
MATHEMATICS OF COMPUTATION 
VOLUME 37, NUMBER 156 
OCTOBER 1981 

An Algorithm for Determining Invertible Quadratic 
Isoparametric Finite Element Transformations 

By David A. Field 

Abstact. This paper derives an algorithm which determines the invertibility of arbitrary 
two-dimensional quadratic isoparametric finite element transformations. Theorems verifying 
the algorithm and guiding the construction of invertible transformations are proven. 

1. Introduction. The use of the finite element method for solving boundary value 
problems requires that the Jacobians of the associated finite element transforma- 
tions do not change sign. Indeed, the inversion of these Jacobians is necessary to 
obtain numerical values such as stress at prescribed points. 

In this journal [1], Frey, Hall, and Porsching's paper concerned the construction 
and the numerical inversion of 8-node two-dimensional quadratic isoparametric 
transformations by restricting the locations of the 8-nodes and by the assumption 
of a boundary hypothesis. Ensuring that the Jacobians of such transformations did 
not vanish was a substantial difficulty. 

The major contribution of this paper is the derivation of an algorithm which 
determines whether an arbitrary 8-node two-dimensional quadratic isoparametric 
transformation has a vanishing Jacobian. This paper also includes an algorithm for 
constructing invertible transformations which are more flexible than those found in 
[1]. Both algorithms are based upon interpreting the Jacobian as a two-dimensional 
surface. 

2. Verification of Invertibility. Let the 8-node two-dimensional quadratic isopara- 
metric transformation T: U = [0, 1] x [0, 1] -* 12 be defined by 

T(r, s) = (1 - r)x~(O, s) + rx.(l, s) + (1 - s)x.(r, 0) 

(2.1) + sx (r, 1) - (1-s)(l- r)x~(O, O) - (1-s)rx-(l, O) 

- s(l- r)Jx(O, 1) - srx-(l, 1), 

where for +,(T) = (2T - 1)(T -1), +2(T) = 4T(1 - T), and +3(T) = (2T -I) 

X(0, S) = 1(s)iX(0, 0) + 42(S)Xi(O, 2) + +3(S)X(O, 1), 

x(1, s) = 1W(s).(1, 0) + 4P2(S).-(1 2') + 43(s).-(l, 1), 

-(r, 0) = 41(r)x.(O, 0) + 4A2(r)x(2, 0) + 03(r)x-(l, 0), 

x-(r 1) = 4f1(r).-(O, 1) + 4+2(r).-(2, 1) + 03(r).-(1, 1), 
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and 

(r 
) 

y(r, s)) 

Sufficient conditions for T to be invertible are given by the following theorem, 
which is a restatement of a theorem of de la Vallee Poussin [4, pp. 283-284], [2, p. 
252]. 

THEOREM 2.1. If the Jacobian of T does not vanish on U and T is one-to-one on the 
boundary of U, then T is a biection on U. 

Verifying that the images under T of adjacent edges of the boundary of the 
square U intersect only at the specified corner node is a straightforward process of 
solving simultaneous equations. That the images under T of opposite edges of U do 
not intersect can be verified by showing that the Jacobian of T does not vanish on 
U. Thus, after verifying that T is one-to-one on pairs of adjacent edges of U, T is 
invertible whenever it can be shown that the Jacobian, J, of T does not vanish 
on U. 

The remainder of this section develops an algorithm to detect whether the 
Jacobian of T vanishes on U. 

In order to express the Jacobian of T, the following notation will be convenient: 

x-(r, s) -Xt - (y) as_Xs Xo;xe r O 

and 

AXr2 XrO 2X' + Xri AVis -Os - 2.x's - - 
2 X 

Thus 

Xa Xal Xao = X11XO?-l -1X1O + XOO X1i3 - XOI3 = XaI3 

and 

A-Val = AX2 - Ax 2; AXO 2i = AXII 2 AX- 2 

Let J(r, s) denote the Jacobian of T. Using the above notation, J(r, s) can be 
written in the form 

(2.2) J(r, s) = kos + A(r)s2 + B(r)s + C(r), 

where 

ko= 8({Axi AYo2 - AXo0AYy2} 

A(r) = 12(AxpiAyal -Axa AypO)r2 

+ 2 { (Xaj a-2 AXa IYap) + 2(AXa 2 Ay 2,B - AX 
l iAYa I) 

+ 8(Ax 1 OAyO 1-Ay 1 /AxO )r 

+ 2 {(Axa YOO -XOfiAYa4) + 2(xapAyo1 - 
AXO-iYaf) 

+4(Axo Ay 2 - Ax ,AyO 1) + 6(AXOI Ay1I -Ax ' AYO I 
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B(r) = 2{(AX 1Yaps - xapAy2 ) + 2(Axa4Ay p - AXpiAya ) 2 2 2 2 2 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2 

+ 8 (Ax I OAYa 2 Ax, I Ay )jr2 

+ 4 (Ax 2 ,a0 - XOyY 2 P) + (XaOAYa 
- 

AXa-2Ya0) 

+2f(Ax01Ay21,- AXpAyO) + (AX12Ay2o - AX20AY12) 

+ 8(AxIOAYOI - AXo'Ay 2) }r 

+ {(~yo,3 ,,-XO,va, + 2{ Xop(AYaI + AY ) - (AXa + AX 1)YOP 
xa,0Y00 

- 
X0Ya,0 +2 

2 2 2a xay2) 
+ AX0!~Yaft - Xai3AYO } 

+4((Ax1 'Ayo, - AxoIAyi 1) 2 2{X 2Ao-X2A 2) 

(AX 1 1AYOI - AXOIAyI 1) + (XaOAYO2 - AXO iYaO)} 
2~ ~~ ~~~~ 2 2(X2 2 2O X2 /Y2)) 

+ 12(Ax01Ay1o - Axp0Ay1), 

and 

C(r) = 8{AxoAy ? I - Ax, 7Ay2o}r3 

+ 2 { (XaOAY 2f 
- AX I 

fyaO) + 2(Ax2ya - Xa,A' Y Io) 

+4(AXajAY1O - AX10AYa2) + 6(Ax?21Ay2 - Ax24y2 ) )r2 

+ {(XaOYaS - Xajj?Ya0) + 2{(Axj, + Xa-)YaO XaO(-Y(y 
+ AYaI) 

+ (Xa 2Y - AX?2a)} 

+4f(Ax4oAYAy - Ax2iAy2o) 

+ (AxIOAYII - Ax,IAyIo) + (Ax a0y0 - XOAy Io)} 

+ 12{AXO!Ay o - AX!oAyo)) r 

+ {XaOYO3 - X0PyaO 

+2{(AX2YaO - XaoyoI) + (xooAy2Io 
- Ax y,0Y)} 

+4(Ax 2Ay0? - AXo2AY2o)). 

An equivalent expression for J(r, s) is 

(2.3) J(r, s) = K,r3 + a(s)r2 + 13(s)r + y(s), 
where yo, a(-), /3(.), and y(.) are obtained from ko, A(-), B(.), and C(Q) by 
replacing xij with yji and yij with xjf, respectively. 

Since J(r, s) is continuous on U, J(r, s) must attain a minimum value and a 
maximum value on U. It will be helpful to establish the sign of these values of 
J(r, s) whenever these values occur in the interior of U, int(U). The proof of the 
following theorem will be used in locating local extrema in U. 
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THEOREM 2.2. Let J(r, s) denote the Jacobian of the 8-node quadratic isoparametric 
transformation defined in (2.1). If both of the polynomials D(r) and 8(s) in (2.6) and 
(2.7) are not identically zero, then the critical points of J(r, s) on U are isolated. 

Proof. By the definition of a critical point of J(r, s) at (r*, s*), 

a /(r s*) = aIH I(r*, s*) = 0. 

Thus (r*, s*) must satisfy 

(2.4a) a -F(r, s) = A'(r)s2 + B'(r)s + C'(r) = 0, 

and 

(2.4b) G(r, s) = 3k s2 + 2A(r)s + B(r) = 0. 

The hypothesis will ensure that (2.4) has a finite number of roots. By considering 
F(r, s) and G(r, s) as polynomials in s with variable coefficients in r, a resultant of 
(2.4) is a polynomial in r. This is seen as follows. 

A resultant of two polynomials is a polynomial whose coefficients depend upon 
the coefficients of the two given polynomials and becomes the zero polynomial if 
and only if the two given polynomials have a common nonconstant factor. Such a 
polynomial, having only the constant term, is called the "ordinary" resultant. The 
construction of resultants by means of bigradients is shown in [3]. 

For two polynomials 

f(x) =aOX n+ a,Xn-' + + an 

and 
g(x)= boxm + blx -I + * +bm, 

the ordinary resultant is given by 

aO a, am+ni 

o a0 . . a~~M+n-1 
0 ao a.. am+n-2 

(2.5) det0 
0 

... ao ... 
bmn 

00 b o ... bmnn 

O bo * bm+n-2 

bo b, ... bm+n-1 

where the first m rows are made up from the coefficients of f(x), the last n rows are 
made up from the coefficients of g(x), ak = 0 for k > n, and bj = O forj > m. 

By combining (2.5) with (2.4), (2.5) can be written as the following polynomial 
in r: 

A'(r) B'(r) C'(r) 0 

(2.6) D(r) = det 0 A3(r) B2(r) C(r) 

3k0 2A(r) B(r) 0 
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Therefore, from the definitions of the ordinary resultant and of critical points, the 
critical points of J(r, s) occur in U if and only if there exists (r*, s*) E U such that 
D(r*) = 0 and both F(r*, s*) = G(r*, s*) = 0. Since D(r) is a polynomial of at 
most 7 degrees, D(r) will have at most 7 real roots since D(r) is not the zero 
polynomial by hypothesis. By the definition of the resultant, for each of these roots, 
there exists at least one s*, such that (2.4) is satisfied. 

Similarly, considering F(r, s) and G(r, s) as polynomials in r with variable 
coefficients in s yields 

3Ko 2a(s) s(s) 0 

(2.7) 6(s) -det 0 3Ko 2a(s) /(s) 
0 a'(s) f3'(s) y'(s) 

a'(s) '(s) y'(s) 0 

Since 8(s) is also not identically zero by hypothesis, there can be at most finitely 
many pairs (r, s) satisfying (2.4). E] 

Remarks. Bezout's Theorem [5, Section 83] states that (2.4) can have no more 
than four isolated roots. Inasmuch as Theorem 2.2 produces an upper bound of 49 
isolated roots, the main intent of Theorem 2.2 is to recognize when isolated roots 
occur as well as providing a means to find the isolated roots when they lie in U. It 
may not be necessary to actually solve D(r) and 6(s) since Sturm sequences can 
determine the number of roots of D(r) and 8(s) in [0, 1]. Rather than using a 
general code which searches and finds all isolated roots of (2.4), a combination of 
Sturm sequences and bisections would be appropriate in confining a search to U. 

Notice that 6(s) in (2.7) reducing to the zero polynomial, 8(s) 0, implies that, 
for each real number s, there exists an r, possibly complex, such that (2.4) is 
satisfied. Further, the roots of (2.4) may no longer be isolated. In fact for fixed s, 
J(r, s) could be a constant. However, provided D(r) 0 0 and ko #A 0 when 8(s) 
0, the extrema of J(r, s) remain isolated. 

THEOREM 2.3. If in Theorem 2.2, D(r) i 0, and ko # 0 (or, 8(s) = 0 and co 7# 0), 
then the critical points of J(r, s) are isolated. 

Proof. In (2.4) ko =# 0 implies that G(r, s) is quadratic in s with nonzero leading 
coefficient, and therefore, for each fixed r, G(r, s) has at most two roots. D(r) ? 0, 
implies that D(r) has at most seven real roots. Hence there can be at most 14 pairs 
of (r*, s*) coordinates which satisfy G(r, s) = 0. The critical points of J(r, s) must 
then be isolated. L 

When ko = 0, G(r, s) in (2.4) is linear in s. By solving for s in G(r, s) = 0, 
s -s(r), then F(r, s(r)) = 0 reduces to solving a polynomial equation in r. If 
F(r, s(r)) 0 O, i.e. reduces to the zero polynomial, then the locus of critical points 
of J(r, s) is a curve (r, - B(r)/2A(r)), and J(r, s) is a constant on that curve. That 
J(r, s) is constant on that curve follows from 

d J(r, s(r)) = aJ + aJ ds = O Tr a~r TS dr 
Whether or not the curve of critical points intersects U, J(r, s) will not vanish on U 
as long as J(r, s) does not vanish on the boundary of U. Similar conclusions 
pertain to the case of Ko = 0 and G(s, r(s))- 0. The following theorem includes 
the above remarks and also applies to the case where kn = 0 and F(r, s(r)) # 0. 
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THEOREM 2.4. Let J(r, s) in (2.2) and (2.3) denote the Jacobian of the isoparametric 
transformation defined in (2.1). Let the polynomials J(O, s), J(1, s), J(r, 0) and J(r, 1) 
be positive (negative) on [0, 1]. 

(1) If ko = O, then J(r, s) > O (< O), (r, s) E U, if and only if (r*, s*) E U 
satisfying 

(2.8a) A'(r){B(r)}2 - 2A(r)B(r)B'(r) + 4{A(r)}2C'(r) = 0 

and 

(2.8b) 2A(r)s + B(r) = 0 

implies J(r*, s*) > 0 (< 0). 
(2) If Ko = 0, then J(r, s) > 0 (< 0), (r, s) E U, if and only if (r*, s*) E U 

satisfying 

(2.9a) a (s){ /9(s)}2 - 2a(s),1(s),8'(s) + 4{a(s)}2y'(S) = 0 

and 

(2.9b) 2a(s)r + /3(s) = 0 

implies J(r*, s*) > 0 (< 0). 

Proof. By symmetry, it suffices to consider the case ko = 0 and J(r, s) > 0 on the 
boundary of U. For r* E (0, 1) and A(r*) 7& 0, G(r*, s) is linear in s. Back 
substitution in (2.4) yields the desired polynomial in (2.8a). For r* E (0, 1) such 
that A(r*) = 0, by the expression for G(r*, s) in (2.4), B(r*) = 0, when (r*, s*) is a 
critical point. But A(r*) = B(r*) = ko = 0 implies J(r*, s*) = J(r*, 0) > 0 by the 
representation of J(r*, s*) in (2.2) and the hypothesis that J(r, s) > 0 on the 
boundary of U. If (2.8a) is identically zero and the curve of critical points 
(r, - B(r)/2A(r)) intersects U, by hypothesis and that J(r, - B(r)/2A(r)) is con- 
stant, J(r, - B(r)/2A(r)) > 0 and Theorem 2.3 is proved. [1 

Remarks. In Theorem 2.4, verifying the hypothesis that J(O, s), J(l, s), J(r, 0), 
J(r, 1) are positive (or negative) on [0, 1] is a simple task since J(O, s), J(1, s), 
J(r, 0), J(r, 1) are at most cubic polynomials. To show that any cubic polynomial 
P(x) does not change sign on [0, 1] is numerically straightforward. Show that 
P(O)P(1) > 0 and apply the quadratic formula to show that either P'(x) has no 
roots in (0, 1) or, when P'(c) = 0 for c E (0, 1), that P(O)P(c) > 0. 

An algorithm presented in flow chart form in Figure 2.1 will determine whether 
the Jacobian of any transformation defined in (2.1) will vanish. For those transfor- 
mations where (2.2) reduces to 

(2.10) J(r, s) = allrs + alor + aOls + aoo, 

no change in sign in the set {J(O, 0), J(l, 0), J(O, 1), J(l, 1)) implies that J(r, s) is 
of the same sign throughout U. The only transformations for which the nonvanish- 
ing of its Jacobian cannot be determined by the above theorems and remarks are 
those transformations for which koKo :# 0 and both D(r) 0_ and 8(s)- 0. The 
following lemmas consider such transformations. 

LEMMA 2.5. Let J(r, s) be the Jacobian of the isoparametric transformation given in 
(2.1). If in (2.6) and (2.7) both D(r) 0 and 8(s) 0 and ko0Ko # 0, then A(r) in 
(2.2) and a(s) in (2.3) are linear polynomials. 
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Proof. The leading coefficient of D(r) in (2.7) is given by the leading coefficient 
of the product 12K0A'(r)A(r)2C'(r). Since D(r) 0 O and Koko # 0, the leading 
coefficient of A(r) must be zero. Consequently A(r) is linear. Similarly a(s) is 
linear. LI 

LEMMA 2.6. If A(r) is a constant, the extrema (r*, s*) of J(r, s) are of the form 
(r*, s(r*)), where s(r) = -C'(r)/B'(r) and r* satisfies 

(2.11) [ 3koC'(r) - 2A (r)B'(r) ] C'(r) + [ B'(r) ] 2B(r) = 0. 

Proof. Suppose A (r) is a constant. Solving for s in F(r, s) = 0, yields s(r). 
Substituting s(r) into G(r, s) yields (2.11). LI 

When (2.11) is satisfied for all r*, 0 < r* < 1, J(r, s) is constant on the locus of 
extrema of the form (r, s(r)). It then suffices to evaluate J(r, s) on the boundary of 
U. On the other hand when (2.1 1) is not identically zero, (2.1 1) yields at most four 
solutions r*, 0 < r* < 1 so that J(r, s) can have at most four extrema in U of the 
form (r*, -C'(r*)B(r*)). 

Based upon Lemmas 2.5 and 2.6 assume that A(r) is linear but not a constant 
and proceed by expressing D(r) as follows: 

D(r) = f(r)h(r) -[ g(r)]2, 

where 

f(r) = 3koB'(r) - 2A(r)A'(r), g(r) = 3koC'(r) - B(r)A'(r), 
and 

h(r) = 2A(r)C'(r) - B(r)B'(r). 

LEMMA 2.7. Let D(r) -0, ko0Ko :# 0 and A(r) not be a constant. If f(r) 0, then 
the extrema (r*, s*) of J(r, s) are of the form (r*, s(r*)), where 

(2.12) s(r) = (-A(r) ? {[A(0) ]2 - 3koB(0)) 1/ 1)/3ko 

and r* satisfies 

(2.13) A'(r)s(r)2 + B'(r)s(r) + C'(r) = 0. 

Proof. f(r) -0 implies 

0 = ff(r) dr = 3koB(r) - [A(r)]2 - 3k0B(0) + [A(0)]2- 

Solving for B(r) in the above expression and substitution into G(r, s) yields 

[3k0s + A(r)]2 = [A(0)]2 - 3koB(O). 

Consequently, solving for s and substitution into F(r, s) produces the polynomial 
equation in (2.13) with s(r) given in (2.12). OL 

Again, if (2.13) is identically zero, it suffices to evaluate J(r, s) on the boundary 
of U. 

LEMMA 2.8. Let D(r) _ 0, ko0Ko 73 0 and A(r) not be a constant. If h(r) -0, then 
the extrema (r*, s*) of J(r, s) must satisfy either (2.12) and (2.13) or r* satisfies 
f(r) = 0 and s* satisfies G(r*, s) = 0. 
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Proof. h(r) 0 and D(r) 0_ imply that g(r) 0_ . By eliminating s2 in (2.4), an 
extremum (r*, s*) of J(r, s) must satisfy 

(2.14) f(r)s + g(r) = 0. 
But g(r) _0 implies either f(r) 0 O, in which case Lemma 2.7 applies, or f(r*) = 0. 
In the latter case f(r) is at most quadratic, yielding at most two roots which are 
substituted into G(r, s) in (2.4). C1 

LEMMA 2.9. Let D(r) 0_ , ko0Ko 76 0 and A(r) not be a constant. If g(r)- 0, then 
the extrema (r*, s*) of J(r, s) are either of the form (r*, s(r*)) where s(r) = 

-g(r)/f(r), f(r*) 7 0 and r* satisfies 

(2.15) 3ko[ g(r) ]2 - 2A(r)g(r)f(r) + B(r)[f(r) ] 2 = 0 

or (r*, s*) satisfies f(r) = 0 and G(r*, s) = 0. 

Proof. g(r) 76 0 implies that f(r) 7# 0. An extremum (r*, s*) must be such that 
f(r*) = 0 or f(r*) 7# 0. If f(r*) = 0, the solution r*, 0 < r* < 1 of f(r) = 0 is 
substituted into G(r, s) = 0, producing at most four local extrema. If f(r*) 7 0, 
then as in (2.14) s* = g(r*)/f(r*) and r* must satisfy (2.15). C1 

Again, when (2.15) is identically zero, J(r, s) need only be evaluated on the 
boundary of U. 

This section concludes by noting that Theorem 2.4 does not eliminate the 
possibility that isoparametric transformations such as those of Frey, Hall, and 
Porsching can have positive Jacobians on the boundary of U and a negative 
Jacobian somewhere in the interior of U. 

3. Sufficient Conditions for Invertibility. The theorems in this section give 
sufficient conditions for nonvanishing Jacobians. Thus, when a vanishing Jacobian 
is found by the algorithm in Figure 2.1, the transformation can be made invertible 
by redeploying the nodes to satisfy any one of several inequalities found in 
Theorem 3.2. These simple inequalities are easily utilized numerically and also 
provide a series of quick tests which will detect many transformations with 
nonvanishing Jacobians. 

The theorems in this section are independent from the results in Section 2. The 
first theorem concerns semiquadrilaterals for which the semirectangle in [1, p. 728] 
is a special case. The main theorem applies to the arbitrary placement of the 
8-nodes of the quadratic isoparametric element. 

A semiquadrilateral is the image of an isoparametric transformation T defined in 
(2.1), where T(a U) = { T(r, s): (r, s) E a U) is composed of three straight edges 
and one curved edge, see Figure 3.1. 

In Figure 3.1, 

Ioo.01 - 0 1+~1 - xo+io (3.1) X4o 
+ 2 x = 2 I I and x0?= 2 

(3.1) implies 

(3.2) AX- = AX-, = A&o= ( 0) 
It then follows from (3.1), (3.2), and (2.3) that J(r, s) reduces to 

(3.3) J(r, s) = /8(s)r + y(s). 
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x_ 

xox I 

0? x1 

FIGURE 3.1 

A semiquadrilateral 

THEOREM 3.1. Let J(r, s) be the Jacobian of the isoparametric transformation given 
in (2.1). If the image of T is a semiquadrilateral satisfying (3.1), then J(r, s) > 0 if 
and only if J(r, s) > 0 on the boundary of U. 

Proof. It follows from (3.1) and (2.3) that (3.2) and (3.3) hold. From (3.3) and 
J(r, s) > 0 on the boundary of U, J(O, s) > 0 implies y(s) > 0, 0 < s S 1, and 
J(1, s) > 1 implies f3(s) + y(s) > 0, 0 < s < 1. Because of the linearity in r in 
(3.3), J(r, s) > 0 for all (r, s) E U. El 

THEOREM 3.2. Let J(r, s) in (2.2) and (2.3) be the Jacobian of the isoparametric 
transformation in (2.1) and let J(r, s) > 0 on the boundary of U. 

A. If 3ko + A(r) 6 0, 0 < r < 1, then J(r, s) > O on U. 
B. If 3ko + A(r) > 0 and 3ko + 2A(r) + B(r) < 0, 0 < r < 1, then J(r, s) > 0 

on U. 
C. If ko < 0, then each of the following conditions imply J(r, s) > 0 on U: 

I. B(r) + C(r) > 0, 0 < r < 1. 
II. ={r E(0, 1): 3ko + 2A(r) + B(r) > 0) n {r (0, 1): B(r) + C(r) < 

0). 
D. If ko > 0, then each of the following conditions imply J(r, s) > 0 on U: 

I. A(r) > O and B(r) > 0, 0 < r < 1. 
II. A(r) > 0, B(r) < 0, and B(r) + C(r) > 0, 0 < r < 1. 

The above statement may be written with ko, A(r), B(r), and C(r) being replaced by 
yo, a(s), 13(s), and y(s), respectively. 
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Proof. This proof treats J(r, s) as a surface over U where J(r, s) > 0 on the 
boundary of U. Also, when r is fixed, J(r, s) is a polynomial in s. By assumption, 
J(r, 0) > 0 on U implies C(r) > 0, 0 < r < 1. Thus, for each r*, 0 < r* < 1, 
J(r*, s) is a cubic (quadratic when ko = 0) polynomial in s with constant positive 
coefficient C(r*). 

Proof of part A. By assumption J(r*, 1) > 0 and J(r*, 0) > 0. Therefore, as a 
consequence of Rolle's theorem, in order for J(r*, s) to possess a root in (0, 1) 
there must exist s* E (0, 1) such that 

3kos2 + 2A(r*)s* + B(r*) = 0. 

Furthermore, J(r*, 1) > 0 and J(r*, 0) > 0 also imply that J(r*, s) has a local 
minimum at s*, that is, 

(3.4) 6kos* + 2A(r*) > 0. 

The hypothesis in part A ensures that (3.4) cannot be satisfied. 
Proof of part B. Consider separately the cases ko < 0 and ko > 0. For ko < 0, 

write J(r, s) in (2.2) as 

J(r, s) = ko(s -1)3 + (3ko + A(r))(s - 1)2 + (3ko + 2A(r) + B(r))(s - 1) 

+ko + A(r) + B(r) + C(r). 

In the above expession for J(r, s), if for some r* the coefficients of (s -_l)k 
alternate in sign, then J(r*, s) has no roots for s - 1 < 0. ko < 0, condition II and 
J(r, 1) > 0 ensure the alternation in sign for 0 < r < 1. When ko > 0, for each 
fixed r*, J(r*, s) is a cubic polynomial with a positive leading coefficient. Thus, if a 
local minimum of J(r*, s) exists at Sm' it is unique and SM < sm where J(r*, s) has 
its unique local maximum at SM. (Note that for s negative and large in absolute 
value, J(r*, s) will be negative and increasing so that sM < Sm.) Furthermore, 
J(r*, s) will.be decreasing only when s is in the interval (sM, sm). Since J(r*, 0) > 0 
and J(r*, 1) > 0 by hypothesis, it suffices to show that J(r*, s) is decreasing at 
s = 1. That d(J(r*, s))/ds < 0 at s = 1 is condition II. 

Proof of part C. Observe that J(r*, s) is at most a cubic polynomial with a 
nonpositive leading coefficient and such that J(r*, 0) > 0 and J(r*, 1) > 0. In 
condition I, if ko = 0 and B(r*) > 0, then J(r*, s) is a parabola in s which is 
nondecreasing at s = 0 and is positive at s = 0 and s = 1, implying that J(r*, s) > 
0 for 0 < s S 1. If ko < 0 and B(r*) > 0, then J(r*, s) is nondecreasing at J(r*, 0) 
so that J(r*, s) =# 0 on [0, 1], otherwise J(r*, s) would have two inflection points on 
the interval [0, oo), which is impossible. If B(r*) < 0 and the tangent line y = 
B(r*)s + C(r*) to J(r*, s) at s = 0 intersect the s-axis in the interval [1, oo), then 
J(r*, s) =# 0 on [0, 1] for otherwise J(r*, s) would have at least two inflection points 
which is again impossible for cubic polynomials. That the intersection of y = 
B(r*)s + C(r*) occurs in [1, oo) and can be written as 1 < -C(r*)/B(r*) is 
condition I. Note that when B(r*) > 0 condition I is also satisfied. Condition II is 
easily deduced from part B and condition I of part C. 

Proof of part D. Condition I implies that the coefficients of J(r*, s) are all 
nonnegative for 0 < r* < 1, and hence J(r*, s) cannot be negative for 0 < s < 1. 

Finally, A(r*) > 0 implies that the inflection point of J(r*, s) occurs for s < 0 
and that J(r*, s) is concave up on [0, 1]. The equation of the tangent line to J(r*, s) 
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at s = 0 is y = B(r*)s + C(r*). If B(r*) < 0 and the tangent line intersects the 
s-axis in the interval [1, oo), then J(r*, s) #F 0 for 0 < s < 1, otherwise J(r*, s) 
would have two inflection points. That A(r*) > 0, B(r*) < 0 and the intersection 
occurs at s = -C(r*)/B(r*) < 0 is condition III. 

By changing the roles of r and s, Theorem 3.2 is proven. E 
When koyo = 0, Theorem 3.2 is much simplified and condition C.I. can be 

strengthened. It is of interest to note that the isoparametric transformations in [1] 
all have the constraint 

xoo + x1o xoi + x_= Yoo 2 Yo a 

(3.5) 
2 2 x 2 2 ,an 

Y1o + Yii 
2 2 

which implies that both ko = 0 and KO = 0. The following corollary which 
strengthens C.I. also shows that for transformations satisfying (3.5) it may not be 
true that a nonvanishing Jacobian on the boundary of U implies the Jacobian is 
nonvanishing on the interior of U. 

COROLLARY 3.3. Let T be an isoparametric finite element transformation defined in 
(2.1) such that koKo = 0. A necessary condition for the existence of (r*, s*) E U for 
which J(r*, s*) < 0 when J(r, s) > 0 on the boundary of U is that (r*, s*) satisfy 
inequalities (1)-(4) when ko = 0 and (1)'-(4)' when Ko = 0. 

(1) A(r) > 0, (1)' a (s) > 0, 

(2) 2A(r) + B(r) > 0, (2)' 2a(s) + /3(s) > 0, 

(3) B(r) < 0, (3)' /3(s) < 0, 

(4) B(r) + V2 C(r) < O, (4)' /3(s) + V2 -y(s) < ?. 

Proof. By symmetry it will suffice to consider only the inequalities involving r. 
A(r*) > 0, for otherwise by the proof of part A in Theorem 3.2, J(r*, s) > 0, on 
[0, 1]. Consequently, 2A(r*) + B(r*) > 0, for otherwise by the proof of part B in 
Theorem 3.2, J(r*, s) > 0 on [0, 1]. Since A(r*) > 0, and C(r*) > 0 by hypothesis, 
B(r*) < 0, for otherwise all the coefficients of J(r*, s), as a polynomial in s, are 
positive implying J(r*, s) > 0 on [0, 1]. B(r*) + C(r*) < 0, for otherwise by the 
proof of part C condition I, J(r*, s) > 0 on [0, 1}. Since J(r*, s) is a quadratic in s, 
J(r*, s*) < 0, 0 < s* < 1, implies that the discriminant B(r*)2 - 4A(r*)C(r*) > 0. 
Combining (2) and B(r*) + C(r*) < 0 implies 2A(r*) > C(r*) = J(r*, 0) > 0. 
Further, substitution into the discriminant yields B(r*)2 - 2C(r*)2 > 0 or 

(B(r*) - V2 C(r*))(B(r*) + V2 C(r)) > 0. Since B(r*) - V2 C(r*) < 0 inequal- 
ity (4) must be satisfied and the corollary is proved. O 

The flow chart in Figure 3.1 indicates how Theorem 3.2 can be used to detect 
many quadratic isoparametric transformations with vanishing Jacobians. Since the 
algorithm involves only the sign behavior of at most cubic polynomials on [0, 1] the 
algorithm is computationally straightforward. Theorem 3.2 can be further utilized 
in rectifying finite elements, whose Jacobians do not vanish on the boundary of U 
but vanish on the interior of U, by repositioning the nodes so that a quadratic 
inequality such as 3ko + A (r) > 0 is satisfied. 
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FIGURE 3.2 
An algorithm, based on Theorem 3.2, for identifying 

nonvanishing Jacobians of transformations in (2.1) 
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