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By F. Stummel 

Abstract. The paper presents the theoretical foundation of a forward error analysis of 
numerical algorithms under data perturbations, rounding error in arithmetic floating-point 
operations, and approximations in 'built-in' functions. The error analysis is based on the 
linearization method that has been proposed by many authors in various forms. Fundamen- 
tal tools of the forward error analysis are systems of linear absolute and relative a priori and 
a posteriori error equations and associated condition numbers constituting optimal bounds 
of possible accumulated or total errors. Derivations, representations, and properties of these 
condition numbers are studied in detail. The condition numbers enable simple general, 
quantitative definitions of numerical stability, backward analysis, well- and ill-conditioning 
of a problem and an algorithm. The well-known illustration of algorithms and their linear 
error equations by graphs is extended to a method of deriving condition numbers and 
associated bounds. For many algorithms the associated condition numbers can be de- 
termined analytically a priori and be computed numerically a posteriori. The theoretical 
results of the paper have been applied to a series of concrete algorithms, including Gaussian 
elimination, and have proved to be very effective means of both a priori and a posteriori 
error analysis. 

Introduction. Evaluation algorithms are defined by finite sequences F= 

(Fo, . . . , F,,) of input operations, evaluations of 'built-in' functions, and arithmetic 
operations for determining sequences u = (uo,.. .u,,) of input data, intermediate 
and final results in the form 

(1) ut,=F, (u), t =0,...n. 

It is presupposed in the following that Fo is a constant function and the function 
values Ft(x) depend on xo,... , xt1 but not on xt,... , x,, for t = 1, .I . , n. 
Under perturbations, an evaluation algorithm yields approximations vt of ut that 
can be written in the form 

(2) vt = (1 + e,)Ft(v), t = O, ..., n. 

The so-called local errors et are the relative errors of the data input, function 
evaluation, or rounding in the arithmetic floating-point operation in step t of the 
algorithm. We shall assume that the local errors are bounded by je1j < Yt7 for 
t = O, ... , n, where Yt are suitable nonnegative weights and q is an accuracy 
constant. 
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In vector notation, (1), (2) may be written u = F(u), v = F(v) + d, using the 
residual vector d with the components d, = -v,e, and e, = -e,/(l + e,). By intro- 
ducing the mapping A = I - F, (1), (2) become 

(3) Au = O, Av = d. 

Thus, the error analysis of an evaluation algorithm is a perturbation theory of the 
functional equation Au = 0 with respect to perturbations of the right-hand side. By 
Taylor's formula at the point u, the absolute a priori error Au = v - u satisfies the 
relation (A'u)Au + R = d, where R is a remainder term of order O(IlAull2). 
Neglecting terms of second order in IlAull and 'q gives (A'u)Au Jue, where 
Ju = diag(uo, . . . , u,). In the a posteriori error analysis, one uses Taylor's formula 
at the point v and obtains the relation (A'v)Av Jv,e' for the error Av = u - v. 
The solutions s of the associated systems of linear error equations 

(4) (A'u)s = Jue, or (A'v)s = Jve', 

then yield approximations of the absolute errors Au or Av. Correspondingly, 
approximations r of the relative errors Pu = Ju-'Au or Pv = J,-7'Av are obtained 
from the systems of linear error equations 

(5) Ju-'(A'u)Jur = e, or Jv-'(A'v)Jvr = e'. 

The procedure, described above, is analogous to the derivation of difference 
approximations of a differential equation; the role of truncation errors is played by 
remainder terms O(IIAu 112), O(q12) here. Note that the linear error equations can 
also be derived simply from the exact error equations in Section 1.1 by neglecting 
terms of second order in the errors and replacing the absolute and relative errors of 
u, v by s and r. 

The subject of the paper is a study of the structure of the mapping A and its 
Frechet-derivative A'w, the derivation and proof of error representations of the 
form 

(6) Aw, = s, + O,(mq2), Pwt = rt + Ot(7q2), 
where s, r are the solutions of (4), (5), and associated optimal error estimates 

(7) IAw,Il < atj + ot({2), IPwtl < ptr + ot(2), 

a detailed analysis of the remainder terms in (6), (7) and of the properties of the 
optimal constants at, pt. In (6), (7), one chooses w = u in an a priori and w = v in 
an a posteriori error analysis. The components st, rt of s, r are linear forms in the 
local errors e = (eo, . . . , en), and the bounds at,7 Ppt1 are associated norms, 
specified by the error distribution, letl < Y,y, of these linear forms. The constants 

at, pt are the weighted absolute and relative, a priori and a posteriori condition 
numbers. 

Particular attention is paid in the following to the simultaneous treatment of 
absolute and relative, a priori and a posteriori errors as well as to readily accessible 
presentations of the coefficients and inhomogeneous terms of the associated error 
equations, of condition numbers, weights, and so on, in all four cases. For, in 
applications to concrete examples it is seen that for some algorithms the systems of 
linear absolute error equations, for others the systems of linear relative error 
equations, are easier to handle. The general theoretical rounding error analysis of 
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numerical algorithms uses a priori error representations. In many examples, condi- 
tion numbers can be computed numerically a posteriori, that is, together with the 
intermediate and final results of the algorithm. 

By a suitable choice of the weights in the local error distribution, the behavior of 
the algorithm can be studied under data perturbations only, assuming exact 
'built-in' functions and arithmetic operations, as well as under rounding errors in 
the arithmetic operations and 'built-in' functions only, assuming exact data. The 
associated absolute and relative condition numbers are denoted by atD, tR and p/D, 

ptR. The data condition numbers atD are absolute asymptotic conditions, in the 
sense of Rice [15], of ut viewed as a function of the data and thus independent of 
the algorithm (see Section 2.1). By Wilkinson [25, 1.36], a problem is said to be 
ill-conditioned if small relative errors of the input data can induce great relative 
errors of the solution ut of the algorithm. This effect can be formulated quantita- 
tively in our terms by ptD >> 1. Wilkinson's backward analysis describes the 
behavior of the algorithm under rounding errors in the arithmetic operations by 
data perturbations. Our results in Section 2.1 show that OtR/ JtD = ptR/ptD is a 
measure for the magnitude of those data perturbations which are necessary and 
sufficient in order to represent perturbations by rounding errors in the arithmetic 
operations. Bauer's concept (see [4], [5]) of a well-conditioned algorithm for the 
computation of ut can be specified by the requirement that ptR/ptD is not much 
greater than one. 

Also, a well-conditioned algorithm can produce numerical results such that not 
even the first digit is significant. This happens when the problem is ill-conditioned 
and the accuracy qj is too low. The least number of significant digits in a computed 
result can be determined by our relative condition numbers pt and the associated 
notion of numerical stability. Let data perturbations and rounding errors, within a 
given distribution of local errors, be bounded by the accuracy q. Then the result vt 
is computed under all these perturbations within the relative error bound l if the 
stability inequality pt < ql/,qo holds. This result follows immediately from (7) for 

1= m For example, choosing q = I and o < 1/(2pt) guarantees that at least the 
first digit in the computed result vt is accurate in the sense of relative errors. It is 
always assumed that remainder terms of the form 0(712) are negligible against the 
terms of first order in qj. 

Evaluation algorithms and their systems of linear error equations may be 
illustrated by graphs constituting detailed complete flow diagrams of the functional 
dependences between the data, intermediate and final results, as well as exhibiting 
the paths of error propagation and the associated error effects along these paths. It 
seems that this tool is found for the first time in the book of McCracken-Dorn [11] 
who attribute the idea to H. M. King. In essentially the same form Bauer [5], 
Brown [7], Linnainmaa [10], and others use graphs in their error analyses. The 
matrix elements of the solution operators (A'w)-', J)-l(A'w)-'Jw can be read from 
the weighted graph. In addition, Section 2.3 provides graph theoretic means for 
determining condition numbers and associated bounds. For instance, when the 
graph of the algorithm is a tree, condition numbers are obtained recurrently by 
simple formulae having the same form as those of the condition numbers of the 
simplest algorithms in Section 1.1. 
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Note that the concepts of condition numbers used, for example, by Wilkinson 
[25], Bauer [5], or the well-known condition numbers of matrices, are defined 
differently and have other meanings. In the rounding error analysis of a fixed-point 
arithmetic, Henrici [8, 16.4] states a system of linear equations for the exact errors 

Au,. Also the optimality of error bounds, obtained in this way, is observed there. 
Linnainmaa [10] studies Taylor expansions of the total errors Au, with respect to 
the local errors eo, . . . , e,. In particular, two algorithms for computing the coeffi- 
cient matrices of the terms of first and second order in the expansions of the total 
errors are presented. We can interpret the first algorithm as a procedure to 
compute the rows of the inverse matrix (A'u)-1 from the matrix F'(u) (see Section 
1.3). This algorithm has been described by Larson-Sameh [9] in a somewhat 
different context. Bauer [5], Brown [7], and Larson-Sameh [9] use relative or 
logarithmic derivatives for obtaining representations of the total relative errors Put. 
This method yields first-order approximations of the errors that coincide with the 
solutions rt of the system of linear relative a priori error equations (5). 

Another way of deriving a priori error representations and estimates of the kind 
described above starts from an analysis of the perturbed results vt viewed as 
functions of the local errors e = (eo, . . . , e,n). Let vt = Gt(e), then ut = Gt(O) and, 
by Taylor expansion, 

(8) /ut = G,'(O)e + ot(q2) 

From (4), (6) with w = u, and (8) it follows that st = G,(O)e for all local errors e 
and 

(9) G,'(O) = prt(A'u)'1Ju, 

where prt denotes the orthogonal projection onto the tth coordinate axis. The 
absolute a priori condition numbers thus permit the representation 

(10) a lim l sup IGt(e) - Gt(0)I= E =t(?) Yk 

Babuska's stability constants A in [1], [2] are defined in the form of the first 
equation in (10). Miller's papers [12], [13] use condition numbers of the kind 
defined by the second equation in (10). The associated stability constants 1 + 

UtR / JtD are denoted by t in [1], [2]. Miller [12], [13] and Miller-Spooner [14] use the 
notation p and co, for qRtltD. When the error analysis is applied to concrete 
algorithms, the functional dependence G, of v, on the local errors is, in general, 
very complex, so that this approach is limited to small algorithms. 

Although the total number of operations, and thus the order of the associated 
matrices A'w, becomes very large for many important algorithms, the matrices A'w 
are very sparse and highly structured. The directed graph of the functional 
dependences of an algorithm and the directed graph of an associated linear system 
of error equations are identical. Thus the structure of the system of linear error 
equations is, necessarily, related to that of the algorithm. This fact might be the 
deeper reason why for many important algorithms, including Gaussian elimination 
of systems of linear algebraic equations, explicit analytical representations of the 
solutions of the systems of linear error equations and of the associated condition 
numbers can be determined. 
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In a series of papers, surveyed in Section 3, the present error analysis has been 
applied to concrete numerical algorithms. The error estimates have been tested by 
numerous numerical examples. All these examples have confirmed that the condi- 
tion numbers clearly and concisely yield crucial information about the numerical 
behavior of the algorithms. The a posteriori condition numbers have proved to be 
reliable measures of the magnitude of possible errors. 

1. Elements of Error Propagation. The first chapter introduces basic concepts of 
the perturbation theory for numerical algorithms. Starting points are representa- 
tions and estimates of the errors in elementary arithmetic operations, +,-, x, /, 
and 'built-in' functions occurring in the floating-point arithmetic of computers. In 
particular, condition numbers are defined for the simplest algorithms, consisting of 
the input of one or two operands followed by an arithmetic operation or function 
evaluation. It will be seen in Section 2.3 that these condition numbers are also used 
in determining condition numbers or associated bounds for general algorithms. In 
Section 1.2 the class of algorithms for evaluating arithmetic expressions is defined 
and the general form of perturbed algorithms specified in view of typical rounding 
error analyses. Further, the general error equations for the solutions of the 
perturbed algorithms are derived, and associated estimates for the remainder terms 
of Taylor's formula are established. By neglecting remainder terms in the general 
error equations, linear error equations arise whose solutions approximate the 
absolute and relative a priori and a posteriori errors being of interest. The 
algorithm (A) determines uniquely a mapping A in W +. It will be shown in 
Section 1.3 that the linear error equations are defined by the Frechet-derivative A' 
of A. The solutions of the linear absolute error equations are obtained by means of 
the solution operators L = (A'w)-1, and of the relative error equations by L = 

J,-)(A'w)-'Jw. This is in correspondence with the use of so-called relative or 
logarithmic derivatives (see Bauer [5], Brown [7]). 

1.1. Error Estimates for the Simplest Numerical Algorithms. Given two numbers a, 
b and arbitrary approximations a', b' of a, b, the following absolute and relative a 
priori and a posteriori errors are defined: 

absolute relative 

apriori za =a'-a Pa = a 
(1 )_ _ _ _ _ _ _ _ _ _ _a 

a - a' 
a posteriori AXa' = a - a' Pa' = 

a' 

In the relative error analysis it will always be assumed that denominators are 
different from zero. Let us first state representations of the absolute and relative a 
priori errors 

a' a b' - a o b 
(2) A(a o b) = a' o b' - a o b, P(a o b) = a X /b 

of sums, differences, products, and quotients under perturbations of the operands 
a, b. It is well known that 
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A(a ? b) = la + Ab, P(a + b) =-Pa -Pb, 
C C 

(3) A(ab) = bAa + aAb + AaAb, P(ab) = Pa + Pb + PaPb, 
A(a/b) I 1 A--ab P'b_ Pa - Pb 
a) =b + Ab Aa Abi P(ab) = 1 + Pb 

where c = a + b. The numerical computation of a o b first requires input or 
computing of the operands a, b carried out, in general, approximately. The 
arithmetic floating-point operations are then applied to approximations of a, b. 
Input of a, b gives, for instance, a' = fl(a), b' = fl(b). By fi is meant a function 
mapping the real numbers into N-digit floating-point numbers. Let g denote the 
base of the number representation. The floating-point arithmetic thus computes the 
approximations 

(4) v = fl(a' o b') = (I + e)(a' o b'), lei <71 

of the exact results u = a o b where o = +, -, X, / (see Wilkinson [25]). The 
floating-point accuracy constant -q is, for example, 'gN+l when fl is symmetric 
rounding, and g-N+1 when fl denotes chopping off the mantissae to N digits. Now 

Au = v - u = (1 + e)(a' o b' - a o b) + e(a o b), 

so that the absolute and relative a priori errors of v have the representations 

(5) Au = (I + e)A(a o b) + ue, Pu = (I + e)P(a o b) + e. 

Inserting the above expressions for A(a o b), P(a o b) in (3) yields the absolute and 
relative a priori error equations. 

Analogous representations hold for the absolute and relative a posteriori errors 

A(a' o b') = a o b - a' o b0, 

(6) a aob-a'ob' 
P('b)=0b 0 = -p -, >(,,/ 

They are obtained by interchanging a, b and a', b' in (3). Let us further introduce 
the notation 

(7) e' - + (e =, -1). 

Then, evidently, 

(8) e + e' + ee' =O, ( + e)(l + e')= 1. 

Using (4), one has 

Av = u-v = a o b--a' o b'-e(a' o b'), a ob 

The absolute and relative a posteriori errors of the approximation v of u can 
therefore be written in the form 

(9) Av = A(a' o b') + ve', Pv = (1 + e')P(a' o b') + e'. 

From (3), (9) we obtain absolute and relative a posteriori error equations. Note that 
the representation of relative a priori errors turns into that of relative a posteriori 
errors when a, b, e, u are interchanged by a', b', e', v. 
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Next let a real function f of a single variable be given, twice continuously 
differentiable in its open domain of definition. Under perturbations of the argu- 
ment a, the induced approximations f(a') of f(a) have the absolute and relative a 
priori errors 

Afla) =f'(a) Aa ~f(a)Aa, 
(10) ( ff(a) [a 

Pf(a) = I + af[a, a, a] Pa) af'(a) Pa, 

using the Hermite generalized divided differences 

(11) f[a, a, a'] = f ( f"(a + s(a' - a)) ds) dt. 

It is presupposed that f'(a) and, in the case of relative errors, a and f(a) are 
different from zero. The above representations are valid for all pairs a, a' such that 
the line segment aa' belongs to the domain of definition of f. 

In the numerical evaluation of real functions, instead of u = f(a) an approxima- 
tion of f at a neighboring point a' of a is computed. Let v denote this approxima- 
tion. Then 

(12) v =( + e)f(a'), e = - f(a) (f(a') + 0). 
f(a') 

It can be assumed, for example, that elementary 'built-in' functions are computed 
by 

(13) v = fl(f(a')). 

In this case, 

(14) e = fl(y) -Y y = f(a'), lel < (. 

In line with (5), (9), one finds the error equations 

(15) Au = (1 + e)Af(a) + ue, Pu = (1 + e)Pf(a) + e, 

(Av = Af(a') + ve', Pv = (1 + e')Pf(a') + e', 

for the approximations v of u = f(a), where e is specified by (12) and herewith e' 
by (7). Inserting the representations (10) of Af(a) and Pf(a) into (15) leads to the 
absolute and relative a priori error equations of numerical evaluations of f. Inter- 
changing a, a' in (10) and inserting the resulting representations of Af(a'), Pf(a') 
into (15) yields the associated absolute and relative a posteriori error equations. 
Again, the relative a priori error equations change to the a posteriori error 
equations, and vice versa, when a, e, u are interchanged by a', e', u'. 

The simplest numerical algorithms consist of the input of a or a, b followed by 
the computation of f(a) or a o b for o = +, -, X, /. From the above error 
equations we can readily deduce associated error estimates. For this purpose, let us 
assume that the relative errors Pa, Pb, e+, e_, . . . of the input data and arithmetic 
floating-point operations +, -, . . . are bounded by 

(16) iPal < Pan, Pbl < Pbn, lel Syq. 
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The absolute errors Aa, Ab then satisfy the estimates 
(17) lIal < va m lAbI < ab%' aa = laIPa, b = IbIpb. 
The constants Pa' Pb and ca, ab are the relative and absolute a priori condition 
numbers of the data a, b. They permit adjusting the bounds to the magnitude of 
possible errors of the data approximations a', b'. When a, b are results of a 
previous numerical computation, in general a', b' have larger errors than input 
errors of magnitude iq. Constants Pa, Pb' a, ab may be zero when input data are 
exact or unperturbed. The weight y can be set equal to zero if the floating-point 
operation is performed exactly, for instance, when a loss of significant figures 
occurs in subtractions. The error equations (3), (5), (10), (15) entail the absolute and 
relative a priori error estimates 

(18) IAuI < (1 + O('q))aq, IPuI < (1 + O(W))Pjx, 
using the following absolute and relative a priori condition numbers of arithmetic 
operations and function evaluations: 

a b 
a y' (7a P= | Pa + | Pb + 7Y 

X: F= IbIba + alb + JuIy, P-Pa + Pb + 7Y 

(19) /: a + b+ IUIY P = Pa + Pb + Y, 

f: =a Iff(a)Iaa + July, P- af(a) Pa + Y' 
f(a) 

Note that always p = a/IuI, u = a o b for o = + ,-, x,/ or u = f(a). The above 
estimates require for divisions that Pbq < ( < 1, and for function evaluations that 
If[ a, a, a'] I/ If'(a) I < It. 

Let us assume that the a posteriori errors Pa', Pb', e' and Aa', Ab' satisfy 
estimates corresponding to (16), (17). From (3), (6), (9), (10), (15) the absolute and 
relative a posteriori error estimates 

(20) IAvI < (1 + O('q))o', IPvj I (1 + 0(-q))pq 
follow, where a, p denote the absolute and relative a posteriori condition numbers 

a' b' 
+,-: (7a + qb + IVIy, P = | Pa + | Pb + 7' 

v v 
x or = Ib'I aa + Ia' Gb + IvIy, P = Pa + Pb + Y 

(21) /: a= bl ?a +| bT b + IVIY, P = Pa + Pb + Y, 

f: a = If'(a')Iaa + vy, P = a'f(a) Pa + Y' 

Now p = (1 + O(,q))a/lvI, v = fl(a' o b') or v = fl(f(a')). It is always assumed in 
the present paper that 7q and 0(7q) are small compared to 1. The quantities a', b', v 
are floating-point numbers, so that a posteriori condition numbers can be com- 
puted numerically together with the result v. 

The above estimates (18) are sharp or optimal for the class of all perturbations 
defined by (16). When Pa, Pb, y and the data a, b are so chosen that 

(22) Pa=sgn 
a 

)paq Pb = sgn(b)Pbr, eyq 
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the relative a priori error of the sum u = a + b becomes 

(23) Pu = (1+ yq) 
a 

Pa + 
b 

Pb)?) + YTh 

that is, p7q < Pu < (1 + yq)p-. Analogous statements are true for the other arith- 
metic operations and function evaluations, as well as for a posteriori error esti- 
mates. 

1.2. Evaluation Algorithms and General Representations of Errors. The evaluation 
of arithmetic expressions by a computer is carried out in a series of elementary 
steps: input of numbers, arithmetic operations +, -, X ,/ and evaluations of 
elementary 'built-in' functions -v, ln, exp, sin, cos .... In this section a class of 
finite algorithms for evaluating general arithmetic expressions is defined analo- 
gously to typical computer programs. As a rule, data have to be read into the 
storage first. From these data a sequence of intermediate and final results is 
computed stepwise. In doing so, further data may be read in. We assume that data, 
intermediate, and final results are stored in places having the addresses 
0, 1, 2, . .. , n. In each step of the computation all previously computed results are 
available for further computations. An evaluation algorithm is thus defined by a 
constant function Fo, representing the input of a number, and a finite sequence of 
real functions FJ, having suitable domains of definition def F, in R', in the form 

(A) uo = Fo, u1 = F(uo, . . ., u-1), t = 1, . . ., n. 

The functions FJ specify how the next value is computed from the data and 
intermediate results uo, . .. , ut11 in storage places 0, . . . , t - 1. In view of the 
further study it is expedient to use vector notation such that 

u = (Uo~ ... Un), V = (VO, I .. Vn) x (XOI . .. I Xn), E .ER+. 

The functions FJ are then defined by 

(1) Fo(x) = Fo, FJ(x) = F,(xo, . . . , x11), t = 1, . * ,n 

for all x E Rn+I' with the property that (xo, ... , x1 ,) belongs to def F,. 
The class (F) of admissible functions FJ is composed of three subclasses (FO), 

(F 1), (F2) by 

FJ E (F) = (FO) u (F1) u (F2), t = O, . . ., n. 

(FO) Input operations are represented by constant functions FJ on all of RI+'. In 
the floating-point arithmetic of a computer input operations are carried out in the 
form 

fl(F1(x)) = (1 + e,)F,(x). 

The relative errors et of these approximations are bounded, for instance, by 

jej < , where ? denotes the floating-point accuracy constant defined in Section 
1.1. 

(F1) 'Built-in' functions. Functions in this class are defined by 

F,(x) = f,(xj 

using indicesj, E {0, . . . , t - 1) and elementary, 'built-in', functions 

ft E { \/, ln, exp, sin, cos, . . . }. 
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The domain of definition of F, consists of all those x in R + 1 such that xj belongs 
to def f. In floating-point arithmetic these functions are, at best, evaluated by 

fl(FJ(x)) = (1 + e,)F,(x), jejI < -q 

In this class also functions f, of the form ft(z) = z o pt are admitted, where 
o = + , -, X,/ or T and p, is a constant which can be represented exactly as a 
floating-point number. A simple example isf,(z) = z42. 

(F2) Arithmetic operations are represented by functions F, of the form 

F,(x) = (+xi) ? xjt), 

where it, jt are distinct indices in {O, . . ., t - 1}, and o are operations in 
{+,-,x,/}. The domain of definition of F = + ,-,x is all of R". In the case 
of divisions, def F, = {x E R` I xj, =# 0). Let us assume that the floating-point 
arithmetic of our computer evaluates the arithmetic operations approximately by 

fl(F,(x)) = (1 + et)F,(x), jejI < 7q. 

Note that -xi is obtained exactly from xi by a change of sign. 
The evaluation of functions F, E (F) in the floating-point arithmetic of a 

computer is carried out approximately as described above. Instead of the sequence 
of solutions uo, . . . , u,, of (A), a sequence of approximations vo, . . . , v, is com- 
puted such that v, is an approximation of Yt = F,(v) for each t. Let et denote the 
relative a priori error of the approximation v, of Yt and let et' be the associated 
relative a posteriori error, 

(2) e,= ' Y' = e,' e,t - ', t O,...,n. 

The sequence vo, . . . , v,, thus satisfies the recursion 

(A) vO = (1 + eO)FO, v, = (1 + e,)F,(vo, . . . , v,-i), t = 1, * , n. 

In typical applications the errors et, e,' are bounded in modulus by the floating- 
point accuracy constant q or some multiple of q. We shall call the et local 
(rounding) errors. 

For the sake of notational simplicity, let us introduce the notation J" for the 
diagonal matrix diag(wo, . . . , w,) and any vector w = (wo,... ., w,). In this sense, 

(3) 4w = diag-,. ..,- , 
wo Wn 

provided that w, =# 0, t = O, . . . , n. Using this notation, the absolute and relative a 
priori and a posteriori errors of approximations v = (vo, . . . , v") of u = 

(uO... ., un), where u, =# 0, v, =# 0 for all t, satisfy the relations 

(4) Au = v - u, Pu = JU-'Au, Au = JuPu, 

Av = u-v, Pv = JV71Av, Av = JvPv. 

Now the fundamental error equations for the solutions of the perturbed algo- 
rithm shall be established. The functions F, E (F) are Frechet-differentiable at each 
interior point of their domains of definition and satisfy the Taylor formula 

(5) F,(x + h) = F,(x) + F'(x)h + R,(x, h). 
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The gradients F,'(x) of F, have the form 

aF aF 
(6) F,'(x) = t(x), X) o., o)i,(x) 

because F, depends on xo, ... x, only. Input operations F, E (FO) are constant 
functions so that 

(7) F,'(x) = O, R,(x; h) = O. 

For elementary functions F,(x) = f(xj) one obtains, from 1.1.(10) with a = xj, a' = 

Xi' = Xi + hi, the representation 

(8) F'(x)h = f'(xj)hj, R,(x;h) = f[xj, xj, xj]kh., 

where it is assumed that the line segment xjXj' belongs to def f. Additions and 
subtractions F,(x) = xi + xj give 

(9) F,'(x)h = hi + hj, R,(x; h) = 0. 

For multiplications F,(x) = xixj it is seen from 1.1(3) that 

(10) F,'(x)h = xjh, + x,h., R,(x;h) = hih. 

In the case of divisions one finally has 

1 x. h. 
(11l) F,'(x)h =-h-, h, R,(x;h) = F,(x)h 

provided that xj 7# 0, Xj# 0. 
The next theorem constitutes the basis for subsequent error estimates. It shows 

that the remainder term of the Taylor formula can be estimated locally uniformly 
in suitable neighborhoods of u. 

(12) Let the solution u of the algorithm (A) be an interior point of def F, and u, 0 

for all t. Then there exist positive constants K, {, such that uniformly for all x, h in 

(i)~ ~ ~~X I - u, < |ht < , t = ,***,n 

the joins x, x + h belong to def F,', the components x, do not vanish, and the 
remainder terms satisfy the estimates 

(ii) 1 F(x) R,(x;h) A Kj(maxIPxI), t =0, . . ., n, 

where Pxj = hj/xj. 
Proof. (i) As u is an interior point of def F, for all t, there are positive constants 

(,O < 2/3 such that all x in the neighborhood [x, - ut/llul < (,, t = 0, . .. , n, of 
u belong to def F,' for all t. Consider first those indices t such that F, E (Fl), that 
is, F,(x) = f,(xj). Then uj is an interior point of def and there are positive 
constants (-' < (fo such that all xj satisfying Ixj - uj/ I ujt < belong to def ,, 
where f, is twice continuously differentiable. Since f,(uj) = u, :# 0, {-i may be 
chosen so small that also f,(x>) :# 0 for xj in this neighborhood. For all indices 

k#j, and F, E (F1) put {k = {k . Finally let {= 1for t = 0, . . ., n. 

(ii) By virtue of the condition (, < t = 0, . .. , n, the line segments x, x + h 
belong to def F,' for all t = 0, . . ., n, whenever x, h is in the neighborhood (12i) of 
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u, 0. Since (, < 1, x, #s 0 for all t. For input operations, additions and subtractions, 
(12ii) holds trivially with Kct = 0. In view of (10), the remainder term estimate then 
holds for multiplications with , = 1. In the case of divisions one has 

F(X)Rt(x;h)= i +1p (PxI-Px )Pxj, i=it,j=jt. 

Now 6k < k? <3 for all k, and consequently 

2 < Xk Uk Xk hk Uk 
3 Uk Uk Uk Xk 2 

Hence the estimate (12ii) is true for Kct = 4. Finally, consider those t such that 
F, E (Fl), that is, F,(x) = f,(xj). The estimate (12ii) then follows from (8) and 
1.1(11) using the constants 

1 ma X2 
Kt 2 max 

Ijf (xi) maxIf,''(zj) 

the maxima being taken over all xj, zj such that 

Xi X, Ui l 6 j, lZi 
- 

Ui l 2t, j=t.: 
U. U. 

Applying Taylor's formula to the solutions x = u, x + h = v of the algorithm 
(A) and its perturbation (A) gives 

(13) F,(v) = F,(u) + F,'(u)Au + R,(u; Au), 

where h = v - u = Au, and thus 

vt = (1 + e,){u, + F,'(u)Au + R,(u;Au)}. 
The absolute a priori errors Aut = vt - ut therefore satisfy the system of equations 

(14) Auo = uoeo, Aut - F'(u)Au = ute, + Tt, t = 1, . ., n, 

and the relative a priori errors Put = (vt - ut)/ ut the system 

(15) Puo = eo, Put - -I7'(u)JuPu = e, +-T,, t =l, ...,n, 
Ut Ut 

using the remainder terms 

(16) T = eF,'(u)Au + (1 + e,)R,(u; Au). 

Similarly, the Taylor formula can be applied for x = v, x + h = u and h = u - 

v = Av. Then 

Ft(u) = Ft(v) + Ft(v)Av + R,(v; Av). 
From (A), (A), and (2) it is seen that F,(u) = u, and 

F,(v) = + et)vt, () et' =l+et 

Hence the absolute a posteriori errors Avt = ut - vt satisfy the equations 

(17) Avo = voe', Av - F,'(v)Av = ve,' + Rt(v;/Av), t = 1, ... , n. 

By (2), e,' denotes the relative a posteriori error of the approximation vt of F,(v). 
Dividing both sides of (17) by v, yields the equations 

(18) Pvn = en, Pv, --F(v)JoPv = e,' + -R,(v;Av), t = I,... .,n 
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for the relative a posteriori errors Pv1 = (u, - v,)/v1. Approximating vt by F(v) 
yields the corresponding systems 

(9o(= voevo, Av - Vt 
F,7(v)Av = v,e, + Rt', 

Pv = e', Pv, - _I '(v)J Pv = e' + RI', J3 (v) t 
vV 

for t = 1, ... , n, where R1' denotes the remainder terms 

(20) R = -e1F1'(v)Av + R,(v; Av). 
In (17), (18), (19), additionally, et' can be approximated by -et and the associated 
remainder -e e,' be added to R1'. 

The above error equations have the general form 
1-i 

(21)y zo= fo, Zt btkZk = ft, t = 1, . ..,n. 
k =0 

The coefficients btk vanish for k > t because aFt/xk = 0 due to (6). The coeffi- 
cients btbs, btr of the equations (14), (15), for z* = Au1, Put read 

(22) btkbs = k(U), b U1 t 
- 

ak (u) t, k = 0, ... , n. 

For input operations, by (7), 

(23) bak1s 
= = 0, 

and for 'built-in' functions 

(24) btbs = f'(Xj)j, bkel= t ' f'(x) k 1=1, 

The coefficients b ts of the arithmetic operations Ft E (F2) are listed in Table 1.2. 
Note that the coefficients for additions and subtractions are particularly simple in 
the absolute a priori error equations, and for multiplications and divisions in the 
relative a priori error equations. This fact can be used advantageously in the error 
analysis of specific examples. 

TABLE 1.2 
Matrix elements in the absolute and relative a priori error 

equations where i = i,,j = jt 

0 k =i k =j k = i k =j k ?i,j 

+ 1 1 U U_ 0 

- 1 -I I-ui 0u I 

x Uj Ui 1 1 0 

/ 1 _uI 1 -1 0 
Uj Uj 

babs e-e 
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The representation of the matrix elements in Table 1.2 is so chosen that it also 
yields easily computable coefficients of a posteriori error equations. These are 
obtained by replacing u,, uj, u, by the solutions vi, Vj, v, of the perturbed algorithm 
(A). In this way, the absolute a posteriori error equations for additions, subtrac- 
tions, and multiplications are given the coefficients 

(25) btk aXk (v) k =O ... ., n 

and for divisions F,(v) = vi/vj, 

as aF ___b v aF 
(26) btbs =-t-(v), k#j; bt = F(v) ax () 

The relative a posteriori error equations for additions and subtractions take on the 
form (18), that is, (21) has the coefficients 

(27) bt =- k = O, ... ., n 

whereas for multiplications and divisions the form (19) is obtained such that the 
coefficients in (21) become 

(28) bt = k a k = O, ..., n. 

An error estimate for the solutions of these modified a posteriori error equations will 
be given in Theorem 2.2(15). 

1.3. The Linear Error Equations. Fundamental notions of the perturbation theory 
for evaluation algorithms are the associated mappings F and A = I - F in R"+' 
that will be introduced now. The functions Fo . . ., F, specifying the algorithm 
(A), constitute the vector-valued mapping 

( 1 ) F(x) = (FO(x), . .. , F;(x)) 
for all x E R" 1 such that x E def F, for all t. The solution u = (uo,. . . , u",) of the 
algorithm (A) may thus be viewed as fixed point of F, 

(2) u = F(u). 

Let v = (vo, . . . , v,) denote the solution of the perturbed algorithm (A). By 
inserting v into (2), the associated residual d = v - F(v) is determined. In view of 
1.2.(A), obviously, 

(3) d, = e,F,(v) = -e,'v,, t = O, ... ., n, 

that is, d = -J, e'. 
The algorithm (A) defines uniquely the mapping 

(4) Ax = x - F(x) = (Aox,. . . * Anx) 

having the components 

Aox = xo -Fo, Atx = x, -F,(x), t =1***,n. 

for x E def A = def F. The solution u of the unperturbed algorithm (A) is, by (2), 
a solution of the functional equation 

(5) Au = 0, 
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and the solution v of the perturbed algorithm (A) satisfies the equation 
(6) Av= d, 
using the residual vector (3). In this way, the error analysis of the perturbed 
algorithm becomes a perturbation theory of the mapping A in a neighborhood of u. 

From Section 1.2 it follows that the mappings F, A are Frechet-differentiable at 
each interior point of their domain of definition. The derivative F'(x) of F is 
represented by the matrix 

(7) F'(x) = ( xaFt() . 

and the associated remainder term by 

(8) RF(x;h) = F(x + h) - F(x) - F'(x)h = (R,(x;h)).0, . 

where R, denotes the remainder terms of the Taylor formula 1.2(5). Hereby also the 
mapping A is differentiable at all interior points of def A = def F, where 

(9) A'x = I - F'(x), x E def F', 

and 

(10) RA(x;h) = A(x + h) - Ax - (A'x)h = -RF(x;h). 

The derivative A"'u is called the derivative of the algorithm (A) and correspondingly 
A"'v the derivative of the perturbed algorithm (A). From the representation 1.2(6) of 
the gradients F,'(x) it is seen that the matrix of A'x is lower triangular and its 
diagonal elements are equal to 1. Consequently, 

(11) A'x is a bijective linear mnpping of Rn+,for each x E def A' = def F'. 

Using these mappings, the absolute and relative a priori error equations 1.2(14), 
(15) may be written in the concise form 

(12) (A'u)Au = Jue + T, (A'u)rei Pu = e + Ju-'T. 
Analogously, the absolute and relative a posteriori error equations 1.2(17), (18) 
read 

(13) (A'v)Av = Jve' + R, (A'v)rei Pv = e' + JvT'R, 

where 

(14) (A'u)rei = Ju-7(A'u)Ju, (A'v)rei = Jv-'(A'v)Jv. 

We shall see in Section 2.1 that the remainder terms R, T are of second order in E 
as long as the local errors are bounded by Ietj < e, jej'l < E, and e is sufficiently 
small. Hence neglecting the remainder term T in (12) yields the associated linear a 
priori error equations 

(15) (A'u)s = >Je, (A'U)rei r = e. 

Similarly, by neglecting R in (13), the linear a posteriori error equations 

(16) (A'v)s = Joe', (A'V)rei r = e' 

are found. We shall prove in Chapter 2 that the solutions s, r of (15) approximate 
the a priori errors Au, Pu and the solutions s, r of (16) approximate the a posteriori 
errors A v, Pv. 
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The eight linear systems (12), (13), (15), (16) have, by (9), (14), the general form 

(17) z - Bz= 

using the mappings 
B absolute relative 

(18) a priori F'(u) Ju- F'( u) Ju 

a posteriori F'(v) Jv-'F'(v)Jv 

Explicit expressions for elements b,k of the associated matrices of these mappings B 
have been listed already in Table 1.2. The solutions z in (12), (13) are given by 

z absolute relative 

(19) a priori Au Pu 

a posteriori Av Pv 

The right-hand sides of the linear error equations (15), (16) read 

f absolute relative 

(20) a priori Jue e 

a posteriori Jve' e' 

As we have stated above, A'u, A'v and thus (A'u)rei, (A'v)rei are bijective linear 
mappings. In order to simplify notation in the further study, the associated inverse 
operators are called solution operators and are denoted by L. The solutions of the 
above eight linear systems are then written 

(21) z = Lf, L = (I-B)'. 

In the case of the a priori error equations, 

(22) Labs = (A'u)-, Lre' = (A'u)rel, 

and, consequently, 

(23) Labs = J LrelJ-l, L're' JulLabsJu. 

Correspondingly, for the associated a posteriori error equations 

(24) Labs = (A'v)1, Lrel = (Av)-rll, 

whence 
(25) Labs = J Lrj'-1, Lre1 = J-lLabsJ 

The representation L = (I - B)-1 immediately yields the relations 

(26) L = BL + I = LB + I. 

Componentwise, the first relation reads 
t-I 

(27) Ltk = E btlLlk + 3tk' k=0, ... ,t, 
l=k 

because 

(28) bik =?0, i 6 k, Lik = 0, < k. 

A recurrence of this type for computing the entries of the matrix L is found in 
Henrici [8, (16-19)]. From the second relation in (26) one obtains 

(29) L,, = 1, Ltk = E L,lblk, k = O, . . ., t-1. 
1=k+1 
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Using the row vectors 

Lt = (Ltk)k=O, ...,n, bt = (btk)k=O,...,n at = (8,**, tn). 

we can write L = LB + I in the form 

(30) L,= t L,,b, + St. 
1= 

Now, put 
t 

L,u)= E L,,b, +6t, j = O,.. .,t. 
I=j+ 1 

From (28), (29) it is seen that 
t 

Lk)= - ,bkLk j <k, k = O... ,t 1, 
I=k+1 

thus, in particular, L, = L4)9. Consequently, the row L, of the matrix L can be 
computed recurrently from 

(31) L -() = St, Lti-1) = Lt0) + L?;bj, =jt,...,1, 

and 

(32) Lt = L-(?)* 

This is the algorithm (T) of Linnainmaa [10] applied to the computation of the row 
L, of the matrix L from the rows of the matrix B. The same algorithm has been 
proposed by Larson-Sameh [9] in a somewhat different setting. 

2. Condition Numbers, Error Estimates, Graphs. In Sections 2.1, 2.2 it will be 
shown that the solutions s, r of the linear a priori and a posteriori error equations 
yield approximations of the a priori errors Au, Pu and a posteriori errors Av, Pv. 
Simultaneously, estimates of these errors will be obtained. A fundamental tool of 
the error analysis is the notion of condition number. The error approximations s,, r, 
are linear forms in the local errors specifying the perturbations of the algorithm. 
Our condition numbers are norms of these linear forms with respect to suitably 
chosen weighted maximum norms over the space of local errors. Therefore condi- 
tion numbers are optimal bounds of the error approximations s,, r, for all local 
errors in the considered distribution. Consequently, also the associated estimates of 
the errors Au, Pu and Av, Pv are optimal if terms O,(e) are neglected against 1. In 
addition, Section 2.2 demonstrates that the solutions of the linear a posteriori error 
equations are approximations of the associated solutions of the a priori error 
equations and thus the a posteriori condition numbers approximations of the a 
priori condition numbers. Moreover, it will be shown that, using solutions of the 
linear a posteriori error equations, approximations of about double precision can 
be computed. 

Each algorithm and its uniquely associated system of linear error equations 
determines a graph, defined in Section 2.3. Graphs constitute useful means of the 
error analysis, particularly also for deriving condition numbers of the algorithm. 
For example, if the graph is a tree, the condition numbers can be determined a 
priori and be computed a posteriori by simple recursion formulae. In all cases, 
bounds for condition numbers and hence for error estimates can recursively be 
obtained and computed a posteriori. For examples we refer to Stummel [17]-[23]. 
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2.1. A Priori Condition Numbers and Error Estimates. In the preceding sections 
the general linear error equations have been established for the class of algorithms 
considered here. Using the associated solution operators L = (I - B)-1, the solu- 
tions z of these linear systems have the form z = Lf. Due to 1.2(6), 1.3(18), the 
mappings B are represented by lower-triangular matrices with zeros as diagonal 
elements. Consequently, the matrices of the solution operators are lower triangular 
with all diagonal elements equal to 1. By Lik are meant the (n + 1)2 elements of the 
matrix of L. Then 

t-l 

(1) z = ft+ 1 Ltkfk t= O ... ,n, 
k=O 

as 

L,, =1, L,k = O t <k. 

For each t the right-hand side of (1) is a linear form L, over R +'. Evidently, 

(2) L, = pr, L, 

where pr, is the projection onto the tth coordinate axis. The solutions s,, r, of the 
linear a priori error equations 1.3(15) then have the representation 

(3) st = L,tabsJue, r, = Lrele. 

Of fundamental importance in the following are the associated absolute and 
relative a priori condition numbers 

t t 

(4) (T1= I Lakbsk pt Lell, t= O, . .., n. 
k=O k=O 

From L,, = 1 it follows that 

By virtue of 1.3(23), 

(6) LabsJu = Ju L 

thus 

(7) St = u,r, at = Iu IP1 

Using the above condition numbers, the solutions s,, r, satisfy the inequalities 

(8) Istl < a,61, I r,| < Pte6, 

for all Iek < e, k = 0, . . ., n. These estimates are sharp or optimal because the 

bounds ate, p,e are attained for the local error distributions 

ea = e sgn(Labsu) rel = r G(,el), k = O,. , n. (9) kek s0k),skg-(Lgnsu) 

By these means we are now in the position to establish error estimates for the 

approximations s, r of the a priori errors Au, Pu. By 1.3(12), (15), (22), obviously, 

(10) Au, - s5 = LabsT, Put - r, = L, I T, 

whence, using (4), 

(11) IAu1 -s11 < a, max -1T, IPu,-r1I < p,' max|-T.. J - Ti~~j~ 
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We assume throughout the paper that the solution u of (A) is an interior point of 
def F1 and u, #& 0 for all t. The first main theorem of the paper then reads: 

(12) For all local errors lej < e, t = O, . .. , n, and sufficiently small e the 
perturbed algorithm (A) is well defined. The solutions s, r of the linear a priori error 
equations are approximations of the absolute and relative errors Au, Pu with the 
associated error estimates 

(i) IU1_ -5 < ? a1C62, IpU -rl < ptlt,62, t = O, . .. , n. 

In particular, Au, Pu permit the estimates 

(ii) lAuA < (1 + W1 )ae, lPU1l < (1 + 01C)pC6, t = O, . .. , n. 

Proof. (i) First let us define the constants 

j-1 
= max Y I bjell, K< = max Kj, 

jtk=O 

where KI denotes the constants in the remainder estimates 1.2(12) at the point u. 
Next let /3 = 8n, C = Kn, and p = max p,. For arbitrary but fixed O > 0 put 

a,= (A8 + (I + 4) KT) T, T = (I + O)p. 

As u is an interior point of def F, there exists a positive constant t such that for 
each t the statement 

Ix1-ul < ? u1l, jl = O, ... I t- X (xo, ... x def F, 

is true and the estimates 1.2(12) are applicable for x = u and all Ihjl < ?Iutl, 
j = O, . . . , n. Finally, let 

C < C0 = min( , i )* 

(ii) The theorem will be proved by finite induction. For t = 0, Puo = rO eO and 

PO = 1, so that the inequalities (12i), (12ii) are valid with o = 0. For t > 1 assume 
now that the proposition 

Iv, - u?l < lujlA IPtjl < (1 + C1e)p1'C (O SW, 

is true forj = 0, . . . , t - 1. From (8), (11) it then follows that 

IPut (1 + -max|- T p,i6 
C6 j<t u1 

using the remainder terms Tj in 1.2(16), that is, 

- Tj = eBjrelPu + + ej)1R.(u.; Au). 
u 

On setting 

(13) '',-I = max wi, P.'- i = max pjI,, ( + (4t'_l'0pt'_l, 

the above proposition and Theorem 1.2(12) imply 

T2 max IPuj I < T11C, max -T < Tr(11 + (1+ e)i<Tr1). 
j<t j<tu 



454 F. STUMMEL 

Consequently, 

1 
max -T| < w2, 
j<t U1 

where ?t = t( 8t' + (1 + -)K<Tt), t = 1, ... . n. Finally, the above proposition en- 
tails wt- I < W,r T (1 + Wc)p < T.Thusot < ( /3 + (1 + 1 )KT)T = w and 

I 
t - 

"'t = 1putl < (I + W,8)Pt`E < Te 
Ut 

for all E < eo Hence the above proposition is true also forj = t and consequently 
for all j = 0, . .. , n. The estimates of the remainder terms T,/u,, proved above, 

immediately yield the error estimates (12i), (12ii). 1 
The above theorem guarantees that the solutions s, r of the linear error equations 

are equal to the a priori errors Au, Pu save for terms of second order in e, 

(14) Aut = St + 0?(c 2), Put = rt + 0t (c 2). 

On this basis, error estimates can be derived regarding specific distributions of the 
local errors. Let us assume that 

(15) jejl < -Yt71, t = O, .. .. n, 

where yo, . .. , yn are appropriate nonnegative weights. Theorem (12) applies to this 

specific distribution of local errors in choosing E = max yt. However, the solutions 
of the linear error equations can be estimated finer by 

(16) iSt1 = |LtabsJuel < atq I rtr = ILtreleI < Pt71 
using the weighted absolute and relative a priori condition numbers 

t t 

(17) E Lb 
r = 
e l t = O, . .. ., n. 

k=O k=O 

In cases, for example, when F, is an input operation of a floating-point number 
represented exactly in the computer, the associated yt may be set equal to zero. 
When a subtraction Ft is performed with loss of significant figures but without 
rounding error, we may put y, = 0. If a built-in function Ft = ft is evaluated in 
lower precision than the arithmetic operations are, the associated Yt may be chosen 
suitably greater than 1. In particular, the behavior of the algorithm under data 
perturbations only and under rounding errors in the 'built-in' functions and 
arithmetic operations only can be analyzed. For this purpose, to a given sequence 
of weights (Yt) of the local error distribution, put 

(18i) yt = yt, Ft (FO); yR = yt Ft (F1) U (F2); 

and -y,D 7R = 0 else for t = 0, . .. ., n. The sequences of weights (ytD), (ytR) specify, 
by (17), weighted absolute and relative data condition numbers atD, p9D and rounding 
condition numbers oR, pR. In this way, the decompositions 

(I 8ii) Yt =Yt + Yt, at = a,D + ctlt, p = ptD + pR 

are obtained. The following corollary states error estimates using weighted condi- 
tion numbers. 

(19) Let any nontrivial sequence of weights yo . . ., yn be given. For every sequence 
of local errors in the distribution (15) and sufficiently small E = yq the solutions of the 
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perturbed algorithm (A) then satisfy the error estimates 

(i) lAu I < a + a,'W9'2, IpPuA < pi + p,l(oyq2, t = O, .. ., n. 

These estimates are optimal in the sense that for each j there exists a sequence (e,) in 
(15) and an associated sequence (v,) of solutions of (A) such that 

(ii) +Auj = "1 + o('q2), Puj = Pi + O (q2) 

Proof. (i) The error estimates (12i) and the inequalities (16) immediately entail 
the estimate (19i). For anyj, in particular, the local rounding error distribution 

ek =XYk (Ljrel), k = O, ... ., n, 
may be chosen. Thus the solutions of the linear error equations become 

si = uj., = +ain, rj ELkek -= Pj 
k=O 

For sufficiently small q the so perturbed algorithm (A) is well defined. That is, 
there exists an associated solution v = (vo, . .. , v") of (A) satisfying the error 
estimates (12i). This yields 

1? AUj - ayl < a 
qltjYI2, IP p, - 

whence (19ii) follows. EJ 
Before we continue our study let us first define the notion of sensitivity of a 

solution z of a given problem with respect to data perturbations. Let the solution z 
be a function Z of m parameters in a neighborhood U of a data vector c = 
(cl,... , cm). Let Z be Frechet-differentiable at the point c and let c, # 0 for 
i = 1, ... , m. Then, for sufficiently small 7, all data vectors c' = (cl,.. ,c 

having the property 
(20) IPciI < y4q,- i = 1,... m, 

belong to the neighborhood U. The constants yfc,.. ., Y, are positive weights. 
Obviously, the error 
(21) Az = Z(c') - Z(c) = Z'(C)JcPc + o(q) 

is bounded, optimally, by 

JAZI < EI az(c)ciyfYc + 0(7j) 

for all c' in the neighborhood (20) of c. The factor of qj on the right-hand side of the 
last inequality is an asynptotic absolute condition IIZ'(c)II -of the function Z in the 
sense of Rice [15] if U is equipped with the norm 

II hi= max 
I 

. h = (hl, . . h ( hm). 

Now choose any algorithm of the kind that is considered in this paper for 
computing the solution of the given problem such that under data perturbations 
only, assuming exact 'built-in' functions and arithmetic operations, 

D c 
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YtD = 0 for t D {tl, . .. , t,} and Z(c) = ut, Z(c') = v, for all c' in the neighbor- 
hood (20) of c. Thus, on the one hand (21) holds and on the other hand, by (3), 
(14), 

AUt = LtabsJ eD + o (q2) 

where ef' = Pci, eD = 0 for t X {tl, . . ., tm} Consequently, 
LabsJ D = Z'(C)j~P +oq) L t Jue =Z()cpC + 0(n) 

for all Pc, = efD in (20). From this relation one readily concludes that the coeffi- 
cients of the two linear forms coincide and, consequently, 

t m a 
(22) ,D = E Ltab ukL 2 | -C-(c)c| y[. 

k=O 
kskI_k 

i 1 
C CC 

This result shows that the value of otD is independent of the special evaluation 
algorithm and a measure of the data sensitivity of the solution of the given 
problem. 

The well-known backward analysis represents perturbations of the algorithm 
under rounding errors by means of data perturbations. This procedure may now be 
specified quantitatively as follows. Error distributions (15) with the weights (ytR) 
and accuracy constant iq = 'qR induce perturbations of function evaluations and 
arithmetic operations only, the data remain unperturbed. By Theorem (12) and 
(16), (17), the absolute errors (Aut)R = VtR - u, of the sequence (vtR) of solutions of 
the so perturbed algorithm satisfy the relations 

(AUt)R = StR + O1(rjR2), IStRI <-a 1tRR 

For any indexj such that a # 0 choose the data accuracy 

(23) 7l D TR D"lR 

Under data perturbations only, the associated linear forms ?`J,ueD then have the 
closed intervals 

[-jD +j DrD] = [-/qR, +a7.R1 

as their range. Hence, 5jR belongs to this range and there exists a sequence eD of 
local errors in IetDI < YtDOD such that s>R = L bSJeD = sjD. By virtue of Theorem 
(12), using this sequence e D of local errors and the accuracy constant q, there 
exists a sequence (vtD) of solutions of the algorithm under data perturbations only 
such that (Aut)D = stD + Ot(,q2). It follows from the above that qD is the least 
constant such that the absolute error (ju)D= V jD-U1 gives the representation 

jA1)R = (tAu)D + Oj(nj) for arbitrary local rounding errors eR in jeR1 < ytNR R. 
Consequently, the constant ajR/aD = 1R/pjD measures the stability of the algo- 
rithm for computing uj in the sense of Wilkinson's backward error analysis [25, 
1-39]. 

An algorithm is called by Bauer [4], [5] well-conditioned (German: gutartig) if the 
influence of rounding errors in the arithmetic operations is at most of the same 
order of magnitude as the influence of data perturbations whose magnitude 
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corresponds to rounding errors. Thus the computation of u1 by the algorithm (A) is 
well-conditioned if the estimates 

(24) at < 83atD ptR S '8PD 

hold where the constant fi is not much greater than 1. 
Example 1. The product algorithm 

(25) uO = bo, u1 = b,ut, t = 1, ... . n, 

for the computation of un = ll'=0 b1 possesses the condition numbers 

(26) PtD = t + 1, PtR = t. 

Hence pR < ptD, so that this algorithm is well-conditioned. EO 
Example 2. The summation algorithm 

(27) uO-cO, ut = ut-I + c, t= 1,...,n, 

for the computation of the sequence of partial sums u1 = .k ck, t = 0, .. ., n, 
has the condition numbers 

t t 
(28) at = E kA. at = E f 

j=O j=1 

In the case of nonnegative terms it follows that 

(29) p =1, u < 
t uj?tI 

Consequently, the summation algorithm for the computation of u" is well- 
conditioned if and only if p,R is not much greater than 1, so that the relative error 
Pun is bounded by a low multiple of the floating-point accuracy constant q. This 
condition is not true in many cases. A well-known concrete example is the 
summation of cj = h forj = ,..., n. In this case 

(30) Ut (t + I) h, ptR =t+3*2 t =1...,n. 

For 

h = .555, n = 200, un = 111.555, Pn 101, 

in 3-digit decimal floating point v,, = 133, Pun .192, is computed. Here = 

5.-03, P,nq = .505, so that this bound overestimates the error only by a factor of 
2.63. 0I 

2.2. A Posteriori Condition Numbers and Error Estimates. In many examples the 
condition numbers of the algorithm or appropriate bounds can be computed from 
the data and intermediate results arising during the computation. For this purpose 
the a posteriori condition numbers are needed, being specified by the sequence of 
solutions vO, . .. , vn of the perturbed algorithm (A). The linear a posteriori error 
equations 1.3(16) yield, together with the solution operators 1.3(24), the approxima- 
tions 

(1) St = LtabSJvel r, = Lree, 
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of the a posteriori errors Ave, Pv. The associated weighted a posteriori condition 
numbers 

t t 

(2) at - fi ILtabsv~Kle Pt = E ILtk ILtkIYk 
k=O k=O 

are optimal bounds in the estimates 

(3) 1 St I < at71 Ird| < Ptn' 

for all local relative a posteriori errors I ek1l < ykq', k = 0, . . , n. In view of 1.3(25), 

(4) St=V rI ats==l tlPt= 

The aim of the following investigation is to compare the solutions of the linear a 
priori and a posteriori error equations as well as the a priori and a posteriori 
condition numbers. For distinctness the upper index i indicates a priori terms from 
Section 2.1 and the upper index 0 a posteriori terms defined above. In addition, the 
nonweighted a priori condition numbers 

t 1Tt 
(5) a, = E ILikuIkI Ip = t = O, ... I n, 

are used in error estimates, L' denoting the absolute a priori solution operator 

(A'u)-1. 
The first lemma is basic for the following. It shows that the derivatives F', A' = 

I - F' are Lipschitz continuous at u. 
(6) There exist constants tt such that for all local errors IekI < , k = O, .. , n, and 

sufficiently small e the following inequalities are valid: 

(| (v a t a(u) < t max IPUk, t = O,...., n. 

Proof. (i) For those t for which F, is an input operation, aFt/8xk = 0, so that the 
above inequality holds trivially with gt = 0. For additions and subtractions FJ, the 
partial derivatives aFt/aXk are constant and equal to 0, +1, -1 for each k. Hence 
for these t the left side in (6i) vanishes, and the inequality is true too with ~t = 0. 

(ii) Next consider the indices t such that F, is a multiplication. As is readily seen, 
now 

UklaF aF\ 

k=ol U, aXk ' aXk ()|=IU P 

whence (6i) follows using the constant tt = 2. 
(iii) By virtue of Theorem 2.1(12), there exists an e1 such that for all e S e1 the 

solutions v, of the perturbed algorithm (A) are in the neighborhoods defined by 
1.2(12i). In particular, then IPutI < 3 for all t. One easily verifies the estimate 

_kaFa_ 2IPuj I I Pu, - Pu,i 

k=O t Ut aXk axk ,j) I+I + PfI I+P fI2 

for divisions F,(x) = xi/x>. As IPujl <, the denominators are bounded from 
below by 2 and 4. Thus the inequality (6i) holds in this case with t = 7.5. 
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(iv) In function evaluations F,(x) = f,(xi), i = i,, finally, 

k=0 | Ut ( aX(v) (u) | f1(uW) Pui 

wi being some intermediate point of the line segment u1vi. By Theorem 1.2(12), the 
join uv belongs to the domain of definition of F'. The right-hand side of the last 
equation is bounded by 2,JPuiJ, using the constants K, of Theorem 1.2(12). 
Consequently, (6i) is true for , = 2K,. 0II 

By the above lemma, we can now estimate the distance between the a priori and 
a posteriori solution operators 

(7) L' = (A'u)-', Lo = (A'v)-I 
(8) There exists a constant [t such that for all local errors I ekl < , k = 0, .. ., n, 

and sufficiently small e the associated solution operators suffice the following estimates 

(i) E |~~~~Ltok - LtikI U2kI < lgtP' t =O...,n. 
k=O 

Proof. (i) As is readily verified, the difference of the solution operators has the 
representation 

L?- L = -L'(I + C)- C 

where C = (A'v - A'u)L' = (F'(u) - F'(v))L'. This implies 

(9) (Lo - L')JU = -L'Ju(I + D)-'D, 
using the notation 

D = Ju-'CJu = Ju-1(F'(u) - F'(v))L'Ju. 

Let us further denote by Ja the diagonal matrix diag(a , . .. , a In the maximum 
absolute row sum norm then 

it 
(10) IJ -L'JuII = max - E Ltuk= 1. 

t at k=0 

The matrix D is bounded in this norm by 

ID I < Ju4'(F'(u) - F'(v))J,l1 = max 

From Lemma (6) we infer the further estimate 

(11) IIDI < p maxIPu1I, =max , p = max p/. 
t t t 

Now choose any constant #t in 0 < ' < 1 and put 

T = (I + 1)p, e < min(, FV I ), o = max , 

Theorem 2.1(12) then guarantees that 
max I Pu1I < (1 + we)pe < Te. 
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The above estimate (1 1) hereby yields ID ID < Tpre < 4 < 1. Finally (9), (10), (1 1) 
entail the estimate 

IIJ-'(L0 - L')JuII < 1 lIDII < 

using the constant y = 'pT/(l - t), and thence the asserted inequality (8i). 0I 
Having made these preparations, we are in the position to prove the comparison 

theorem. By s', r' are meant the solutions of the linear a priori error equations 
1.3(15), and by so, r? the solutions of the linear a posteriori error equations 1.3(16). 
Further, a,, pt/ denote the weighted a priori condition numbers 2.1(17) and at?, pt 
the a posteriori condition numbers (2). 

(12) For all local errors lekl < Ykkh, k = 0, ... ., n, and sufficiently small q the 
approximations of the absolute and relative a priori and a posteriori errors satisfy the 
relations 

(i) sto = -Sti + ot (2), rO = -ri + o (q2) 

and the associated weighted condition numbers the relations 

(ii) ato = a/i + Ot(rl), Pt = Pti + ot(q). 

Proof. (i) The solutions of the linear absolute a priori and a posteriori error 
equations have the representations si = L Jue, so = L0Jve'. Thus, 

s/' + sto = Lt1(Ju - Jv)e + L,'J,(e + e') + (Lto - L1)Jve'. 

The first term on the right side is bounded by 

IL/(JU - J.)eI < E ILtkUkPUkekI < (tilIPUIIm 
k=0 

using the maximum norm for Pu. By virtue of 1.1(8), ek + ek = -ekek. For 
ekI < yk q it follows that 

_ ek __k_ 

lekl- < < y',q, y=maxYk, lY-yq l+k y-y 

Therefore, the second term on the right side suffices 

ILAJV(e + e)I 
V 

E | eke < ai ( l + II PuII)y'ii2. <1 tick Uk ai( 
k=0 Uk 

By virtue of Lemma (8) for e = yq, the third term can finally be estimated by 

I(Lr? - Lt')Jve'l < k (LV - Lk)uk Ie| < at,ay(l + IIPuII)y'iq2. 

On choosing e as small as in the proof of Lemma (8), we have IIPull < Te and 
IlPul I I . The above appraisals then entail qs + stj ? (o/4 + at4ii2, using the 
constants 

=TY + 3 7, = 3 Ay' 

(ii) The solutions r', r0 of the linear relative a priori and a posteriori error 
equations permit the representation 

r; + r0 = 1 +Pu f + riPu} 
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For yq = e < e1, again IPu1l <T e and IPu1 I <. Using the above estimates for 
s/' + s10 and 2.1(16), thus 

2 
I r/ + r1?I < (pti, + Ptl)q+ p2 Y72. 

(iii) The weighted absolute condition numbers satisfy the relations 

-lati - atI < E ILtk Uk - LtkVkI 
Y k=O 

t t 

< IL1 kuPuk I + L(Ltk - Ltk) vkI 
k=O k=O 

The first term on the right side can be estimated by 

I Ltik UkPUk IS atl lPII SU atTq 
k=O 

Using Lemma (8), the second term possesses the upper bound 

l I(Ltok - LtI'k)Uk(l + Puk)I < at1(l + ||Pu||). 
k=O 

Hence, for e = yq < e1, the above yields 

i- _ ct?I < 'xr, x = (r+ 43 ) 

(iv) Finally, the difference of the weighted relative a priori and a posteriori 
condition numbers is bounded by 

IPti - Pt 1 < 1+1 P ti atoI + Pti1PutI } 

Together with the estimate for I at' - a- 1 this entails 

2 1Pt-Pt? < ptlX1q + Pt'y. E 
In computing a posteriori condition numbers or solutions of linear a posteriori 

error equations, Table 1.2 yields modified coefficients. The modified relative a 
posteriori error equations F - BF = e' for approximations F of Pv are defined by 
matrix elements btk of B of the form 1.2(27), (28), 

Vk3Ft 6v;vk aF 
(13) Ft = ,- tk =-X() Ft = xI /: tk = F (v) 

-- (V), 

whereas the elements btk of the unmodified relative a posteriori error equations 
r - Br = e', by 1.3(18), read 

(14) btk 
Vk aF 

Vt aX 

We limit the further study to the four arithmetic operations +,-, x, / and 
establish the theorem 

(15) The approximations r1, i of the relative a posteriori errors Pvt satisfy, for 
sufficiently small e = yq, the relations 

(i) rt = r1 + Ot(q 2) 

and the associated weighted relative a posteriori condition numbers the relations 

(ii) Pt = (1 + OQ(,q))P, t = 1, . . . , n. 
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Proof. (i) The two equations for r, F immediately imply the representation 

r-r=LABF, L=(A'v)-rel, AB= B-B. 

When Fk = +, -, Abkl = 0, whereas for Fk = X , / we obtain 

Abkl = b,I - bkl = -ekbkl 

because Fk(V)/Vk = 1 + ek. The above leads to the estimate 
t k-I 

Irt- rj < 71' E ILtrke'l-yk E: Ib&zz1 < 2,q'pt max IFjI 
k=O 1=0 j<t 

Fk= X,/ 

because IbI, = 1 exactly twice and zero else for Fk = x, /. Further, the last 
inequality yields 

maxIj I < p,'q' + 2?)'p'max Ii , 
j<t t j<t 

using the constants p,' = maxj<, pj, 7' = ?)/(1 - yq). Hence 

maIx I jl < _p, 71, 

as far as 2p,'q' < 1. Inserting this expression into the above inequality for F, -r, 
we obtain 

r-rt < 12ptt 2 

and thus the assertion (1Si) is proved. 
(ii) Next, using appropriate constants At, 

IFtI ? rtI + Pt t 2 IrI1 < VAt + Pt 4tq 2. 

The associated weighted relative a posteriori condition numbers Pt, Pt, permit the 
estimate IFJ < Ptq', IrtI < Pt?', for all local errors IekI < Yykq where y = max Yk and 
71' as above. By means of the local errors 

ek = -1k? sgn(Ltk) ek = -ykq sgn(Ltk1) 

we finally conclude 

Pt Pt Pt Pt 
I + rr < I n+ Pt It'q, I < I + Pt ltn, 1+ yr -yrq l+yq yri 

hereby proving (lSii). C1 
By Theorems (12) and (15), we have established the a posteriori error representa- 

tion 

(16) Ut - Vt = j + ot(q2) 
Vt 

where F is the solution of the modified linear relative a posteriori error equations. 
Solving this relation for u, yields 

u = vt(I + Ft + ?( 2)) 

Hence 

(17) vt' = vt(1 + iF) 
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is an approximation of u1 having the relative error (u1 -v')/v,' = 0(q12). Conse- 
quently, v,' approximates u, within about double precision. The sequence of 
solutions uO, ... , u, of the algorithm (A) may thus be computed in about double 
precision from the approximations v, and the solutions rt of the modified linear a 
posteriori error equations, both computed in single precision. We call this proce- 
dure extrapolation to double precision. The a posteriori coefficients btk are readily 
computed from the data and intermediate results in performing the algorithm. If 
the local errors et are available numerically, the solutions F, of the linear a 
posteriori error equations and the extrapolated approximations v can be computed 
together with v,. 

TABLE 2.2 
Extrapolation to double precision in Cramer's rule 

t Ut vt et -Ft X 103 
0 a 0.455 1.00-03 1.00 
1 b 0.111 -1.00-03 -1.00 
2 c 0.273 1.00-03 1.00 
3 d 0.778 2.86-04 0.29 
4 f 0.404 -1.00-04 -0.10 
5 g 0.566 6.07-04 0.61 
6 ad 0.354 2.82-05 1.31 
7 bc 0.0303 -9.90-05 -0.10 
8 df 0.314 -9.93-04 -0.81 
9 bg 0.0628 -4.14-04 -0.81 

10 ag 0.258 1.83-03 3.44 
11 cf 0.110 -2.65-03 -1.75 
12 Do 0.324 9.27-04 2.36 
13 Di 0.251 -7.96-04 -1.60 
14 D2 0.148 0 7.29 

15 x 0.775 3.98-04 -3.56 X X = 3.57-03, x 
16 y 0.457 4.59-04 5.39 Y- Y = 5.40-03, 

Y 
x" - x 

X = 0.7 ... x' = 0.775, x" = 0.777 769, = -1.13-05, 

Y =O0.45 . . ., y' = 0.457, Y" = 0.454 550, = 1.00-05. 
y 

Example. Two linear equations in two unknowns, 

(18) ax + by = f, cx + dy = g, 

have, by Cramer's rule, the solution 
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using the determinants 

Do = a b , DI f b 
D2 =fb af 

c d' g d' c g 

Consider the numerical example 

(19) ~ ~ ~ 5 1 40 3 7 56 (19) 15lx + -gY =49 3 + 7y =56 

having the solution x = 7/9, y = 5/11. Table 2.2 lists the approximations v, in 
solving Cramer's rule using 3-digit decimal floating-point arithmetic, the associated 
local rounding errors et of input and arithmetic operations, and the approximations 
r, of the relative a posteriori errors described above. The numerical results show 
that the extrapolated results x", y" approximate x, y essentially within double 
precision. 

2.3. Associated Graphs. In typical applications of the perturbation theory, the 
number n of steps and thus of equations in the systems 1.3(15), (16), (17) often 
becomes very large. However, the matrices (bk) of the linear error equations are 
sparse; for input operations, F, is constant and blk = 0 for all k; 'built-in' functions 

F, give btk= 0 for all k :#j; for arithmetic operations F, E (F2), bk = for all 
k # it, ji. Hence the linear error equations have the form of inhomogeneous linear 
recursions of zeroth, first and second order with variable coefficients. In general, 
however, these equations have a complex structure because z* is not obtained from 
*-1 zt-2 but from z1, zj. This structure can be illustrated by the associated graph 
(see McCracken-Dorn [1 1], Bauer [5]): each t is assigned a point in R2, called node, 

and nodes k are connected to the node t by means of a path kt if the coefficient or 
weight blk, that is, aFt(u)/aXk or aFt(v)/axk can be nonzero. In addition, every path 

kt is labelled by its associated weight blk. By convention, labels 1 may be omitted. 
By these means linear error equations can simply be read from the graph of the 
algorithm. Figure 2.3 shows the building blocks of the graphs. 

The graphs in Figure 2.3 may as well be viewed as graphs of the simplest 
numerical algorithms analyzed in Section 1.1. For instance, let 

(1) uo= a, u1 = b, u2= u I UO, 

using an arithmetic operation o E { +, -, X, /}. In floating-point arithmetic, this 
algorithm is realized by 

(2) vo = fl(a), v1 = fl(b), v2 = fl(V1 o vO). 

The associated linear absolute and relative a priori and a posteriori error equations 
and their graphs then have the form shown in Figure 2.3, where i = 0, j = 1, t = 2, 
and ro = eo = Pa, r, = e, = Pb. 

Graphs constitute important means in the study of solutions of linear systems 
t-l 

(3) z - Bz =f <# zt - E, btk Zk =fts t =0, . . . , n, 
k=O 

with sparse matrices, as we will explain now. The matrix B is lower triangular and 
its diagonal elements are zero. Thus B is nilpotent and B"+' = 0. The solutions z 
of the linear system may then be represented by the finite Neumann series 

n 

(4) z =(I -B)- lf= , BY%. 
1=O 
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uio 
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11 3 33 ~ ~ ~~~~~~t 11 t 

U. 
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FiGURE 2.3 
Building blocks of the graphs of linear absolute (st, weights b"~ keft of the 
path) and relative (r1, weights b4Zl right of the path) a priori error equations. 
The associated a posteriori error equations are obtained by replacing 
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The powers of B have the elements 

Bo = (8ik), B' = (bik), 

(5) n n 
Bl = (b,2k)), b,5kl)= Ea * * * Y, bik, ... bk2k, i3 k = 0, .. * , n, 

k,=O k2=O 

for I = 2? . . .. n. As bik = ? for i < k, matrix elements b,.(k) catn be different from 
zero only if the condition 

(6) i > k, > kl_ 1 > ***> k2 > k, > O 

holds, and therefore 

(7) b,(k) = O for i < k + I 

and all I = 1, 2, ..... Correspondingly, the components z* of the solution vector z 
of (3) possess the representation 

t t-1 
(8) z* L?f = ft + E E bt(k')fk, t = O, ... ., n. 

1=zI k=O 

In this way, explicit representations of the components Lt of the solution operator 
L have been obtained. Interchanging the order of summation gives 

t t-l t 
(9) Lo f = fo, L'f = , LtjAk = ft + 1: E b t(k) f, t =13, ... ., n. 

k=O k=O 1=1 

Consequently, the matrix elements of the solution operators L= (I- B)-1 have 
the representation 

Ltt = 1, Ltk =2 bt(k), k = O, ... ., t -1; 
(10) 1=1 

Lf,k = 0 k = t + el c b frn. 

The basis of our further investigations is the explicit representation 
t-o adh t-e 

Z* Lf=ft + E btk , fkl + E btk2bk2k, fk, + 
(7) =0k,=0 k2 +l k1= 

t-1 t-1 

+ z, = L f +E btk 
... 

bk2k, fk,t 
kt,zO k, =0 

ensuing immediately from (5), (8). A sequence of paths kLk2, . . ., kit of the graph 
is a path of length I from the node kg to the node t. We call the associated product 
b(k,9 ) * bk2k, the error effect and the term btk, P I bk2k,fk, the error contribution 
along this path at the node t. The error effect is simply the product of all weights 
along the path. On the right side of (11), evidently, only those terms of the sum can 
be nonzero which belong to a path of the graph, all other terms vanish. In view of 

(6), necessarily t > k, > * * * > k2 > k, for every path in the graph. The l-fold sum 
in (I11) is the sum of the error contributions at the node t along all paths of length 1. 
T'he node t itself is assigned the path or loop of length zero and the error effect 1. 
The representation (11) may thus be read as follows 

(12) The solution fh= Ler i f the linear e equations is the sum of the error 
contributions along all paths in the graph ending at the node t. 
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On setting especially 

_Ml (a Ok3 * o * nk), k = 0, . ,n, 
as inhomogeneous terms, the associated solutions zt - Ljf(k) become the matrix 
elements Ltk of the solution operators L = (I - B)-1. In particular, 

t t-1 - t-1 
(13) Ltk = t b(=btk + ta btk2bk2k + + E btk bk2k 

1=1 k2 = O k,=O k2=O 

is the total error effect associated to all paths from the node k to the node t (see 
Bauer [5, p. 88]). 

Now let us consider our condition numbers in this context. The weighted 
absolute and relative a priori and a posteriori condition numbers 2.1(17), 2.2(2) 
have the general form 

(14) E Ltk |ak 
k=O 

where 

At |absolute relative ak absolute relative 

(15) a priori ati Pt a priori lUklYk Yk 

a posteriori ato Pto a posteriori IVkIYk Yk 

and Ltk denotes the matrix elements of the associated solution operators 1.3(22), 
(24). The condition numbers are thus weighted sums of the absolute values of the 
total error effects. It is readily seen from (14) that 
(16) At= max ILJl, t =O, ..., n. 

IfkI ak 
k=O,..., n 

The maximum is attained forfk = ak sgn Ltk, k = 0, . .. , n. 
The condition numbers can be computed easily if, for instance, all matrix 

elements Ltk are nonnegative. This is the case, in particular, if the elements btk are 
nonnegative. Then I - B is a so-called M-matrix. Under the assumption Ltk > 0, 

(17) t Ltkak = Lta, t = Q, ..., n, 
k=O 

where a = (a, ... , a"). That is, the vector X = (SO, . .. , A) of condition numbers 
is a solution of the linear system A - BA = a and, consequently, can be obtained 
recursively from 

t-1 

(18) Xo =ao, At E btkXk + at, t =1...,n. 
k =0 

In the general case, where the weights btk have arbitrary signs, at least bounds 
can be determined for the solutions * = Lt and thus for the corresponding 
condition numbers A. The above results immediately yield the theorem: 

(19) The recursion 
t-1 

-Lo = ao, y E I btk Ik + a, t = ..,n, 
k =0 
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generates a sequence ( p) of bounds having the property 

(ii) 1*l1 = ILtf| < Nt At < y 

for allf = (fo, . . ., fn) such that Ifkl < ak, k = O, , n. 

When an algorithm is built up of input operations and additions only, the 
coefficients btk of the linear absolute error equations consist, according to Table 
1.2, of zeros and ones, that is, B is a binary matrix. The same is true for the linear 
relative error equations when the algorithm consists of input operations and 
multiplications only. For a binary matrix B, one readily sees from (13) that 
(20) Ltk = Number of paths from k to t. 

The explicit representations of solution operators and associated condition 
numbers become very simple when the graph of the algorithm is a tree. In these 
graphs there exists to each k < t exactly one path k,k2,..., k3t from k = k, to t, 
where the length s of the path depends on the pair k, t. Now the total error effects 
are simply 

(21) Ltt = 1, Ltk= bt(k) = btk *...bk2k, 
1=1 

and the associated condition numbers have the form 
t-1 

(22) AO = ao, At = E btk **... Ibk2kIak + a, 
k=O 

In this case, the sequence (At) is the solution of the recursion formulae 
t-1 

(23) XO = ao, A= IbtkIk + ak, t =,...,n. 
k=O 

For, this system has the form of the linear, error equations with coefficients lbtkl 
and inhomogeneous terms Ca instead of btk, f. According to (11), (21), the solution 
of the linear system (23) has just the representation (22) because the associated 
graph is identical with the graph of the linear error equations of the algorithm and 
thus also a tree. 

Note the interesting fact that the condition numbers (18), (23) are obtained in the 
same way as those of the elementary operations in Section 1.1. For example, on 
setting in 1.1(19) 

a= u,, b= uj, u = u, Y = y, 

and using b bs, btk from Table 1.2, the condition numbers Xt = a,!, p/i in (18), (23) 
are specified as a, p in 1.1(19). The a posteriori condition numbers At = Pt are 
obtained as a, p in 1.1(21). Also the bounds (19) are computed in this way. 

When the graph of the algorithm is a tree and, additionally, B a binary matrix, 
there exists for each node k < t exactly one path to the node t and the associated 
error effects are equal to 1. From (21) we then infer 

(24) Ltk = 1, k t,< 
and from (22) the condition numbers 

(25) a ak, t = O, . . ., n. 
k =O 



EVALUATION ALGORITHMS OF ARITHMETIC EXPRESSIONS 469 

In view of the above, the numerical stability of evaluation algorithms for the 
condition numbers (18), (23) and the bounds (19) becomes of interest. The 
following, last theorem serves to answer this question. Note that it,, denote the 
indices of the two operands in the arithmetic operations FJ(u) = u, o uj. 

(26) Let the algorithm (A) possess the following properties: (a) all input data, 
intermediate, and final results uo, . . . , un are positive numbers; (b) the algorithm 
consists only of input operations, additions, multiplications, and divisions. Then the 
recursion 

Tt = Yt, Ft E (FO), 

(i) To = yo, Tt = max(T,, Tj) + Yt, Ft = 

Tt = T, + t + Yt, Ft = x,/ 

determines a sequence of bounds for the relative a priori condition numbers of the 
algorithm, that is, 

(ii) Pt < Tt, t = . . . , n. 
Proof. The proposition is proved by finite induction with respect to t. For t = 0, 

po = yo = To. Now assume that pk < Tk for k = 0, . . ., t- 1. en Ft is an input 
operation, p, = y, = T,. When F, is an addition, the solution of the linear relative a 
priori error equations satisfies the estimate 

Ir - 
i + V yi i = i,j =1, lrti < |-|ril + | j ri| + -Yt-q, i t j t. 

By assumption, jr,I < Tiq, IrjI <iTjn1. As u,, uj, ut are positive, IuiI + Iujt = ju,j, so 
that 

1 u,< |-i + u. Tj + yt < max(u, Tj) + yt = Tt. 

Finally, Ft = x ,/ leads to the estimate 

-irtI < Ir + ?r + yt < Ti + Tj + 'Yt = Tt. 

In this way, IrtI < Ttiq for all eki < Ykq, k = 0, . .. , n, and by induction for all 
t = 0, . .. , n. In addition, from (16) for ft = et/'q, Ltref = rt/7q one concludes 
xt=Pt < Tt. n 

Having determined the above sequence of bounds (T), to each addition Ft = + 
an index mt E {it, jt) can be assigned such that 
(27) T, = max(T, j;) 

Let us further introduce the matrix (,8tk) with the elements 

f8tk = 0, Ft e (FO), 
(28) f3tk =Skm, Ft = + 

18tk =aki, + Sk, Ft =X, /, 
for k, t = O, . . . , n. Obviously, (f8tk) is a binary matrix and the sequence of bounds 
(T,) is the solution of the linear system 

t-1 

(29) Tt E 1tkTk = Yt t = O,.. .,n. 
k=O 
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The graph of this system is obtained from the graph of the associated algorithm 
(A), named in Theorem (26), if to each node t such that F, = + of the two paths 
itt, jtt only m,t is kept and the other deleted. Denote by Ntk the number of paths 
in this reduced graph from k to t. Then, by (20), the following estimate and 
representation is established 

t-I 

(30) Pt < _Yt + E Ntk Yk = Tts t = 0, ... ., n. 
k =O 

3. A Survey of Examples and Applications. This section briefly surveys some 
typical examples and applications of the above error analysis. 

3.1. The paper [18], in particular, studies the class of elementary one-step 
algorithms 
(1) uo =a, u = btotu, + ct, t = 1 ... , n, 

where o? E {Nop, x, /, \). Special cases are the well-known algorithms for com- 
puting partial products (o? = X , a = bog ct = 0), partial sums (o? = Nop, a = cog 
bt= 1), solutions of inhomogeneous bidiagonal systems of linear equations (o? = 
x), Homer's scheme for the evaluation of Taylor polynomials (o? = X , a = co, 
bt= z), Newton polynomials (o? = X , a = co, bt = z - z- ) and finite continued 
fractions (o? = /). The graph of the algorithm (1) is a tree so that by virtue of 
2.3(23) the condition numbers can be determined recursively. For in- 
stance, the relative a priori condition numbers Pt of computing u, from (1) satisfy 
the recursion 

(2) Po = Ya, P= btou"' (P + Yb + uY) +| c 

for t = 1, ... , n. In addition, the paper [18] analyzes some further elementary 
algorithms and contains many numerical examples illustrating the error analysis. 

3.2. The papers [16, Sections 4.3, 4.4], [19] deal with difference schemes 

(1) Uk = Uk (i= 0), Uk-=u _ Uk-1U 

and the Neville-Aitken algorithm 

(2) U = Uk (i = 0) Uk = k-- - X XkU Uk 
Xk - Xki Xk - Xk-i 

k = i, ... , m, i = 1, ... , m. The graphs of these algorithms are no longer tree-like 
but constitute an important tool in deriving the linear error equations and associa- 
ted condition numbers. It is shown that also for the above algorithms the condition 
numbers can be obtained from simple recursion formulae. For difference schemes 
of a smooth function on equidistant meshes, using the condition numbers, a lower 
bound for the step-widths is obtained, called "critical step-width", which guaran- 
tees that at least the leading digit of the mth order difference is significant. It is 
proved that Romberg extrapolations (xk = xo/4k) are strongly stable. Further the 
condition numbers of the extrapolation algorithm (2) are determined for the 
systems of nodal points xk = xo/(k + 1)2, Xk = xo/(k + 1) and applied to numeri- 
cal examples. 
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3.3. The paper [17] establishes the error analysis of numerically solving two linear 
equations in two unknowns, 
(1) ax + by=f, cx + dy = g. 

The relative data and rounding condition numbers of computing the solutions x, y 
by Cramer's rule and Gaussian elimination are determined. Two important results 
of the paper read: for a nonsingular linear system Cramer's rule is always 
well-conditioned or backward stable, 

PR R 

(2) p< ' pR 

Gaussian elimination is backward stable, and 

R R 

(3) D< 2.759 D < 2,9 D 
py 

provided that the system is properly pivoted such that IbcI S ladI. The algorithms 
are analyzed further with respect to the behavior of the residuals of the computed 
solutions. It is shown that Gaussian elimination is, additionally, well-conditioned in 
this sense whereas Cramer's rule is not. It is proved that the relative condition 
numbers, the stability constants (2), (3), and the above pivotal strategy are 
invariant under scaling of the linear system. 

3.4. In [20], [21], [22] the forward error analysis of Gaussian elimination and 
two-sided elimination of tridiagonal linear systems is presented. Both explicit 
representations and recursions of the absolute a priori data and rounding condition 
numbers OiD, aR of the solutions xi, i = 1, . .. , n, are derived. In addition, residual 
condition numbers T;D, TjR, i = 1, .. ., n, are determined. When the tridiagonal 
coefficient matrix is an M-matrix or positive definite, Theorem [21, 2.3(21)] ensures 
both the backward stability and the residual stability of Gaussian elimination 
without pivoting for computing the solutions x, and proves the stability estimates 

R TRj 
(l ) D ~~~< 49 D < 49 i, j = 1, ... ., n. a. ~~~T. 

The paper [22] contains the corresponding forward error analysis of two-sided 
elimination. For every two-sided elimination-regular tridiagonal linear system, the 
computation of the solutions x, by two-sided elimination is well-conditioned or 
backward stable and 

(2) i < i=1,. .., n. 

Babuska has proved the estimate a,R/1qD < 9 in [2], using a backward error 
analysis. For the case n = 3, Miller [12] has shown numerically that 2RD/a is 
about 5.5 so that our estimate (2) seems to be sharp for n > 3. The general results 
of the forward error analysis are tested and illustrated by numerical examples in 
[20], [21], [22]. 
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3.4. A forthcoming paper develops the error analysis of Gaussian elimination 

(1) ~~~~~a,l = aik ait I = a ka'ak t t (1) 1k & k+1 it at,ak 

i = t + 1,...,m,k = t + 1, . . . n, t = 1 . . ., m-I, for arbitrary rectangular 
matrices A = (aik)i= .m;k=1 .,, n such that at, #0 0, t = 1, ... , m - 1. The 
associated system of linear absolute a priori error equations reads 

1 t+1 t+1It t+ St+~tLt +lA+' (2) t 
+ = 

Stk +P it+Stk 
+ qkt +Sit + pi qk 

where 

t+1 a,t, + atk Pit+1 t+1 k 

apt, 
9 

atq 

are the absolute errors of the coefficients aikg and 
fgk = a,ktik - ,qkat-t t 

(e,1 
+ 

ek) t =2, . . 

An explicit representation of the solution sik in terms of the f,tk is obtained that 
immediately yields associated condition numbers a,tk. 

The error analysis of this important algorithm is applied to forward elimination 
of a system of m linear equations with n - m right-hand sides, back substitution or 
solving a triangular system of linear equations, solving an inhomogeneous linear 
system, and computing the inverse of a nonsingular square matrix. 

This forward error analysis differs significantly from Wilkinson's backward error 
analysis. Forward error analysis compares the numerical results obtained under 
data perturbations or rounding errors of a floating-point arithmetic directly with 
the exact results and establishes optimal bounds of the possible errors, whereas 
backward error analysis primarily estimates the residuals of approximate solutions 
and subsequently obtains error estimates of solution vectors in suitable norms by 
means of condition numbers of the coefficient matrix. This procedure may over- 
estimate the actual error considerably. Moreover, the forward error analysis uses a 
'finer topology': the error estimates bound the components of the error vectors and 
do not use norms; the condition numbers and stability constants depend on the 
solutions and thus yield pointwise, not uniform, estimates. Finally, our stability 
constants and relative data and rounding condition numbers are invariant with 
respect to scaling of the linear system. 
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