = 0. Similarly to above, since (3.4) is not valid, we
have instead of (3.6) that, for any x € S,, and with z = T*¢,

(e, g) = (e, A*z) = ( éo _ Ig)(}{)(ew’ A=)

4

- 20( jl )[((eo'), AU=Dz) — 40D (D), 7))
<
+ACD(eD, 7 = x) + ATD(eD, x)]
-1
. ({)(e(»’A*u—j)z)_
j=0 \J

Here, since e’ = T, on 3Q, we have with suitably chosen x; € §;, for j =

0,...,1,
. . . . . 0z ,
(9, A*T=Dz) — 4U-D(eD, 7)| = <eo), — - x,>‘

(3.18)

_%z
i X

0z
PG

< C||€?)| giragy

< CHev|

H-'/2(39)
< CR°|\flls-2ll2]l2 < CR*||f]ls—2l| |-

Further, with x suitable in S, forj =0, ...,/
(3-19) |4972(eD, 2 = x)| < ez = Xl < CP|fs—2l o],
and, with the same x and x; € 5, suitable, from (3.9),

& (1 40=( o0 o (1 3 o)

) AYD(eD), ()< — TOf — %!, z — >

jgo (./) ( X) jgo J PG f X X

d )
PG o

H'/2(3Q)

< Ch*!

Iz = Xl < Ch°|f]|s—2l| ]|
H*—3/239)

Finally, by the induction assumption, forj =0,...,/— 1,
(321) |(e©, 4*=02)| < Clle?| ||2[|; < CR?||f]ls—2]|#]-
Together these estimates show

|(e?, @)] < CH*|f]ls 2] ]l
which completes the proof by induction of (3.7) and thus of (3.3) in the present
situation.
As for the standard Galerkin method, we find at once that 7* and T} satisfy
A(p, T*f) = (9,.f) VYo € Hy(D),
and
A(X? T:f) = (X’f) VX € Sh’
and hence that the above proof of (ii), is easily modified to yield (ii)}.
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I11. The Method of Interpolated Boundary Conditions. For this method applicable
to a plane region € (cf. [9], [2]), S, consists of continuous piecewise polynomials of
degree at most r — 1 (with r > 3) on a nondegenerate triangulation of £ which
vanish at the boundary vertices and certain carefully chosen boundary edge nodes,
and 7T,: L,(8) — S, is defined as before by (3.10).

It is shown in [9] that, for x € S,

(3.22) x|l z-+02y < CR* 32| x|ly for-1<s<r—2,
and
(323) IX]|£oomy < CR™"|x]|-

Letting u, € S, denote the interpolant of u € H () as defined in [9], we also
quote

(3.24) u = wl, < Ch*"Yu|, for2<s<r,
and extract, from the proof of Lemma 6 of [9],

(3:25) |luflly-aomy = 1% = wtll -agagy < Ch**9|ul|s for0 < g <r—2,2<s<r

Our condition (ia) is satisfied for this method as before, and, as for Babuska’s
method, (ib) will follow from (3.11); we have now by (3.22) and (3.23),

‘ faﬂ bnjo,wy, ds| < C|| vy o0 Wall Loy

< | oyly[will e, < Cloallillwll-

For (ii), it remains again to show (3.3) for j > 0 since the case j = 0 is treated in
[9]. Similarly to Babuska’s method, the proof of (3.3) for ¢ = 1 requires an estimate
for the sum in (3.15). This time we have by (3.22), with2 < s <,

1] 2>/

0 . 0 .
. TV ) > < TW
|< =) ) x ' I' w9 jiH‘-’/’(an)

< CITOf Xl r-o-2am < Ch*~ 2|l s=allxlls

< Ch N flle-2(le@lls + (€@ = xh),
and from this the proof may be concluded as before. For the proof of (3.3) for
q = 0 we again employ the representation (3.18), now with x = z,. Then (3.19) and

(3.21) are still valid. We have by (3.22), (3.24), (3.25), and the result for g = 1, for
J <,

€@l = TRf|| ooy <ITRS = (T9f) | ey + (TP || L0
< Ch3/2|| TVf - (T(j)f)llll + Ch?| TOf],
< CHA(| TOf — TOS||, +|TOf = (TOh),]),) + Ch*|f)s-2

< Ch|f]s-a
and hence
. 9z . 0z
) ()
Ke ’ av("j’>|<||e Izee ! | Lew

< CRAfls-2ll ]2 < CREA s -2l ll»
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so that

s

( JI )[(e(i)’ ARI=Dz) = 4U=D(eD, 7)]
Jj=0

2, () 55)

N ,-glo(l)< ay“-f)TOf z’>

< C"ZI"H —@G— 3/2)(39) 2 Il I
H’™3%(3Q)

< Chetl 2IlfIIs—zIIZIIz < CRYlf|s-2ll el
which shows (3.20). This completes the proof of (3.3) as above.
The proof of (ii)f is again analogous to that of (ii),.
IV. Nitsche’s Method. This method (cf. [6], [3]) uses the bilinear form

B, (v, w) = A(v, w) — <%§,w> - <v, % +2 bnw> + Bh~ v, w),

< ChAA sl Il

Finally, by (3.25) we have

21 ( ! ) AT=D(eD, 2))

j=0 \J

PG

with B a positive constant. Introducing the norm
-1
llolll = IVoll + h'2|[Voll o0 + ™0l Loy

we assume that {S,} is a family of finite-dimensional spaces such that ||| - ||| is well
defined on S, that S, satisfies the approximation property

(326) inf {[lo=xl| + kllo — xllI} <Ch*|lv]l, foro € H(Q),2<s<r,
XE S

and that the inverse estimates
(3.27) Xl e < CR™'2|x| VX € S,
and
VXl 00y < Ch"/zllxlll Vx € S,
hold. For the derivatives with respect to time, we have
| B (o, w)| < Clilolll - Iwll| forj >0
and with the appropriate B, fixed in this manner below,
B,(x; x) > ClIxII> V¥x € S}
Noting that by Green’s formula

(fs x) = (ATf, x) = By(Tf, x) forf € Ly(Q), x € S},
we now define 7),: L,() — S, by

B(TWf,x) = (£, X) VX E S}
and quote the error estimate

(328) (T, — T)f||+ AlI(T, — T)f|| < Ch*|[f|,—2 for2<s<r.
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We now turn to the hypotheses of Section 1. We have here
(f, Tof) = B(TWf, Tof) > CIITAII* > 0
with equality only for 7,,f = 0. If then f € S, we conclude
I£II* = By(T,f, f) =0,
which shows that (ia) is satisfied. With v, = T,f, w, = T,g we have

(T,f, 8) — (f, T,g) = B(T,8, T,f) — Bh(Thf’ T,8)

(3.29)
= A(w,, v,) — A(v,, w,) = —f 2 2b ' % w, dx +f 2 n.0,w), ds
.l
Here, using the definition of ||| - ||| and the inverse estimate (3.27), the last term is
bounded by

Cl|onl| Lo | Wall Loy < Clllwalll - Iwill < CCf T2l Thgll-

Since the first term on the right in (3.29) is similarly bounded, (ib) follows at once.
We now turn to (ii),. Instead of (3.3) with ¢ = 1 we shall show by induction over
J the stronger result

(3.30) lle?ll < Ch* Y| f|l,—, for2 <s<r.

This is known for j = 0 by (3.28) and we shall assume now that it holds for j < /.
We have here

!
P ( )BS,"J)(e‘f) X) =0 VxeS,
and hence, for any x € S,

-1
mmucmxm=4muﬂmm—z(QWﬂwuﬁ
j=0 \J

-1
< C(Ille(') = xlll+ 2 el lixl-

Jj=0

This yields

-1
PNl < lle® = xlll + lixlll < C{llle” = xlIl + 2 IIIe(’)III),
j=0

and thus, by the induction assumption and (3.26),
e < € inf ITOf = xll + A Sll—z) < AL
XE Sy

which shows (3.30). For the induction step in the proof of (3.3) for g = 0 we write,
with z = T*¢,
-1

(0,0 = B, 2) = 3 (1) 3202 =20 - 3 (1) 2,2,

j=0 j=0
Here
B;'l—j)(eo)’ z) = (e(i)’ A(l—j)*z),
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and we conclude, using the induction assumption,

! -1
(e?, 9)| < c{ 2 el inf iz = xill + Z [l ||Z||2}
h

j=0 Jj=0
< CR||flls-2llzlla < CR°|| fll—2llells

which completes the proof.
The property (i)} follows again similarly since

B,(x, T#f) = (x. f) Vx € S,.
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