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The Number of Polyhedral (3-Connected Planar)
Graphs

By A. J. W. Duijvestijn and P. J. Federico

Abstract. Data is presented on the number of 3-connected planar graphs, isomorphic to the
graphs of convex polyhedra, with up to 22 edges. The numbers of such graphs having the
same number of edges, and the same number of vertices and faces, are tabulated. Conjec-
tured asymptotic formulas by W. T. Tutte and by R. C. Mullin and P. J. Schellenberg are
discussed. Additional data beyond 22 edges are given enabling the number of 10-hedra to be
presented for the first time, as well as estimates of the number of 11-hedra and dodecahedra.

1. Introduction. This paper presents some results on the number of 3-connected
planar graphs. Every convex polyhedron can be represented in the plane or on the
surface of a sphere by a 3-connected planar graph. Conversely, according to the
theorem of Steinitz, as restated by Griinbaum, every 3-connected planar graph can
be realized as a convex polyhedron and they have been referred to as polyhedral
graphs [20]. Hence, the problem of classification and enumeration of convex
polyhedra can be reduced to the analogous problem for 3-connected planar graphs.
For present purposes, these terms, as well as polyhedral graphs, can be used
interchangeably.

The problem originated with Euler in 1750, from the standpoint of convex
polyhedra [1]. He was concerned, in this general study of polyhedra, evidently
limited to convex ones, with introducing some order and classifying them. It was
this effort which led him to his polyhedral formula

V+ F=E+2,

where V is the number of vertices, F the number of faces and E the number of
edges. He classified the polyhedra according to the possible sets of values of V, F
and E, derived with the aid of his formula. Euler’s paper concluded with a
tabulation of his “genera”-sets of polyhedra with the same number of vertices,
edges and faces—arranged first by the number of vertices in increasing order, from
4 to 10, and then each of these divided according to the number of faces and edges,
the number of edges being determined by the formula. The whole table is followed
by the single-word line “‘etc.”. Euler’s “genera” will be referred to here as Euler
classes. Referring to what would now be called nonisomorphic or combinatorially
distinct polyhedra, Euler described the single “species” in each of the four “lowest”
classes (with E < 9) and then remarked that the higher ones would have many
members but the state of knowledge was not sufficiently advanced for their
enumeration. A historical review of the problem is given in [21].
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There are as yet no formulas, direct or recursive, by means of which the number
for a given E, or a given V or F, or a given combination of these elements, can be
calculated [18], [25]. Enumeration of any of these classes must proceed by first
constructing the members and then counting them one by one. Methods of
constructing polyhedral graphs are known but these all lead to a considerable
amount of duplication. The method used in producing the results discussed here
(also in [7], [9]) is based on a theorem of Tutte [8]. Given the complete set of
3-connected planar graphs with n edges, the operation of connecting two nonadja-
cent vertices of each face of each one in all possible ways by a new line will result
in a collection of new such graphs with n + 1 edges which includes every one or its
dual, except the wheel, which must be added to complete the set when n + 1 is
even. The computer method is described in [9]. Duplicates, isomorphic graphs, are
eliminated by the method introduced in [9] and improved in [23], which determines
a numerical identifying characteristic for each graph, invariant under isomorphism.
The method simultaneously determines the order of the automorphism group of the
graph.

The purpose of this article is to present results obtained in [23] and [24], with
some discussion. Section 2 treats enumeration by number of edges and Sections 3
and 4 by Euler classes. A collection of sources of specific data relating to polyhedra
or polyhedral graphs is included in the list of references.

2. Results by Number of Edges: Tutte’s Conjectured Asymptotic Formula. Table I
presents some data arranged according to the number of edges. First is the total
number (N) of combinatorially distinct polyhedral graphs having a given number
of edges, up to 22. Presented for the first time are the totals for 20, 21, and 22
edges.

TaBLE I
Enumeration by number of edges
(DE QN Q)R @ )4 ©) @)
Edges Number Rooted Estimate Accuracy Symm. % Symm.

6 1 1 1

8 1 4 1

9 2 6 2

10 2 24 2

11 4 66 4 100.0
12 12 214 10 83.33
13 22 676 13 .5909 16 72.73
14 58 2,209 40 6897 32 55.17
15 158 7,296 122 1721 62 39.24
16 448 24,460 333 .8549 123 27.46
17 1,342 82,926 1,220 9091 234 17.44
18 4,199 284,068 3,946 9397 470 11.19
19 13,384 981,882 12,920 9653 906 6.79
20 43,708 3,421,318 42,767 9785 1,830 4.19
21 144,810 12,007,554 142,948 9871 3,636 2.51
22 485,704 42,416,488 482,006 9924 7,299 1.50
23 150,718,770 1,638,248
24 538,421,590 5,608,558
25 1,932,856,590 19,328,566

26 6,969,847,484 67,017,765
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Columns 3, 4, and 5 of the table are concerned with Tutte’s formula giving the
number of 3-connected planar “rooted” graphs [10]. Tutte introduced the concept
of an edge-rooted graph. One edge is specified as the root and is directed (by an
arrow), and the two sides distinguished by labels / (left) and r (right). Since the
arrow can be directed in two ways and in each case the sides can be labelled in two
ways, four rooted graphs are produced from each edge and the total number from
a given graph is 4E. If the graph is symmetric-i.e., has a nontrivial
automorphism-some of these will be isomorphic; the total number of distinct
rooted graphs is 4E/h, where h is the order of the automorphism group of the
graph [12]. The number of rooted graphs for a given E can be calculated (without
constructing them) by Tutte’s formula, and column 3 of the table gives these
figures (R) up to 25 edges as given by Tutte, and an added entry for 26 edges.

The number of rooted graphs for a given E can be counted directly by applying
the formula 4E/h to each graph in the set and adding the results, if all the
individual members and the orders of their automorphism groups are known. The
group orders have been tabulated for E up to 22 and an example of this counting is
given in Table II, for £ = 20. The number thus obtained corresponds with the
number obtained by Tutte’s formula and thus serves as a check on the enumera-
tion. All the numbers N in Table I check in this manner.

TABLE 11
Counting rooted graphs for E = 20
h Number Rooted
1 41,878 - 80/1 = 3,350,240
2 1,734 - 80/2 = 69,360
4 79- 80/4 = 1,580
8 10- 80/8 = 100
10 2. 80/10 = 16
16 2- 80/16 = 10
20 3. 80/20 = 12

43,708 - 80-4 = 3,421,318

If none of the members of a set E were symmetric, the number N would be
obtained simply by dividing R by 4E. But since some are symmetric, the quotient
will be less than N. It is, nevertheless, a lower bound for the number N, that is, the
actual value of N cannot be less than this quotient. These lower bounds, called
estimates, are listed in column 4 of Table I. Taking the lower bound as an estimate
for the number N, the accuracy A of the estimate is shown in column 5, which
gives the number obtained by dividing R by 4F, to obtain the estimate, and then
by N. As seen, the accuracy increases with increasing E to a value of .9924 for
E = 22. This increase follows a decrease in the proportion of symmetrical graphs,
which is indicated by columns 6 and 7 which show the number and percentage.

The number 4, which has been called the accuracy of the estimate, has a
significance in connection with the symmetries of the members of the set. It is the
reciprocal of the harmonic mean of the orders of the automorphism groups of the
graphs. Thus

R 4E |
A =g R—ETi—4E2E, JA=

1 1

7\7 E, l=1,...,N.
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Considering the sequence of values in column 5, A appears to approach 1 as a
limit from below. The reciprocal of A4, the harmonic mean of the group orders,
drops to 1.0077 for E = 22, appearing to approach 1 as a limit from above.

As indicated by Tutte [10], [16], if it is assumed that the number of symmetrical
graphs becomes negligible in comparison with the total number for large E’s, an
approximation of the total number can be obtained by dividing the number of
rooted graphs by 4E. Thus the Tutte formula divided by 4F would be an
asymptotic formula for the number of 3-connected planar graphs or convex
polyhedra having a given number of edges. Tutte states that the assumption “seems
highly plausible . . . , but no proof of it is known” [15]. The plausibility is increased
by the data presented here and we have in Tutte’s formula as modified by dividing
by 4E a conjectured highly plausible asymptotic formula, with respect to which
Tutte states, “it is hard to believe that it is not the correct one” [25].

3. Results by Euler Classes: The Mullin-Schellenberg Conjectured Asymptotic
Formula. Table III, in a number of parts, presents data for Euler classes, grouped
according to the number of edges. The first part groups those with 6 and 8 to 11
edges and parts 2 to 12 are for 12 to 22 edges, respectively; part 13 gives a few
classes with more than 22 edges. For each number of edges the classes are arranged
by the number of faces and vertices. Note in the parts for 12 to 22 edges that the
headings V' (vertices) and F (faces) can be interchanged. When V and F are
unequal there are dual classes, each member of one being the dual of a member of
the other. When V and F are equal, duals are in the same class along with self-dual
members, the numbers of which are noted. Data relating to symmetry is included
for each class.

TABLE III
Enumeration by numbers of edges, vertices, faces and automorphisms

(1) 6, 8-11 Edges

E | 4 F Number Order of group
©)) @ ® (109 12 29
6 4 4 1 1
8 5 5 1 1
9 5 6 1 1
9 6 5 1 1
10 6 6 2 1 1
11 6 7 2 1 1
11 7 6 2 1 1
Total 10 3 2 1 1 2 1
Self-dual 4 1 1 1 1
(2) 12 Edges
V(F) F(V)  Number Not symm. Symm. Order of Group
@ @ © @@ @
6 8 2 0 2 1 1
7 7 8 2 6 3 2 1
8 6 2 0 2 1 1
Total 12 2 10 3 2 2 1 2
Self-dual 6 2 4 1 2 1
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TABLE 111 (continued)

(3) 13 Edges
V(F) FV) Number Not symm. Symm. Order of group
(@) @
7 8 11 3 8 6 2
8 7 11 3 8 6 2
Total 22 6 16 12 4
(4) 14 Edges
V(F) V) Number Not symm. Symm. Order of group
@ @& & @
7 9 8 2 6 4 2
8 8 4 22 20 16 3 1
9 7 8 2 6 4 2
Total 58 26 32 24 4 3 T
Self-dual 16 10 6 4 1 1
(5) 15 Edges
V(F) AV) Number Not symm. Symm. Order of group
2 @» © 0 @
7 10 5 0 5 1 1 2 1
8 9 74 48 26 22 1 2 1
9 8 74 48 26 22 1 2 1
0 7 5 0 5 1 1 2 1
Total 158 9% 62 6 4 3 2 2
(6) 16 Edges
V(F) FY) Number Not symm. Symm. Order of group
@ @ ®& a9
8 10 76 44 32 27 3 1 1
9 9 296 237 59 56 2 1
10 8 76 44 32 27 3 1 1
Total 448 325 123 m 6 4 3
Self-dual 50 39 11 8 2 1
(7) 17 Edges
V(F) FV) Number Not symm. Symm. Order of group
(0] @
8 11 38 21 17 13 4
9 10 633 533 100 93 7
10 9 633 533 100 93 7
11 8 38 21 17 13 4
Total 1342 1,108 234 212 2
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TABLE III (continued)
(8) 18 Edges

V(F) F(V) Number Notsymm. Symm. Order of group
Q03 @O O 12 18 @
5 3 1 1 2

8 12 14 2 12
9 11 768 662 106 97 1 5 2 1
10 10 2,635 2,401 234 202 3 19 9 1
11 9 768 662 106 97 1 5 2 1
12 8 14 2 12 5 3 11 2
Total 4,199 3729 40 406 5 35 13 2 4 1 4
Self-dual 165 137 28 18 3 3 3 1
(9) 19 Edges
V(F) RY) Number Not symm. Symm. Order of group
()] @
9 12 558 449 109 99 10
10 11 6,134 5,790 344 331 13
11 10 6,134 5,790 344 331 13
12 9 558 449 109 99 10
Total 13,384 12,478 906 860 46
(10) 20 Edges
V(F) F(V) Number Notsymm. Symm. Order of group
@ @ ® (o (16 (20
9 13 219 164 55 9 4 2
10 12 8,822 8,331 491 459 27 3 11
11 11 25,626 24,888 738 718 17 2 1
12 10 8,822 8,331 491 459 27 3 11
13 9 219 164 55 9 4 2
Total 43,708 41,878 180 1,73 79 10 2 2 3
Self-dual 554 514 40 34 3 2 1
(11) 21 Edges
V(F) F(V) Number Notsymm. Symm. Order of group
2 @ @ © 12 @3
9 14 50 16 34 25 5 1 2 1
10 13 7916 7,491 425 396 4 11 14
11 12 64,439 63,080 1,359 1317 4 25 10 3
12 11 64,439 63,080 1,359 1317 4 25 10 3
13 10 7,916 7,491 425 39 4 11 14
14 9 50 16 34 25 5 1 2 1
Total 144,810 141,174 3636 3476 16 8 50 10 2
(12) 22 Edges
V(F) F(V) Number Notsymm. Symm. Order of group
@ @ ® 2@
10 14 4,442 4,052 390 365 24 1
11 13 104,213 102,524 1,689 1,663 26
12 12 268,394 265,253 3,141 3,052 82 6 1
13 11 104,213 102,524 1,689 1,663 26
14 10 4,442 4,052 390 365 24 1
Total 485,704 478,405 7299 7,008 182 8 1
Self-dual 1,817 1,726 91 80 10 0
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TasLE III (continued)
(13) Additional Classes

529

E F(V) V(F) Number Symm. (2) (3) (4) (6) (8) (10) (12) (16) (24) (32) (36) (40) (120)

M 23 10 15
@ 24 10 16
3)27 11 18
@ 30 12 20

(1) Specially constructed for this paper and checked.
(2) Drawings in [5]; constructed and checked.

1404

233
1249
7595

156 -
69 1
279 241 1
839 747 1

13

13 8 4
27 5
68 7 10

- 4
1 3

1

1
0

(3) Described in [11]; constructed and checked.

(4) Number given in [13]; constructed and checked

1

1

1 1

Mullin and Schellenberg have derived an explicit formula for calculating the
number of rooted graphs in each Euler class [14]. That paper includes a table giving
these numbers for all classes with up to 16 faces (vertices). We are indebted to
Professor Mullin for supplying additional data beyond the scope of the published
table. The number of rooted graphs can be counted for each class, when the
members and symmetries are known, in the manner shown in Section 2 (Table II).
This has been done for each class listed in Table III. In every case the number thus
obtained is the same as the number calculated by the Mullin-Schellenberg formula.

E\NV—-F 0
12 4896

14 7249

16 .8963

18 9523

20 9854

22 9941

Accuracy of estimate for Euler classes

*1

.5909

.8063

9182

9714

.9893

*2

1354

5625

7689

9277

9712

9918

TABLE IV
+3 +4
2267
7500
3958
.8978
8664
9721
9547

*5

.6024

9495

7584

8797

9414

Remarks made in Section 2 with respect to the totals according to the number of
edges apply to the individual Euler classes. The number of rooted graphs obtained
by the formula can be divided by 4F to obtain an estimate (lower bound) of the
number of unrooted graphs. The accuracy of this estimate is similarly the recipro-
cal of the harmonic mean of the orders of the automorphism groups. Also, the
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Mullin-Schellenberg formula, divided by 4FE, can be conjectured to be an asymp-
totic formula for the number of convex polyhedra in the Euler classes, on the same
assumption made in connection with Tutte’s formula. The plausibility of this
conjecture is indicated by Table IV. This table lists the accuracy of the estimate for
each Euler class with 12 to 22 edges and a few with a greater number of edges. The
lower ones are not very accurate, as is usual with asymptotic formulas. The column
headed O gives the figures for those classes in which V' = F; these appear to move
the most rapidly toward the limit of 1. The figures on the extreme right in those
lines in which E is divisible by 3 are for cubic graphs or trilinear polyhedra (all
vertices 3-valent) when the plus sign is taken, and triangulations (all faces triangu-
lar) when the minus sign is taken, for ¥ — F; these move the most slowly. It is, of
course, a conjecture that the figures would continue to move closer and closer to 1
if the table could be continued downward, as this has not been proven.

4. Polyhedra With Up to 12 Faces (Vertices). The Euler classes as given in the
preceding section can be grouped by number of faces or vertices to give the
number of polyhedra with a given number of faces or vertices. This is done in
Table V. Columns for 4, 5, and 6 faces have been omitted to simplify the table; the
numbers for each class with 4, 5, and 6 faces are in Parts 1 and 2 of Table III and
the totals are 1, 2, and 7, respectively. The table goes up to 12 faces but the
columns for 11 and 12 faces have been filled up in italics with estimates (lower
bounds) obtained by means of the Mullin-Schellenberg formula. The table can be
read in two ways, as an arrangement first by number of faces and then by number
of vertices or as an arrangement first by number of vertices and then by number of
faces.

TABLE V
Polyhedra with 7-12 faces (vertices)

Faces (Vertices)

Vertices
(Faces) ) ® &) (10) an (12)
6 2 2
7 8 11 8 5
8 11 92 74 76 38 14
9 8 74 296 633 768 558
10 5 76 633 2,635 6,134 8,822
11 38 768 6,134 25,626 64,439
12 14 558 8,822 64,439 268,394
13 219 7,916 104,213 706,770
14 50 4,442 111,038 1,259,093
15 1,404 78,959 1,552,824
16 233 35,653 1,334,330
17 9,440 786,625
18 1,249 304,087
19 69,564
20 7,595
Total 34 257 2,606 32,300 437,557 6,363,115

The italicized numbers are not exact, but are lower bounds obtained as described
in the text.



THE NUMBER COF POLYHEDRAL GRAPHS 531

The polyhedra with 4, 5, and 6 faces were listed by Steiner in 1828 [2]. The
number of 7-hedra and octahedra were first obtained by Kirkman in 1862 [3], and
then by Hermes in 1899 [4]. However, the total number of 9-hedra was not
obtained until 1969 [16]. The number for 10 faces (vertices) is here presented for
the first time. Euler’s table of his genera (here called classes) arranged first by
number of vertices and then by number of faces and going up to 10 vertices is now

completed, the species and their number in each class being known. But the “etc.”
remains.

The figures in italics in the columns for 11 and 12 faces (vertices) are, as has
been stated, estimates or lower bounds. Hence the totals are also estimates or lower
bounds; the actual numbers would be a little higher than these totals. The number
of dodecahedra would probably be in the neighborhood of six and a half million.

Twente University of Technology
Enschede, Netherlands

3634 Jocelyn Street, N. W.
Washington, D. C. 20015

The following list of references is arranged chronologically. Notes have been added to cited references
which include specific data relating to Euler classes of polyhedra and for this purpose additional items,
not referred to in the text, have been added. The following are distinguished in the notes: (1) Number,
only the number of members in a class is given; (2) Description, a description of each member of a class
is given, such that a drawing can be made; (3) Drawing, a drawing of each member of a class is given.

1. L. EULER, “Elementa doctrinae solidorum,” Novi Comm. Acad. Petrop. 1752-3, v. 4, 1758, pp.
109-140; Opera (1), v. 26, pp. 71-93. Read November 25, 1750.

2. J. STEINER, “Probleme de situation,” Ann. de Math., v. 19, 1828, p. 36; Gesammelte Werke, vol. 1,
p. 227.

Descriptions: 4, 5 and 6 faces.

=+ T. P. KIRKMAN, “Application of the theory of the polyhedra to the enumeration and registration of
results,” Proc. Roy. Soc. London, v. 12, 1862-3, pp. 341-380.

Numbers: all classes with up to 8 faces or 8 vertices and class with 9 faces and 9 vertices.

4. O. HErMEs, “Die Formen der Vielflache,” J. Reine Angew. Math., [I), v. 120, 1899, pp. 27-59; [II),
v. 120, 1899, pp. 305-353, plate 1; [III), v. 122, 1900, pp. 124-154, plates 1, 2; [IV], v. 123, 1901, pp.
312-342, plate 1.

Descriptions: all with up to 8 faces, Part II; all trilinear (cubic) with up to 10 faces, Part I. Contains
erroneous tables for 9 faces and 9 vertices and erroneous numbers for trilinear (cubic) with 11 and 12
faces [16).

5. M. BRUCKNER, Vielecke und Vielflache, Teubner, Leipzig, 1900.

Drawings: all trilinear (cubic) with up to 10 faces, folding plates 2—5. Figure 6 on plate 2 belongs with
the 10-faced ones on plates 3-5.

6. C. J. BouwkaMP, “On the dissection of rectangles into squares. 1,” Nederl. Akad. Wetensch. Proc.,
v. A49, 1946, pp. 1776-1188 (= Indag. Math., v. 8, 1946, pp. 724-736); II and III, Nederl. Akad.
Wetensch. Proc., v. A50, 1947, pp. 58-71, 72-78 (= Indag. Math., v. 9, 1947, pp. 43-56, 57-63).

Drawings: all with up to 14 edges, Part II, Figures 5, 7, 8. Professor Bouwkamp has called attention to
the following corrections: Figure 5, second row, delete the second double arrow, third row, change
T = 13 to T = 14; Figure 8, a missing dual pair can be reconstructed from the last row of data on page
71[17).

7. C. J. Bouwkamp, A. J. W. DUUVESTUN & P. MEDEMA, Table of c-Nets of Orders 8 to 19, Inclusive,
Philips Research Laboratories, Eindhoven, Netherlands, 2 vols., 1960. Unpublished, available in UMT
file.

Descriptions: all with 8 to 19 edges except that only one of a dual pair is listed. See [17] for
description. The 3-connected planar graphs were called c-nets in the papers on squared rectangles, see
(61, 9.
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8. W. T. TuTttg, “A theory of 3-connected graphs,” Nederl. Akad. Wetensch. Proc. Ser. A, v. 64
(= Indag. Math., v. 23, 1961, pp. 451-455).

9. A. J. W. DunvestuN, Electronic Computation of Squared Rectangles, Thesis, Technische
Hogeschool, Eindhoven, Netherlands, 1962; also in Philips Res. Rep., v. 17, 1962, pp. 523-612.

Descriptions: 15 and 16 edges but only one of a dual pair.

10. W. T. TUTTE, “A census of planar maps,” Canad. J. Math., v. 15, 1963, pp. 249-271.

11. D. W. GRACE, Computer Search for Non-Isomorphic Convex Polyhedra, Report CS15, Computer
Sci. Dept., Stanford Univ., 1965 (copy obtainable from National Technical Information Service, Dept.
of Commerce, Springfield, Va. 22151 as Document AD611, 366).

Descriptions: trilinear (cubic) with up to 11 faces.

12. F. HARARY & W. T. TUTTE, “On the order of the group of a planar graph,” J. Combin. Theory, v.
1, 1966, pp. 394-395.

=+ R. BOWEN & S. FISKE, “Generation of triangulations of the sphere,” Math. Comp., v. 21, 1967, pp.
250-252.

Numbers: triangulations (duals of cubic) with up to 12 vertices.

14. R. C. MULLIN & P. J. SCHELLENBERG, “The enumeration of c-nets via quadrangulations,” J.
Combin. Theory, v. 4, 1968, pp. 259-276.

In this paper, as well as in [10)], “c-nets” refers to rooted 3-connected planar graphs, but in [7] the
same term is used for the unrooted graphs.

15. W. T. TUTTE, “Counting planar maps,” J. Recreational Math., v. 1, 1968, pp. 19-27.

16. P. J. Feperico, “Enumeration of polyhedra: the number of 9-hedra,” J. Combin. Theory, v. 17,
1969, pp. 155-161.

Numbers: to 9 faces or vertices and to 19 edges.

17. C. J. BouwkaMmp, Review of [7], Math. Comp., v. 24, 1970, pp. 995-997.

18. F. HARARY & E. M. PALMER, Graphical Enumeration, Academic Press, New York, 1973, p. 224.

19. DoyLE BritrON & J. D. DUNITZ, “A complete catalogue of polyhedra with eight or fewer
vertices,” Acta Cryst. Sect. A, v. A29, 1973, pp. 362-371.

Drawings: all classes with up to 8 vertices.

20. B. GRUNBAUM, “Polytopal graphs,” in Studies in Graph Theory, Part II, MAA Studies in
Mathematics, vol. 12, Math. Assoc. Amer., Washington, D. C., 1975, pp. 201-224.

21. P. J. FeDERICO, “The number of polyhedra,” Philips Res. Rep., v. 30, 1975, pp. 220*-231*.

22. P. J. FEDERICO, “Polyhedra with 4 to 8 faces,” Geom. Dedicata, v. 3, 1975, pp. 469-481.

Drawings: all classes with up to 8 faces. The following corrections to the accompanying table are
noted: line 24 change Symmetry entry to 4; line 169, change Faces entry to 242; line 219, change Faces
entry to 224; line 301, change Vertices entry to 222.

23. A. J. W. DUUVESTDN, Algorithmic Calculation of the Order of the Automorphism Growp of a Graph,
Memorandum No. 221, Twente Univ. of Technology, Enschede, Netherlands, 1978.

24. A. J. W. DUUVESTUN, List of 3-Connected Planar Graphs with 6 to 22 Edges, Twente Univ. of
Technology, Enschede, Netherlands, 1979. (Computer tape.)

Descriptions: These are arranged in files, each file containing graphs of the same number of edges
ordered by identification number. Only one of a dual pair is listed, the one with fewer vertices than
faces; if the number of these is the same for a dual pair, the one with the larger identification number is
listed. The graphs are coded by lettering the vertices 4, B, C, D, ... and giving the circuit of vertices
for each face, with a separation mark. Each entry gives first the code of the graph and then follows in
order, an indication whether the graph is self-dual or not, the order of the automorphism group, and the
identification number. Arrangements for obtaining a copy of the tape can be made by communicating
with the author.

25. W. T. TUTTE, “On the enumeration of convex polyhedra,” J. Combin. Theory Ser. B, v. 28 B, 1980,
pp. 105-126.
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