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Interpolation on Uniform Meshes By the Translates 
of One Function and Related Attenuation Factors 

By F. Locher 

Abstact. The exact Fourier coefficients cj(P"f) are proportional to the discrete Fourier 
coefficients 4(n)(f) if Pn is a translation invariant operator which depends only on the values 
of f on an equidistant mesh of width 27r/n. The proportionality factors which depend only 
on Pn but not on f are called attenuation factors and have been calculated for several 
operators Pn of spline type. Here we analyze first the interpolation problem which is 
produced by the functions o(- - 27rj/n), j = 0, . . ., n-1, where a is a suitable 27r-periodic 
generating function. It is essential that the associated interpolation matrix is of discrete 
convolution type. Thus, we can derive conditions guaranteeing the unique solvability of the 
interpolation problem and representations of the interpolating function. Then the attenua- 
tion factors may be expressed in terms of the Fourier coefficients of a. We point especially 
to the case where a is a reproducing kernel in a suitable Hilbert space. Here we get 
attenuation factors of a new type which are generated by interpolation with analytic 
functions. 

1. Introduction. The Fourier coefficients 

(1.1) c1(f) := I2f | f(t)exp( -it) dt, j = 0, ?1, +2, .... 

of a 27r-periodic, real valued functionf, whose values at the nodes 

t =-,- = O +1, _ 2, .. 

are known or can be calculated to a desired degree of exactness, are usually 
approximated by the discrete Fourier coefficients 

1 n-i 
d(~n)(d = g(-14 j 0 4 +19 29 . .. 9 n _A= 

(1.2) A:= 0t), ,A=O, ... ,n-1, 

w :=exp n). 

These may be computed very efficiently by the algorithm of Cooley and Tukey 
(Fast Fourier Transform). As the values d(n)(f), ... , d,(n))(f may be regarded as 
the coefficients of the trigonometric interpolation polynomial to f at the nodes t,.. 
u = 0, ? 1, ? 2, .. ., one expects that the Fourier coefficients cj(f),j E Z, are well 
approximated by the discrete Fourier coefficients. This can be shown for the values 
d>n)(J), ljl < n/2, if the function f satisfies some regularity conditions. It is well 
known that 

cj(f) -- as ljl ->oo 
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if f is integrable; there are more precise asymptotic results if one assumes stronger 
regularity conditions on f. But, because of the n-periodicity 

( 1.3) d(n) (f) = dj(n)(f), EZ, 

of the sequence of discrete Fourier coefficients, this asymptotic behavior of the 
sequence {c1(f')}1=?1 +2__ is not simulated, and, indeed, {dj(n)(I)}1...0+1 +2_i m 
cannot be the sequence of Fourier coefficients of any integrable function except in 
the trivial case d4(n)(f) = 0, j = 0, + 1, + 2..... This suggests a transformation of 
the sequence {dj(nI)}j=o+, +1,? ,... with the aid of a suitable limitation process, so 
that the asymptotic behavior of the resulting sequence {8,(I)}j_+ - 2, , corre- 
sponds better to that of the sequence {Cj(J)}j=0I 1, 2, .. The function f, whose 
Fourier coefficients are the c>(y), should be an optimal approximation to f in the 
sense of some norm. 

We denote by c, c, c the two-sided infinite sequences of complex numbers 

C = { ... , c-2(f), C_P(f), Co), , CI(f), C2(f), . . . 4, 
^ = { . . . , _-2(f), ^-1(f), Co(f), Cl(f), 82(f), . * . 4, 

C= { . . ., d~(f), d?(nf(), d6&n(n) dfn)(f), din)(f) } 

and by 

A =(a) 

an infinite matrix by which the sequence c is generated according to 

00 

(1.4) Ir(f) = E a kdkn (f), = = 0, ?1, 1 . 
k = -oo 

We assume that c E 12. The functions 
00 

(1.5) 
f E cj(f)exp(iU) 

j= _00 

00 

(1.6) f - E (f)exp(Uj) 
j= -00 

n-i 

(1.7) p - (f)exp(U 
j=O 

are associated with the sequences considered above. The sequence transformation 
which we consider is especially simple if A has diagonal or band form. According 
to a result of Gautschi and Reinsch (cf. Gautschi [4]) this is the case if 

(1.8) C^ (f)=?c(P,J) j=0 ?1, 2,..., 

with a translation invariant, respectively r-translation invariant, linear operator Pn 
which depends only on the data f, IL = 0, ? 1, +2 . ... For a translation invariant 
operator Pn of the considered type, there exist attenuation factors Tn), j= 
0, + 1, + 2, . .. so that 

(1.9) Cj(pnf) = Trn)d(n)(f), = 0 + 1, ?2, 

where Ti(n) depends only on Pn but not onf. 
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For an absolutely continuous and 27r-periodic function a with nonvanishing 
discrete Fourier coefficients dk(')(a), k = 0, . . ., n - 1, it follows that 

(1. 10) j(n) - dfP)(a)' j= o 1 +2 ...?2 

A function a with 

a = Pna 

may be considered as the generating function of the attenuation factors according 
to 

(1.11) T(n) =r(n)(,) - C(a) j=O,?1 +2 

It is obvious that the asymptotic behavior of the sequence { n)}_O depends on 
the smoothness of a and that the sequence {cj(P}OL _ behaves asymptotically for 

Ijl -> x according to the smoothness properties of a. In order to obtain a good 
approximation to f it was proposed by several authors to generate P,Xf by interpola- 
tion with polynomial splines on uniform meshes. A survey of the known results 
may be found in the work of Gautschi [4]. In this paper we also consider other 
interpolation functions, especially rational functions of exp(i. ). First we have to 
consider the corresponding interpolation problem which has the essential property 
that the associated coefficient matrix is of discrete convolution type. 

As linear systems of that type may be solved with the aid of discrete Fourier 
transformation, we can formulate conditions which guarantee the unique solvabil- 
ity of the interpolation problem. Moreover, we can derive several representations of 
the interpolating function (Lagrange and discrete Fourier type). The interpolation 
problem generated by special kernels (especially reproducing kernels of certain 
Hilbert spaces) is considered in detail. Here the kernel and the functions generated 
from the kernel by shift are chosen as the basis of the interpolation space. In this 
context interesting examples are the polynomial splines and certain spaces of 
periodic analytic functions. The attenuation factors may be constructed with the 
aid of the Fourier expansion of the generating function a. In this way we get the 
known attenuation factors for polynomial splines. On the other hand, it seems to be 
new that one may construct in the same manner attenuation factors for analytic 
splines. 

2. Interpolation on Uniform Meshes. Let a: R -- R be a 2?r-periodic, absolutely 
continuous initial function, which we consider in the following as the "generating 
function" of an interpolation problem Pn. If the almost everywhere existing 
derivative a' is also quadratically integrable, the convergence of the Fourier series 
of a is absolute and uniform. We choose the points 

2 
=-+ 2k7r, j = 0, ..., n-1, k = 0,+1 +2, .... 

as the nodes of an interpolation problem and define the linear space of interpolat- 
ing functions by 

V= span{aj Ij = 0 .. ., n-1}, 



406 F. LOCHER 

where a1 results from a by a tj-shift according to 

ai = a( -ti), j = 0, . . . , n -1 

We point out that for the interpolation process considered one has trivially 
a= Pna. 

An interpolating function 
n-I 

g = aja(- - tj) 
j=O 

of the given data flnk, I =0, .. ., n - 1, k = 0, + 1, +?29 .. , is then defined by 
the linear system 

n-I 

(2.1) E aotv(t - tj) = fi, I = 0, ... ., n -1 
j=I 

Criteria for the unique solvability of this system may be obtained with the aid of 
discrete Fourier analysis. (Here and in the sequel we use the notation and results 

from the paper of Henrici on fast Fourier algorithms [7].) If we denote by a, s, and 

f the sequences 

at (. . ., a,n-1 a0o al, ... * an -1, a0o ... ) 

s = (a(tj))7. oo, 

f= (fl)=-oo 

the linear system (2.1) is of discrete convolution type 

(2.2) a * s = f. 

Taking the discrete Fourier transform on both sides of (2.2) we get [7, p. 508] 

(2.3) n n a ns (inf; 

here the product on the left is understood in the sense of a Hadamard-product. 
Obviously the sequence 6(Fn a and then the sequence a itself is uniquely determined 
if and only if 

ffn S) k :&0 , k=0,...n-1 

As (OTnS)k is nothing but the discrete Fourier coefficient dk we get 

THEOREM 2.1. The interpolation problem generated by a has a unique solution if and 
only if none of the discrete Fourier coefficients d(n)() k = , .. , n-1, vanishes. 

As the discrete Fourier coefficients d(n)( k = , . . , n-1, may be expressed 

by the Fourier coefficients of a, we get 

~n ,) = 
00 

(2.4) d ( a) - Ck 
v=-oo 

if a has the Fourier expansion 
00 

a(x) = 2 c, exp(ilx), c1 = c_, 1 E Z. 
I =-00 

So we get from Theorem 2.1 the conditions 
00 

(2.5) d( (a) - ck + E {Cpnk + cP+nk} # 0, k = 0, . .. , n - 1, 
p=1 
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which guarantee a unique solution of the interpolation problem. In our subsequent 
considerations the case of only real and nonnegative Fourier coefficients will play a 
dominant role. Here we get 

COROLLARY 2.2. If the Fourier coefficients cl, 1 = 0, +1 + 2, . . ., of the generat- 
ing function a are all real and nonnegative, the interpolation problem generated by a 
has a unique solution if and only if there exists at least one index l with clk # 0 in 
every congruence class nZ + k, k = 0, . .. , n -1. 

3. Construction of Interpolating Functions. If the interpolation problem generated 
by a has a unique solution, there exist Lagrange functions lj, j = 0, ... , n-1, 
determined by the conditions 

(3.1) lj(tk) =Sk 0 j, k n -1. 

Obviously 

(3.2) t+ I= ( . ), j=O,...,n-2, 

and therefore the Lagrange functions are known if the coefficients a,, v = 0, .... 
n - 1, of 

n-1 

(3.3) lo E aa(- -tp) 
v=o 

are determined from the linear system 

(3.4) E- a(a(tk-ktp) ={ 

This is nothing else but 

(3.5) a * s = eo. 

Taking the discrete Fourier transform, we get 

(3.6) n6Fna (5ns= 6Fneo 
I 

' n . . . ' ) 

and as 

(3.7) (9Sk7 k= 0.......... , n- 1, 

there follows 

(3.8) (6jYn a)k =2 ( ) 2 
k =0, ..., n-1. 

Inverting the Fourier transform, we get 

1 n- (~PP 

(3.9) n1n p=O n 2 T px 

;X_0 n 

Thus the interpolating function pn has the Lagrange form 

(3.10) Pn s fi ? ) 
j=O \nn 

with l0 from (3.3) and (3.9). 
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As the Lagrange form is not optimal in several respects, one is interested in more 
favorable representations. For the spline interpolation problem on uniform meshes, 
Golomb [5] has considered that basis of the interpolation space which is obtained 
by interpolation of the exponential functions exp(iv ), v = 0, . .. , n - 1. We 
apply this concept in our general context. 

We start with the functions 
n-I 27 

(3.11) = I aV, o( - P v = 0, ... n-1, 

defined by the interpolation conditions 

(3.12) =( n IL) exp(2vi n ) 09 =O, +19 +2- 2.. 

Obviously 

(3.13) a,, = cov, 

and bog ... , bn,1 is a basis of the linear space of interpolating functions. The basis 
functions b,, v = 0, ... , n - 1, satisfy the discrete orthogonality relation 

bv 
- 

p b 

(1,ifz' 

n ob(n P ) ,, n n 

(3.14) = 1 z exp((~ n (/L)P) { 0, else. 

This implies the relation 

(3.15) d (nb) 19(0 
f 
else. 

We see that the functions 
bog 

. .. ., - and the linear functionals d . . . , 

are mutually orthogonal bases of the space V of interpolating functions and its 
dual space. For 

n-I 
(3.16) p = Ej 

j=o 

it follows that 

(3.17) d ~n)(P) = d(n)(f), k = 0, ... , n - 1; 

p "interpolates" the discrete Fourier coefficients. On the other hand, because of 
the numerical Fourier synthesis, one has 

n-I 
p(tk) - E djn)(f)bj(tk) 

j=O 

(3.18) n-I 
- E dj(n)(f)(.k 

_ fkk k = 0,.. .,n - 1. 
j=o 

COROLLARY 3.1. The interpolating function has a representation of discrete Fourier 
type 

n-I 
(3.19) p - E d(n)(f)b 

j=o 
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n-I27 
(3.20) by = E 2 

p0= 

where 10 is the Lagrange function from (3.3). 

If the expression (3.3), (3.9) for lo is used in (3.20), one obtains a representation 
of the bj in terms of the function a: 

COROLLARY 3.2. The interpolating function has the representation of discrete 
Fourier type 

n-I 

(3.21) p = Ed(n)(f)b^, 
v=o 

(3.22) b 1 n-i(,)( ' n, n-I 

In case of 

1 n-I 
(3.23) a =- exp(ip ) 

n P=O 

this is obviously the formula 
n-I 

(3.24) p E dpn)(f)exp(ip.) 
v=O 

of trigonometric interpolation. 

4. Examples. In this section we consider some examples, especially interpolation 
by polynomial and analytic splines. 

Example 4.1. We start with the generating function 

(4.1) a = 1 + 2, exp(ip ) =1+ cos(p.) 

where s E R with s > 3/4. (' indicates that the index 0 is omitted.) For a later 
application in connection with attenuation factors we calculate the discrete Fourier 
coefficients of a as 

00 00 

d(n)(a) - Cr+f = 2 IV + Tnl 2s 

(4.2) X 
= E {r(n -V)-2s + (Tn + )-2 = 1,. . , n -1, 

1-= 1 

00 

(4.3) dn)(,() = 1 + 2 (Tn) -2s = 1 + 2n-2't(2s). 
1-= 1 

If 1 < s E N, we may consider the Hilbert space E of (s - 1)-times continuously 
differentiable functions f with an absolutely continuous (s - I)th derivative for 
which f(s) E L,. E may be seen as the subspace of L22 whose elements have 
Fourier coefficients which decrease asymptotically at least like Ijl-s for Ijl -> oo; 
more precisely 

(4.4) E = (f EjLi: E pl2sl>(f) 12 < 
r)j j=-oo 
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with norm 
{ oo \~0 1/2 

(4.5) l111l = tIco(f)2 + z jl2sic(f)12} 
j= -0o 

By {ep) _, with 

p = 0, 

(4.6) ep= exp(ip) 1+ p 
lpis ,~ P 1-- 2,_ ,.... 

we get a complete orthonormal system of E, and a from (4.1) is the associated 
reproducing kernel. If we use a as the generating function of an interpolation 
problem, the interpolants are splines. 

Remark. The interpolating splines of Example 4.1 are closely related to, but not 
identical with those studied in detail by Golomb [5]. The difference results from the 
fact that P,, 1 = bo (by (3.12) with v = 0), while S,, 1 = 1 for Golomb's interpolation 
operator S. Clearly, bo # 1, but b1, ... , b,,l are the same as in [5]; this can be 
seen from comparing (3.22), (4.1) with [5, Eq. (5.8)]. If d(n)(f) = 0, then P,,f is a 
linear combination of bl, .. ., bn,- alone (see (3.21)), and so is S,j (see [5, Eq. 
(5.6)]). Hence in this case Pnf = Sf. 

Example 4.2. Starting with 
00 exp(ip)_ R4_- 1 

(4.7) ?= 
-o R21pi R4- 2R2 cos(_) + 1 R>1, 

we get another interesting example. It is seen that a is a rational function of 
exp(i ) and has simple poles at Zk, Zk, k E Z, where Zk = 2i log R + 2kr. We 
point out that a is the reproducing kernel of the subspace E c L 2 with geometri- 
cally decreasing Fourier coefficients; more precisely 

00 2 

E= L2,: E R j(If)12 < oo, R > 1) 
j=-oo 

with norm 
00o 1/2 

llfll= t E R211j /j(f)12 
J = -oo 

It is well known that the functions of E have analytic extensions to the strip 

S,, = {Iz = x + iy, jyI < a := log R }. 

The interpolants generated by a are the analytic splines introduced by Golomb in 
[6, Section 81. Here we get the discrete Fourier coefficients 

(4.8) d(n)(?) = E R-2lv+Tnl = R 1(1 + R I'I) Iv <n 

Example 4.3. The examples considered above can be generalized in the following 
way: Let E be a Hilbert space of complex-valued functions which are real-valued 
on the real line, 2v-periodic and analytic on a domain D D R of the complex 
plane. We assume exp(iv -) E E, v E Z, and that E has a reproducing kernel a of 
convolution type. It is easily seen that the Fourier coefficients of a are all real and 
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strictly positive, so that a may be taken as the generating function of an interpola- 
tion problem. It is well known that one obtains in this way a "smoothest" 
interpolation of the given data in the sense that an interpolant of the form 
p = >-o aja(. -tf) has minimum norm with respect to al elements of E which 
interpolate the data (cf. Meschkowski [10, p. 140]). 

In this context we recall the method proposed by Kress [9] and Knauff-Kress [8] 
to define function spaces of the considered type with the aid of area or contour 
integrals. As an example let E be the space of periodic functions, holomorphic in a 
strip Sa, for which 

lim ff If(z)2 dx4y < 
a--a-0 O<x <2, 

IYI <a 

(cf. Kress [9]). E possesses the reproducing kernel 
00 1/2 

(4.9) =f y a i 2a exp(ip ~ 
(~~~~~~~~ = ) p=x 27r sinh 2pa)P(P, 

which may be represented with the aid of elliptic functions (cf. Bergman [1, p. 10]). 
For moderately large values of a, the Fourier coefficients of a and of a from 
Example 4.2 do not differ very much. Therefore, in general, the simple kernel a is 
preferable. 

5. Evaluation of Attenuation Factors. We pointed out that a generating function a 
of an interpolation problem with 

(5.1) dj(n)(a) 7# O, j = 0, ... ., n- 1, 

offers the possibility to define attenuation factors 

(5.2) j 
d)(a) - j)) ' =?0 +1, +2 , 

such that 

(5.3) 
Cj(pnf) T 1n)(a)d1n)(f), j 

=.o0,+?,1+2 

Since 
00 

(5.4) d()(a) c+pn() 

we get 

c.(a)_ _ 

(5.5) Tln)(a)= 00 0j=0, +1, 2 , 
E Cj+pn(a) 

Setting x := j/n and T (n)(a; x) := (n)(a), this yields 

(5.6) T(n)(G; x) = Cxn(a) 

ECn(xp+p)(a) -00 
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where for some a the function T()(a; *) is independent of n. The extreme case of 
trigonometric interpolation is characterized by 

00 

(5.7) I= cjexp(ij*), 
j=-oo 

where 
1 . n-i n-i 

= - 2 ' 2 if n odd, 

p p j= t+, J=-j2 + 1a n . if n even, 
C 

j n n 
1 2n j = - 2 and j = _0 

and cj = 0, for the remainingj. Here we have the special attenuation factors 

?, if lxl> <, 

(5.8) T(n)(&; x)= {0 iflxi -2andnodd, 

2, if Ix 
= 

and n even. 

For other a one may consider the corresponding function Tr(n)(a; ) as an approxi- 
mation of T(n)(C; *). In every case, T(n)(a; *) has compact support if a is a 
trigonometric polynomial of any degree. We now let a be one of the reproducing 
kernels of Section 4. In case of the kernel 

(5.9) =1 + t exp(ip*) 
P=-?? IP 

of Example 4.1, one gets the attenuation factors 

[1~~~~~0 

(5.10) T(n) = 1 

ljl2,T_(n) ( j 0X 

Substituting the expressions for '(")(a) from (4.2) and (4.3), there follows 

1 + 2n-2't(2s)' 

(5.11) j( )+Zn(a) = tj 2sn2s(l + 2n -23(2s))9 0, EZ\{} 

00 j + pn 2s-I 

jlP=_0 (+ pn) ) } n1 

As expected, these are for s E N the attenuation factors of polynomial splines 
which first were calculated by Eagle in 1928 (cf. Collatz and Quade [2], Ehlich [3], 
Gautschi [4]). 



INTERPOLATION ON UNIFORM MESHES 413 

TABLE 1 

Numerical values of attenuation factors generated 

by a(x) = Sp??-, R 2lR exp(ipx) 

R- 2n1 

x 1o0 108 o- 10 1o-12 1o-14 

0 0.999999 0.999999 0.999999 0.999999 0.999999 

0.1 0.999984 0.999999 0.999999 0.999999 0.999999 

0.2 0.999749 0.999984 0.999999 0.999999 0.999999 

0.3 0.996035 0.999369 0.999900 0.999984 0.999997 

0.4 0.940649 0.975450 0.990099 0.996035 0.998418 

0.41 0.923211 0.964964 0.984398 0.993129 0.996989 

0.42 0.901187 0.950136 0.975497 0.988120 0.994279 

0.43 0.873710 0.929491 0.961713 0.979535 0.989154 

0.44 0.839951 0.901187 0.940649 0.964964 0.979535 

0.45 0.799240 0.863193 0.909091 0.940649 0.961713 

0.46 0.751241 0.813612 0.863193 0.901187 0.929490 

0.47 0.696129 0.751241 0.799240 0.839951 0.873710 

0.48 0.634743 0.676302 0.715253 0.751241 0.784054 

0.49 0.568641 0.591076 0.613137 0.634743 0.655821 

0.5 0.500000 0.500000 0.500000 0.500000 0.500000 

0.51 0.431359 0.408924 0.386863 0.365257 0.344179 

0.52 0.365257 0.323698 0.284747 0.248759 0.215946 

0.53 0.303871 0.248759 0.200760 0.160049 0.126290 

0.54 0.248759 0.186388 0.136807 0.098813 0.070509 

0.55 0.200760 0.136807 0.090909 0.059351 0.038287 

0.56 0.160049 0.098813 0.059351 0.035036 0.020465 

0.57 0.126290 0.070509 0.038287 0.020466 0.010846 

0.58 0.098813 0.049864 0.024503 0.011880 0.005721 

0.59 0.076789 0.035036 0.015602 0.006871 0.003011 

0.6 0.059351 0.024503 0.009901 0.003965 0.001582 

0.7 0.003965 0.000631 0.000100 0.000016 0.000003 

0.8 0.000251 0.000016 0.000001 0.000000 0.000000 

0.9 0.000016 0.000000 0.000000 0.000000 0.000000 

1.0 0.000001 0.000000 0.000000 0.000000 0.000000 

We point to the fact that 

(5.12) (n) ? Z\{} 

in contrast to the values given in [31 and [4]. This difference disappears in the limit 
as n - oo. More precisely, let T.(a; x) denote the limit of Tfn)(a), as both n and 

j = j(n) go to infinity, such that 

(5.13) lim j(n)/n = x, 0 < x < 1. 
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Then 

019 x = y =0, 

o,~~~~~ x=O,, Z\ {O), 
(5.14) TJU(~; X + - ( / + p ) ) 

x + O<<l,pEZ 

In case of 

(5.15) E exp(ip) 
P=-oo 

of Example 4.2, we get the attenuation factors 

T (a) = 1 

R21j+ # 1 > R -21j+pnlI 

(5.16) P=- 

1 R - 2n n 

R 2Ij+ILnH-2Ij(1 + R -2n+41A1 , j( /L 29 E- Z. 

We set x = j/n, k = R -2n, and obtain 

(5.17) ()(x + k+A1- x( -k) 

If k - 0, one gets the attenuation factors F(x) which belong to trigonometric 
interpolation. A comparison with the attenuation factors of polynomial splines 
shows that in the case of the above generating function i is more sharply simulated 
(see Table 1 and Figure 1). 

The same can be said about the kernel a from Example 4.3 which produces the 
attenuation factors 

T n(x + it) =(27r sinh 2(x + ,u)na) 
(5.18) = 2 / r(~~~(x + t ~ ~x) I 

p=-x 22r sinh 2(x + p)na J 2 

and about the kernel 

(9 exp(ip-) 
P=_OO cosh(pa)' a> 1, 

which was introduced by Achieser and Krein in connection with n-width problems 
of analytic functions (cf. [11, p. 196]). Here we have the attenuation factors 

(5.20) ( ) cosh((x + ,a)na) p=-x cosh((x + p)na) 1 

IxI < it41E Z. 

It is seen that in (5.18) and (5.20) the term 

(5.21) K = exp(-an) 

plays a similar role as k in (5.17). 
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