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Abstract. In this paper, some of the formal arguments given by Jones and Kline [J. Math. 
Phys., v. 37, 1958, pp. 1-28] are made rigorous. In particular, the reduction procedure of a 
multiple oscillatory integral to a one-dimensional Fourier transform is justified, and a 
Taylor-type theorem with remainder is proved for the Dirac 8-function. The analyticity 
condition of Jones and Kline is now replaced by infinite differentiability. Connections with 
the asymptotic expansions of Jeanquartier and Malgrange are also discussed. 

1. Introduction. In [12] Jones and Kline have given an ingenious derivation of the 
asymptotic expansions of the double integral 

(1.1) I(X) = ff g(x,y)eexgf(xy) dx dy, 

where D is a bounded domain, g and f are real-valued analytic functions in D, and 
X is a large real parameter. Although ingenious, some of their arguments seem to be 
only formal and require justification. We are particularly concerned with (i) the 
procedure which they have used to reduce I(X) to a one-dimensional Fourier 
transform, and (ii) the validity of a Taylor series expansion for the Dirac 8-func- 
tion. Our objective here is to show that the reduction procedure of Jones and Kline 
can be made rigorous, and to present a Taylor-type theorem with remainder for the 
8-function. In our analysis, f and g need be only sufficiently smooth. 

There are several other methods of obtaining asymptotic expansions of I(X). The 
better known ones, in addition to that of Jones and Kline [12], are due to Focke [6], 
Chako [3], and Bleistein and Handelsman [1]. The advantages of the Jones-Kline 
method are: (i) it is easier to calculate the coefficients in various asymptotic 
expansions of I(X); (ii) it enables one to use the well-developed asymptotic theory 
for the one-dimensional Fourier integral, including, probably, the error analysis 
recently established by Olver [14]; and, most importantly, (iii) it gives explicit 
asymptotic expansions for the Dirac distribution 8 { t - f(x, y)} concentrated on 
the curve t = f(x, y) for small t. Asymptotic expansions for such curve (or, more 
generally, surface) distributions have been obtained by Gel'fand and Shapiro [7], 
and also by Jeanquartier [10]. In Section 5, we shall give a more detailed discussion 
in connection with their work. 
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2. Reduction to a Single Integral. In order to reveal the subtlety of the problem in 
hand, let us briefly repeat some of the arguments given in [12]. 

Let m and M denote the infimum and supremum of f(x, y) in D, respectively. 
Then 

(2.1) e ixf MeiXtS(t - f) dt, 
m 

where 8 is the one-dimensional Dirac delta function. Inserting (2.1) in (1.1), we 
have 

(2.2) I(X) = ffg(x,y) Meix6{tt-f(x,y)} dt dx dy. 

Interchanging the order of integration gives 

(2.3) I(X) = fMe'xh(t) dt, 
m 

where 

(2.4) h(t) = g(x, Y)8 { t -f(x, y) } dx ady. 

The double integral is thus reduced to a single Fourier integral. 
Observe that the right-hand side of Eq. (2.1) is not really an integral. It is only a 

symbolic notation customarily used to represent the Fourier transform of the 
distribution 8(t - f). Thus, Eq. (2.1) holds only in the sense of distributions. With 
this in mind, the interchange of order of integration in (2.2) becomes meaningless. 
Also, observe that the right side of (2.4) cannot be a double integral, since the set in 
which the distribution 8 { t - f(x, y)} does not vanish has (2-dimensional Lebesgue) 
measure zero. 

One of the ways to legitimately reduce the double integral I(X) to a single 
Fourier integral is to use the method of resolution of double integrals given in [4, 
pp. 298-300]. That is, to calculate I(X) by using a subdivision determined by the 
curves f(x, y) = constant and their orthogonal trajectories. Thus, with f(x, y) = t 
and a being the arc length of this curve, we have 

(2.5) I(X) = fMe'xh(t) dt, 
m 

where 

(2.6) h(t) = g(x, Y) da. 
f(xy)= f +f2 

Comparing (2.3)-(2.4) and (2.5)-(2.6) suggests that the correct interpretation of 
the double "integral" in (2.4) is to view it as the line integral in (2.6). In fact, it is 
this line integral which is frequently used to define the curve distribution 
8 {P(x, y)}, where P(x, y) is any sufficiently smooth function with VP = 
(aP/ax, aP/ay) nowhere zero on P(x, y) = 0. Thus, if g(x, y) is a C '-function 
with compact support, then we define 

(2.7) K(P), > fp x,y )do 
Iv [[PI 

see [8, p. 222] and [1 1, p. 263]. 
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There is an alternative definition of the distribution 6(P), which may serve as a 
justification for the interchange of the order of integration in (2.2)-(2.3). Let @(P) 
denote the characteristic function of the region P(x, y) > 0: 

(2.8) 0(P) { for P > 0, 

and define the distribution associated with this function by 

(2.9) <8(P), g> = ff g(x,y) dx dy. 
P> 

Since the one-dimensional 8-function is the (distributional) derivative of the 
Heaviside step function, it is natural to define 

<6(P), g> = lim I-K(P + c) - 0(P), g> 

(2.10) 1->0 
= lim I 

9g(X,y) dx dy. 
C->C -c <P<O 

This definition is due to Seeley [16]. By the argument immediately preceding 
(2.5)-(2.6), it is easily seen that the double integral in (2.10) is equal to 

fof g(x,Y) do d; 
-c PX,Y)=e V 

see, again, [4, pp. 298-300]. Thus, the above two definitions of 6(P) agree. Observe 
that, if we interpret the double "integral" in (2.4) in the sense of the limit in (2.10) 
with P(x, y) = t - f(x, y), then substituting (2.4) in (2.3) and reversing the order of 
integration shows that the double integral in (1.1) and the single Fourier integral in 
(2.3) are indeed equal. 

3. A Taylor-Type Expansion for the 6-Function. Let us now return to (1.1) and 
assume that (0, 0) is a critical point of f, i.e., (Vf)(0, 0) = (0, 0). For simplicity of 
illustration, we further assume that g vanishes C '-smoothly on the boundary of D, 
i.e., g E C ?(D) and g together with all its derivatives vanish on aD, and that the 
origin is the only critical point of f(x, y) in D, i.e., (Vf) #s (0, 0) in D - (0, 0). 
Under these conditions it is well known that the major contribution to the 
asymptotic expansion of I(X) comes from the immediate vicinity of the critical 
point (0, 0); see [1, Section 2] and [3, Section 3(a)]. (This fact seems to be 
particularly transparent from the representation of I(X) given in (2.5)-(2.6).) Thus, 
without loss of generality, we may suppose that D is some sufficiently small 
neighborhood of (0, 0). The above ideal situation can be realized by using an 
appropriate van der Corput's neutralizer to isolate the critical point at the origin; 
see [1] and [3]. 

As in [12, p. 5], we now set 

(3.1) f(x, Y) = fo(x, Y) + fi(x, y) 
and introduce the new variables 

(3.2) ( = fo(x, Y), n = *(X, y), 
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where ' is at our disposal. If we write 

(3.3) F(q, 71) = f1(x,y), q ) = g(x,y) a(x,Y) 

and extend g to be identically zero outside D, then 

(3.4) | Rg8(t - f) dx dy = | |DS(t - F) dt d. 

(Here we have used the assumption that g vanishes C '-smoothly on AD.) Since 
both sides of (3.4) are not really double integrals as we have pointed out earlier, 
this relation holds only formally. The correct interpretation of (3.4) is 

(3.5) <8(t - f), g> = <8(t - -F), ID> 
or, equivalently, 

(3.6) c= V) dg o da' 
Jf IVf I Jt~+FIV(~ + F)I 

where da' denotes the length of the curve t = ( + F(t, q). In (3.6), the gradient on 
the left-hand side is taken with respect to the variables x and y, whereas the 
gradient on the right-hand side is taken with respect to ( and -q. The last identity 
can be proved by using (2.10) and the familiar change-of-variables formula. 

For k = 1, 2, . . ., we define the derivatives 6(k)(p) of the distribution 8(P) by 

(3.7) 8(k)(p) = lim 
I 

[ 8(k 1)(p + C) -(k-l)(P) 

It is easy to see that 

(3.8) K8(k)(t - 9), m> = a- k (t ) dr 

for any C '-function p(t, q) with compact support. 
The idea of Jones and Kline is to expand the 8-function on the right side of (3.5) 

into a Taylor series, that is, to write 

(3.9) <8(t - -F), 4> = 0, 
(_ l 

<8(r)(t - ()Fr(t, ), 0>. 
r=O 

Such an identity can be easily shown to be true if F is independent of (, and 1 is 
analytic. But, if F depends on (, the validity of (3.9) requires justification. In what 
follows, we shall show that under our C O- (instead of analyticity) conditions, the 
8-function in (3.9) has a finite Taylor expansion plus an explicit remainder term, 
from which the remaining analysis of Jones and Kline can be continued and the 
various asymptotic expansions of I(A) be derived. 

We first need the following lemma, a proof of which can be found in the 
appendix. 

LEMMA 1. Let f and g be C '0-functions, and let n be a nonnegative integer. Then 

[f(x)g (X)] = -)[f(x)g np(X)](n+1) [g(X)]p+ 

(3.10) (x x 
+ (n + !X [g X n+ 
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LEMMA 2. Let I(D, rq) be a C ?-function with compact support, and F(f, q) be a 
Coo-function with aF/a > -1 on the support of (. If 4t denotes the solution 4(tq) to 
the equation t = , + F(t, q), then for any n > 0 

(3.11) <8(t- -F),9 > = 2 <Fr(, 71)3(r)(t- ,, - > + Rn+1(t), 
r=O r 

where 

00 (3. 12) Rn+ l(t) = f__r,+ (t, r1) dr1 

and 

r1(t, 'i) - t T)[-Ft(4, )]fn+1 
rn+,(tg,q) 1 + Fi (4t ' q) 

(3.13) 1 an+1 
+ 2 

r! (n- r)! n(t - pj 
" +l {I( , )D [ -F( 

n 
7)Ifl-'} d, 

Proof. Since 1 + Ft > 0, by the implicit function theorem, there exists a solution 
4t(q) to the equation t = ( + F(Q, q), and hence we may write explicitly 

I[1 + Fi(4, )]2 + [JF( )]2 
d= 1+ Fe(d, r) 

From this and the line integral on the right-hand side of (3.6), it follows that 

(3.14) <8(t - -F) = I1> 1 +0F(4 , T h) 

Since distributions multiplied by C ?-functions are, by definition, the distributions 
acting on test functions multiplied by the C '-functions, we also have from (3.8) 

(3.15) <8(r)(t -()Fr(, 1), > | at, [O(t, T)Fr(t, T1)] dr-. 
-00at 

Thus, rh + l(t, q), as given in (3.12), satisfies 

(3.16) rn+I(t T7) =I + Fj(t r r! atr 1 + ~(4,Ti) r=Or! [t,T)(,Ti] 

To show that (3.13) holds, we proceed by induction. When n = 0, the result 
follows immediately from the fundamental theorem of calculus. Assuming that the 
statement is true for n = k, one can show that it holds also for n = k + 1 by (i) 
inserting (3.13) (with n = k) in 

(3.17) rk+2(t, 71) = rk+l(t, 71) (k + 1)! ak+l [(t, )Fk+l(t, T)], 

(ii) integrating the terms under the sum by parts, and (iii) adding and subtracting 
the terms 
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and 

(_l)k+l ak+1l+ 

(k + 1)! [- ak+ 

Here use is made also of the identity in Lemma 1. This completes the proof of 
Lemma 2. 

4. The Behavior of h(t) Near the Origin. From the theory of one-dimensional 
Fourier integrals, it is now well known that the asymptotic behavior of I(A), given 
in (2.5), as A - oo, is completely determined by the behavior of the function h(t), 
given in (2.6), in the neighborhood of t = 0. In this section we shall show that 
under our C?? (instead of analyticity) conditions set in Sections 2 and 3, the 
function h(t) indeed possesses asymptotic expansions near t = 0. Since much of 
our analysis is similar to that given in (12, Section 5], we shall present only the case 
in which (0, 0) is a local extremum of f(x, y). 

Since f is a C '-function, we may expand f(x, y) into a finite Taylor series with 
remainder. The linear terms do not appear, because (0, 0) is a critical point. The 
constant term can be omitted because it contributes only the factor exp{iAf(0, 0)) 
outside the integral. Hence, 

f(x, y) = {2f20x2 + f1xy + fo2y2} + higher terms. 

By a simple rotation of coordinates, we may, without loss of generality, assume that 
the cross-product xy vanishes, i.e., fI = 0; see [2, p. 326]. This simplification is 
made, essentially, in all derivations of the multi-dimensional stationary-phase 
approximation. Thus, the first few nonzero terms of f are given by 

(4.1) f(x,y) = f20x2 + f02y2 + cubic terms + .... 

Let us assume that both f20 and fo2 are positive, i.e., (0, 0) is a local minimum. 
Put 

(4.2) x = 41/2 rs, 29y =1/2 2 
f2d' f~ly 

Then 

(4.3) =f20x2 +fy22 

and 

(4.4) a(x,y) N 

4f20f02 
Since f(x, y) = ( + F(t, q) by (3.1)-(3.3), we have, from (4.1) and (4.2), 1 + aF/ a 
= af/at > 0 on the support of 0. (Keep in mind that the support of F can be 
taken to be any shape and arbitrarily small as long as it contains an open disk with 
center at the origin; see the first paragraph of Section 3.) Since (0, 0) is a local 
minimum, m = 0 in (2.5) and h(t) = 0 for t < 0 in (2.6). Recall that 

(4.5) h(t) = <8(t - f), g> = <8(t - - F), 4>. 
Combining (3.11), (3.15) and (4.2), we have for t > 0 

(4.6) h(t) = 
n a 

2J (_) [(D(t, q)Fr(t,)] dq + Rn+l(t). 
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Sincef and g are C ', so are 4 and F. Therefore, by (4.2), for any N > 1, 
r ~~~N-1 

(47) (-1)r ID(, q)Fr(t, X) = I cA(,qgA/2 + o((N/2), 

where c,(71) is a polynomial in cos q and sin 7, and the 0-symbol is independent of 
q. Since it is easily shown that 

IC,A('q) dq = O, ,u = 1, 3, 5, . .. J 
(cf. lines 7 and 8 in [12, p. 16]), each term in the series of (4.6) has an asymptotic 
expansion, as t - 0+, of the form 'o aa,,rt', where the coefficients a,r are 
constants. If we can show that 

(4.8) Rn+l(t) = O(tln+1)12), as t -0+, 

then we succeed in establishing the asymptotic expansion 

(4.9) h(t) - aptp as t -0+. 
v=O 

The coefficients ap are of course those already given in [12, Eq. (33)]. 
Here we wish to point out that we have not established the equality in (33) of 

[12] (even under the stronger assumption of analyticity). What we have shown is 
that Eq. (33) there holds at least asymptotically. This is, nevertheless, all one needs 
to derive the desired asymptotic expansion of the double integral I(A). 

To prove (4.8), we return to (3.12) and (3.13). Note that, as ( ->0+, we have 
00 

(4.10) F(t, q) - 2 bjqg)(/2' 
v=3 

where bj(q) is a polynomial in cos q and sin . This series can be termwise 
differentiated to yield an asymptotic series for F,(t, q). By substituting (4.10) into 
the equation t = ( + F(t, q) and inverting the resulting series, we have 

00 

(4.11) ( t + q d^(q)t'/2, as t ->0. 
P=3 

The first term on the right side of (3.13) is now clearly of the order O(t(+ 1)12). 

Each of the integrals under the summation sign in (3.13) is also of this order, since 
4t- tI = 0(t3/2), and hence 

f'(t _-I 
- 3r - 2)/2 d = (t(n + 1)/2 

as t -0k+. This proves that rn + I(t, q) = O(t(n+ 1)/2) as t ->0+. Since the 0-symbol 
here is independent of 7, the validity of (4.8) is therefore established. 

Here we wish to point out that if we assume that f and g in (4.5) have only a 
finite number of continuous derivatives, then a finite (instead of an infinite) 
asymptotic expansion of the form (4.9) can still be obtained for h(t) and hence for 
the double integral I(X) in (1.1). Also, it is obvious that this weaker assumption will 
not cause any complication in the derivation of the final result. 

When f20 and f02 are both negative, i.e., (0, 0) is a local maximum, we have 
M = 0 in (2.5) and h(t) = 0 for t > 0 in (2.6). The analysis in this case remains 
essentially unchanged. 
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To conclude this section, we also make a remark concerning the change of 
variables 

(4.12) =f20x2 +2y2 and q=x 
made by Jones and Kline, in the case when f20 > 0 and f2 < 0, i.e., (0, 0) is a 
saddle point, see [12, p. 16, Section 5.2]. Since aC, q)/a(x, y) = 0 when y = 0, the 
Jacobian a(x,y)/a(t, q) in (3.3) does not exist there, although their result is still 
correct since the integral after the transformation converges as an improper 
Riemann integral. However, it appears to us that it is more natural to let 

(4.13) x ,12coshq y l/2 sinh 
flrd2 (-f02)"2 

Then we have 

(4.14) = f20x2 + fg2Y2 

as in (4.3), and the Jacobian in this case is a constant 

(4.15) 
a 

_ (g 1) 

Using our transformation (4.13), we need consider integrals of the form 

(4.16) I =* f712(t)hshq sinhnq dv, 

where m + n is a nonnegative even integer and 

(4.17) 2/(t) = 0, 72(t) = coshl[d(f20/t)l/2] (d > 0). 

These integrals can be easily evaluated with the aid of integral tables, and they are 
related to those m,n considered by Jones and Kline. In fact, a simple change of 
variable shows 

(4.18) = r 
I*/ (4.18) ~~~~~Im,n m+ I/2 Im,n' 

f2o 

5. Remarks on Asymptotic Expansions of Surface Distributions. From the analysis 
in [12] and the present note, it is evident that the method of Jones and Kline can be 
applied to integrals of higher dimensions. In a more recent paper [13], Malgrange 
has also studied the asymptotic behavior of the integral 

(5.1) I(A) = f g(x)elXf(x) dx, 
Rn 

as X -A + oo, where f is a real analytic function on R n and g is a C '-function on 
Rn with compact support. More specifically, he has shown that this oscillatory 
integral has an asymptotic expansion of the form 

(5.2) I(X) E Ca,qXa- '(log X)', 

where 0 < q S n - 1 and a runs through a countable set of positive rational 
numbers; see [13, Eq. (7.4)]. Although Malgrange has pointed out that the a's and 
q's are related to the Picard-Lefschetz monodromy of f at 0, no explicit expressions 
are given for these exponents; see, also, [9] and [5, p. 262]. This is mainly because 
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of a result due to Jeanquartier, which Malgrange has employed in the derivation of 
(5.2). Malgrange's approach can essentially be described as follows. Proceeding as 
in Section 2 of the present note, he first reduces the multiple integral (5.1) to a 
one-dimensional Fourier transform by writing 

(5.3) I(X) = f__ eit8(f - t), g> dt, 

where <8(f - t), g> is the surface distribution defined by (2.7); see [13, Eqs. (6.1) 
and (7.1)], and then termwise integrates the asymptotic expansions 

(5.4) <8(f - t), g> -I a,'-')I tla(logltj) , 

as t ---O+; see [13, Section 7]. The existence of these expansions has been estab- 
lished earlier by Jeanquartier [10], who has also shown that these expansions can be 
differentiated term by term to give asymptotic expansions of the successive deriva- 
tives of <8(f - t), g>. However, the method of Jeanquartier leads to only an 
existence result, whereas that of Jones and Kline can be used to construct 
asymptotic expansions of the form (5.4) in most cases. Furthermore, Jeanquartier 
(and hence Malgrange) assumes that f is real analytic, whereas the result of Jones 
and Kline now only requires f to be C X (in view of Lemma 2 of the present note). 
In fact, it is these differences that have motivated us to make the formal arguments 
in [12] rigorous. Another point which we wish to make is that, when the coefficients 
a(,') in (5.4) are explicitly known, the asymptotic expansion (5.4) may become 
simpler. For instance, in the case when n = 2 and the origin is a saddle point, the 
asymptotic expansion of <8(f - t), g> is given by 

(5.5) <8(f - t), g> - T. c*`)tslogItI, as Iti -O, 

where the coefficients c(+) satisfy c(+) = c(-) for all s > 0; see [12, Eq. (37)]. 
Therefore the asymptotic expansion of I(X) in this case is of the form 

00 

(5.6) 1(A) . asl, asAs+oo, 
s=o 

and does not involve logarithms; see [12, the paragraph immediately following Eq. 
(37)]. 

To conclude this paper, we also call attention to an asymptotic expansion, 
similar to (5.4), given in Gel'fand and Shilov [8, p. 326]. Let f and g be C0 
functions on Rn and g have compact support. Assume that the hypersurface f = 0 
consists only of reducible points (see [8, p. 313]) and that the hypersurfaces f = t 
with t > 0 have no singular points at all (i.e., (VJ)(x) #& 0 for all x on f = t). Then 
it has been shown that 

00 Mk 

(5.7) <8(f - t), 9> - E E a,,,,t*-'(log t) , as t -0 +, 
k=1 m=1 

where the Xk's are positive rational numbers arranged in an increasing order and 
the mk's are nonnegative integers. This result is actually due to Gel'fand and 
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Shapiro [7], and their method proceeds as follows. First they show that the function 
F(X), defined by 

(5.8) F(X) = f f'(x)g(x) dx, (x E Rn), 
f>O 

is meromorphic in X and that its poles can be arranged in a decreasing order 

-A4 -A2, .. *, Nk, *...-; O < XI < A2 < . . . < Ak < .... 

Next they observe that putting 
(5.9) I(t) = 6(f - t), g> 
gives 

(5.10) F(X) = f I(t)t' dt. 

(This identity can be proved by using the method of resolution of multiple integrals 
mentioned in Section 2.) The integral on the right-hand side is the Mellin transform 
of I(t) evaluated at X + 1. Thus, by the Mellin inversion formula, 

(5.11) I(t) = 
c 

i ti lF(X) dX. 

Finally, shifting the contour of integration to the left, they obtain the desired 
expansion (5.7). The terms in the series (5.7) are thus picked up as residues, the 
integer mk is the multiplicity of the pole at -Xk, and ak,m is (-l)m/(m - 1)! times 
the coefficient of (X + Xk)-m in the Laurent expansion of F(k) about the pole at 
-Ak. 

Although the result of Gel'fand and Shapiro given in (5.7) appears to be more 
explicit than that of Jeanquartier given in (5.4), the determination of the locations 
of the poles of F(X) and the calculation of the coefficients ak,m in (5.7) are still 
difficult tasks. 

It is obvious that the asymptotic expansions mentioned in this section are 
intimately related to the work of Jones and Kline, this fact, however, does not seem 
to have been observed before. 

Appendix. In this appendix we shall prove Lemma 1. The case n = 0 is essen- 
tially the product rule. For n > 1, we need the following identity [15, Section 0.43, 
p. 19], which is known as the Leibniz rule for composite functions: For any positive 
integer r, 

r r 

(Al) (f ? g)(r) = fpi) o 
gEF C0jr R Wi),)a 

j=l a 1=1 

where the coefficients Ca,jr are positive integers, and the second sum runs over all 
multi-indices a = (,, ... , ar) of nonnegative integers such that al + * * * + ar = 
j and a, + 2 a2 + * * * + rar = r. First we consider the left-hand side of (3.10). The 
following steps are straightforward. 
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p gn+1 (in+l) n+1 nl n1 +11- 

(n + 1! j=oNjJf (n +1) 

n(+1)( n+1 
n) + n j+ ln+l_j) 9n l p 

X 2 Cap,j II (g(i))(ai) 
a i=l 

(Al) n n+l-p n+1 

+f1 (n + 1 -p)! Ca,p,n+i fi (g(i))ai + f(g') n 

9n+1 =.fin +l) g+ + + 

+ n 
n + nn+l-j) (n+l-p)! 

XII (g(i,))n 
P 

i=l 

Next we consider the right-hand side of (3.10). We obtain 

- f [ ] (j + f(g)n+I 

L f(gn)fl+l _n + (n + )f+ [ (n-p)! ]( ( + 1)! 

=f( g )n _ fn n+ l)n + 1 nl-j) 9n -p p +g1 +! 

_f(g/)f+ -E j(n+l)gfn+l 

p=0 c (n p)! (p + 1)! 

n-i = npn + 1n+1I-j) gnlpr 

_E E (n + l)f(+ri,j 

p=Oj=1\ r=1 (n(-p r a 

(A2) X 
i=19 

(p 
+1) 

n-I n+1 n +-)np gn-pr 

p=oI=n-p+1(n1)n1 r=O (n -p r- 

x Ca,r,j II (gi))t 
n 1 (p+ 1) ! + 

= f( 91) + p -n+ 
(n + 1)! 

n n-p+1 n f(n+l-j) g--+ 

p=1 n+1 r=1i(n p r+) 

p=1Jg=i 
_ 

a,, g(9))G 
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(Equation (A.2) continued) 
n n+l i n-p+l gn-p-r+l 

X a r( 

(n + 1)! 
- z (fiI( )j(n+1-i) g (l 

n n-+l np+l + (n--r+l)!p 

XE Ear j a 
n 

(lj) 
p=l r=1 j=r ( )P 

i 

- g() a jnlj np- )p 

a i= 

n( n-p+l l n + 1n + 1-j)_ n____ !___ 

p=l r= j=n-p+2 (n -p-r + )!p! 
I 

X g Ca,r+j II (g(i))ai 
a i= 

= f(g,)n+l + (n+l) 
gn+ 1 

(n + 1)! 

n+ 1 ( O) 

r=l j rP (n + 1)! 

+nii :n;l1)f(n+ ( j)9n-r+l1) + ya Ti - E~~~~~~~ a,r,,j 

x=II ( g(i))aa 

This is exactly the same as the expression in (Al), thus proving Lemma 1. 
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