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On the Quasi-Optimality in L., of the H '-Projection 
into Finite Element Spaces* 

By A. H. Schatz and L. B. Wahibin 

Absact. The H '-projection into finite element spaces based on quasi-uniform partitions of 
a bounded smooth domain in R N, N > 2 arbitrary, is shown to be stable in the maximum 
norm (or, in the case of piecewise linear or bilinear functions, almost stable). It is not 
assumed that the mesh-domains coincide with the basic domain. 

1. Introduction. Let u be a function on a bounded closed domain 1R with smooth 
boundary in RN, N > 2. With 0 < h < I a parameter, let (h = UI(h), -h be 
mesh-domains partitioned into finite elements Tih, and assume temporarily that 

(h C 'R. (As will be seen in (1.6) et seq., the last restriction is easy to overcome 
when applying our result.) Denote by Wl ((h) the class of functions with essen- 
tially bounded first derivatives (in the distribution sense), and let Sh, 0 < h < 1, be 
finite-dimensional subspaces of Wl (6(Rh), consisting of functions X that vanish on 
ad6h and are such that XI|h C2(ih). 

Define uh = Pu E S. as the H '-projection of u; i.e., 

f Vu, Vx=f Vu Vx 

(1.1) ~~~~~1(h)1a 
(1.1)= l (-frauzX + fuy-j for all X E Sh. 

Note that uh is well defined for any continuous u. All integrals occurring are 
assumed to be exactly evaluated; hence, the influence of numerical quadrature is 
not considered, cf. Wahlbin [25]. 

Concerning the spaces Sh, certain further conditions, detailed in Section 3, are 
imposed. A brief summary of these is as follows: (i) The partitions of the _' 1Rhs are 
quasi-uniform; (ii) With 

(1.2) 6 max dist(x, a6R~), 
( 1.2) ~~~~~~~~~~~~~x E= a6.kh ( ) 

we have 8 < Ch2; (iii) For smooth functions v that vanish on a6, we can 
approximate v by functions in the spaces Sh to order h' + 6, r > 2 an integer. The 
exact conditions are easily verified in many concrete examples, including such with 
isoparametric modifications. 
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Our main result, Theorem 5.1, is that 

(1.3) IIU - UhIlL.(6%) ( C(ln h - 
XIIL.(9k)' 

where 

(1, r=2, 
10, r >3. 

For r > 3, u. is thus a quasi-optimal approximation to u. 
One would wish to apply the above result when u is the solution of a model 

Dirichlet problem 

(1.4) -Auu=f in@6R, u=O ona6i, 

so that 

(1.5) JVuh Vx = X forallX E Sh. 

In general, one has 6( 5 1 , unless: (i) 1R is convex and the partitions of the 6h 

are straight-edged, or: (ii) a6i is a polynomial curve and isoparametric modifica- 
tions are used at the boundary. Hence, in general, f is not given on all of (h so 
that uh is not well defined by (1.5) (this difficulty disappears with judicious choice 
of a numerical integration procedure). In the present analysis, it is assumed thatf is 
suitably extended tof and that f is used in the definition (1.5) of Uh. Then uh can be 
regarded as the H '-projection of a function u6 which solves the problem 

-Au" =f in 6R6, u6 = 0 on a6, 
where '6 is a domain with smooth boundary such that % U 6R C W. It is clearly 
possible, when h is small enough, to construct such domains with 
maxx e a IR dist(x, aR6A) < CS; compare (1.2) for notation. 

By the maximum principle and (1.3), one has 

IIU - UhL .(f6An6) < IIU - U611L.(6) + IU - () 

( 1.6)I r 
< 1U61 L(a6A) + C(ln inf U XIIL L(6,) 

where C can be taken independent of 8 (see the proof of (1.3)). 
From the above (1.3), or (1.6) when %, Z 1R, it is possible to derive various 

convergence estimates for u - uh in terms of data f. Consider only the "isopara- 
metric" situation; i.e., take 8 < Ch r. (In general, the highest order that can be 
obtained is IIu - UhIIL (Si.) < C(f)(ln I/h)r(hr + 8).) Assume first that 6t C 
Using approximation theory, Schauder estimates, and interpolation of function 
spaces, one may establish, for a large class of finite element spaces, that 

||IU - UhIIL ||~) ( Cihmin(l,r)(ln 
I r 

ll 

for 2 < I# r. The method of analysis indicated gives constants C, that tend to 
infinity as I tends to r from above or below. 
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For a sharper estimate when f E WoO-2, one can proceed in many situations in 
the following way (which was pointed out to us by V. Thomee): Assume that for a 
suitable X in Sh, typically an interpolant, 

IIU - XIIL. Ch/I -u Ch I(A), 

for any p < zo large enough, where C does not depend on p; cf. Ciarlet [6, 
Theorem 3.1.6]. Tracing constants in Agmon, Douglis, and Nirenberg [1], one finds 
that 

| 1 | ||W,(.a < Cp |1 f 1 llW,2(%g). 

Takingp = ln 1/h and combining with (1.3), we obtain 

IlU - UhIL (%h) S Ch (ln -h) lfll w2(it). 

A similar result has been obtained in the piecewise linear case by Rannacher [17]. 
By (1.6), one has the corresponding estimates for llu -UhllL (6n %) when 

6% ( 6R, and the domains differ by at most Chr; here the mean value theorem 
and elliptic regularity are used to handle the term IU6IL (a %) of (1.6). 

We have chosen to treat the H '-projection and the model problem (1.4) in this 
paper. This choice was made for notational simplicity. More general second-order 
elliptic Dirichlet problems, and the corresponding projections, can be analyzed by 
making appropriate modifications in our method. 

Let us briefly list other work on quasi-optimal estimates for u - uh in various 
norms. 

The question is trivial in the H '-norm. 
In the L2-norm, Babuska and Aziz [2, Theorem 6.3.8] showed that when 

Sh C H2(6g) (and 6h = 6{), i.e., in practice when Sh consists of el elements, then 

(1.7) HU - Uh L2(6J0) < C inf lIU - XIIL2(.R)* 

The result is false when Sh t H2(oVR); see Babuska and Osborn [3, p. 58] for a 
simple counterexample. In the one-dimensional situation on an interval I for Co 
piecewise polynomials, the estimate (1.7) holds provided the infimum is taken only 
over functions X in Sh that interpolate u in (Y(I) at mesh-points xj; cf. Eisenstat, 
Schreiber, and Schultz [9]. In a similar vein, in [3] the L2-norm is replaced by a 
mesh-dependent norm, 

IIVIIL(ID{X}) = (fIVIP + ( + 2 
1 

)IV(X)IP)', < p < X0, 

and quasi-optimality in this norm is verified. 
As noted also in [3], the estimate (1.3) in the maximum norm is true in one 

dimension, without the logarithm when r = 2; cf. Descloux [7], Douglas, Dupont, 
and Wahlbin [8], and Wheeler [26]. (It is also very easy to translate the methods of 
the present paper to the one-dimensional situation.) 

Concerning estimates in the maximum norm in any number of space dimensions, 
much work has been devoted to showing quasi-optimality in the Wi-norm (or the 
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norm 1 + hl IIw); cf. Natterer [14], Nitsche [15], Rannacher [17], and 
Scott [23]. A typical result is that (when 63h = 6i) 

IIu - UhI wl 6) S C inf IIu - XlI w,(6i)- 0 
x E SA 

Note that there is no logarithmic factor for r = 2; this is a recent result of 
Rannacher and Scott [18]. (An example by Fried [10] and Jespersen [12] indicates 
that the logarithmic factor in (1.3) might be necessary for r = 2.) 

In the maximum norm itself, quasi-optimality (modulo logarithmic factors or 
factors h - , e small) is previously known on plane polygonal domains, for meshes 
with or without refinements, and on convex polyhedral domains in R3; see Schatz 
[19] and Schatz and Wahlbin [21]. 

It is frequently of interest to localize stability estimates of the form above. As an 
example, one has results of the type 

IIu - UhlIL'(Q) < C(ln h) inf Iu - XIIL (Q') + CIIIU - Uhil kh, 

where Q c Q' c 6R%h and 1II I"IAh denotes some weak norm measuring global 
effects; cf. Bramble, Nitsche, and Schatz [4], Bramble and Schatz [5], Nitsche and 
Schatz [16], and Schatz and Wahlbin [20], [22]. 

Our technique of analysis in the present paper does not distinguish between 
different dimensions N and requires no relations between r and N; for r = N = 2, 
however, a shorter proof is possible; see Remark 5.3. In a broad outline our 
argument is a simplification of that in [20], but additional and lengthy details are 
needed to take into account the discrepancy between 6Rk and 6%. 

We shall use standard notation for the Sobolev spaces W_k(0) and Hk(Q)= 

W2k(Q), k a nonnegative integer, I < p < so, and for the Holder spaces C(l(Q). We 
also set IIvIIfi(2) = IIVVIIL2(2) with a slight abuse of the norm notation. Generic 
constants C and c will be independent of h and of essential variables and functions 
involved; these essential quantities are separately indicated. Two important con- 
stants which are not generic are c' and C*. 

We thank K. Eriksson and V. Thomee for many valuable suggestions in 
connection with this paper. 

2. Preliminaries. Consider the problem of finding w such that, with Ti given, 

(2.1) {-w-=oT in 6i, 

where, for simplicity, the boundary a6t is infinitely differentiable. It is well known 
that IIWIlH2(6) < Cll1lI L2( A), a result we shall use many times. Also, 

w(x) = f Gx(y),q(y) dy, 
supp ri 

where GX(y) is the Green's function for (2.1). It is known (see, e.g., Krasovski; [13]) 
that, for x,y in 6R, 

(2.2) IDxG x (y) f C(1 + llnlx-yl 1) for lal=0, N = 2, 
(2.2) lD~Gx(y)l ~ CIaIIX - yij2-N-laI otherwise. 
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Our most common use of this will be the following: Assume that dist(Q, supp q) = 

d > 0. Then, for 1 7 0, 

1( Wll WII() ?Cd2-N-1 f q(y)I dy 
(2.3) supp ' 

< Cd2 - N - '(diam(supp q)) N1/2 1Il 

3. The Finite Element Spaces. In A.1-A.6 we collect the assumptions that we 

shall need on the finite element spaces. We phrase these assumptions so that they can 

be readily verified in many concrete situations. 
Let 0 < h < be a parameter and 6, with (h C 1, mesh-domains made up of 

closures of disjoint open elements Ti, i = 1, . .. , I(h), 

1(h) 

Rh U ih 
I 

Denote by 8 = Sh the maximal distance between ad'h and a6A, 

8 = max dist(x, a@). 
xe Cad%h 

We let the notation Wk'h(p), for Q C %{, stand for the piecewise norms relative to 

the partitions above. 

We assume the following two properties of the partitions. 

A.1. (%h C 61, where a6i is infinitely differentiable. The boundaries adYh are 

sectionally smooth and uniformly Lipschitz for 0 < h < and there exists a 

constant C such that 8 < Ch2. 

A.2. There exists a constant C such that, for any f E W1(Tih), 0 < h <2 

i 1, . . . , I(h), 

A lfl < 
C{h'IIfILL(Th) + lifil W(r)} 

The assumption A.2 is easy to verify for quasi-uniform partitions occurring in 

practice. 

Let Sh = Sh(6ih) be a finite-dimensional subspace of W. ((P) n W2h(6), and 

let furthermore the functions in Sh vanish on a6Ah. Here Wl,h(6Ah) is defined by the 

norm 

WIVIIw h(6Rh /= I hI 

with the appropriate modifications forp = x. Also, HI,h = Wl,h. 

After extension by zero, we can regard functions in Sh as being in W.1(P). 
For the spaces Sh we first assume an inverse property: 

A.3 (Inverse Property). There exist constants C and c' > 0 such that, for any X in 

Sh and T = th, 

o 0 1?qDXIIP < Cwhmeer N ({ q dip)tllxll a-('r)> 

for 0 < m < I < 2, 1 < q < p < xo, where T' = {x E= T: dist(x, aT) > c'h}. 
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This assumption is like a well-known one valid for quasi-uniform partitions, 
except for the smaller domain T' on the right. Its proof, however, would be the 
same in all concrete cases. 

We shall finally list three different approximation hypotheses: 
A.4 (High Order Local Approximation). There exist integers r > 2 and M, and 

constants C and c > 0 such that the following holds. 
For any v E WOO(6g) with v vanishing on SA, there exists X in Sh with the 

following property. 
Let B = B(y, d) and B' = B(y, 2d) be concentric balls of radii d and 2d, 

respectively, where d > ch, and set Dh = B n 6-Rh, D' = B' n 6-V. Then 

h 'lv - XIIL.(DA) + llV - XII w, (DA) + hIlv - XIIw w(DA) 

(3.1) M 

? Ch''llvlw'(D') + Ch '6 E dmlIIlVIIWr(D,)- 
m I 

We have phrased this assumption in terms of certain concentric balls, but it is 
easily extended to more general domains. 

The last term on the right of (3.1) merits some elucidation: For concreteness, 
consider a space Sh which comes from a larger finite element space Sh by 
restricting functions to be zero on a6%. Assume that Sh admits an interpolant 

X = x(v) such that 

h'Ilv - XIIL,(DA) + IV - XRII WI (D,) + hIlv - XIlw2A(DA) < Ch rIIVII W,(D'). 

Such an estimate can often be derived, e.g., by use of the Bramble-Hilbert lemma. 
To obtain X in Sh, X is cut down to be zero on a%h. Often then X and X differ 

only in a boundary layer Lh of width approximately h and by the inverse property 

h 'IIx - XIIL (L*) + liX - XIJ wi(L*) + hlIx - XII WzA(Lh) 

< Ch'IIx - XIIL,L(LA) < ChI*I L,(acnB)- 

The last inequality would often be true in practical situations. If the interpolation 
process uses only point values of v, and not derivatives, then the above estimates 
can often be continued as 

Ch IVIL. (a%AnB') <- Ch '8I||v||w('wA\6Ah)nB'), 

where the last step used the mean value theorem. Therefore, (3.1) would obtain 
with M = I (and D' replaced by (6A \ 6t) n B' in the last term). Higher M are 
needed for interpolation processes that involve derivatives of v, and where conse- 
quently tangential derivatives along a6h are cut down to zero. Most often, the last 
part of (3.1) could be improved to 

M 

but we shall have no use for such an improvement. 
A.5 (Low-Order Global Approximation). There exists a constant C such that, for v 

in H2(6J) and vanishing on MA, there exists X in Sh such that 

h'Ilv - 
XIIL2(6) + IIV - XIIH'(6t) + hilv - XIIH2A(%A) < ChliVIIH2( ). 
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Let us briefly comment on how one would check A.5 in concrete cases. Since 

IIVIIL2(6\6h) < C8IIVIIH,(6A) and 11V11H(6\6h) < CS /2 IIVIIH2(,), by A.1 it suffices to 
consider the mesh-domain 6(h on the left. For N high one has to apply a 
preliminary smoothing argument since an interpolant, requiring point values, 
cannot immediately be used; see Hilbert [11] and Strang [24]. In our low-order 
case, this preliminary smoothing of v can be arranged to preserve the boundary 
condition v = 0 on adR. For, first flatten the boundary patchwise, then extend v 
oddly over the boundary, thus preserving H2, and then employ an even smoothing 
kernel. The analysis of [11], [24], combined with ideas outlined in the comment 
after A.4, could then be carried through in many practical examples. 

A.6 ("Superapproximation"). There exist constants C and c > 0, and an integer 
K, such that the following holds: 

Let Bi = B(y, id) with d > ch, and set Dh' = B, n 6h* Let w be an infinitely 
differentiable function with support in B3 and such that 

IIWII Wk(RN) < Ld-k, k = 0,..., K,andw i= on B2. 

Then for any vh in Sh there exists X in Sh with support in D, and with X -vh on 

Dh'. Further, 

IIW2Vh - XIIH'(D,4) < CLh{d 211VhIL2(D:4\BI) + d'IIVhIIHI(D,4\B1)} 

Again the above is easily extended to more general domains. 
For a discussion of superapproximation, see Nitsche and Schatz [16] and also 

Bramble, Nitsche, and Schatz [4]. The proofs there are easily adjusted to include, 
e.g., isoparametric modifications. Often, X can simply be taken as a local inter- 
polant of w2Vh. 

4. Local H '-Estimates. This section is devoted to proving Theorem 4.1 below. It 
is assumed that 6h C 6. 

The result and proof are similar to those in [16], but care needs to be exercised to 
account for the discrepancy between %i% and 6R, and to trace constants depending 
on sizes of domains. Therefore we feel that a self-contained proof is in order. 

Let B = B(y, d) and B' = B(y, 2d) be closed concentric balls centered at y and 
of radii d and 2d, respectively. Set 

Dh = B n 6h, Dh = B' n (%h 

For a domain Q, let 

Sh (Q) = X Sh: supp X Q n (h} 

THEOREM 4.1. Assume that 6h C 6R and that the assumptions of Section 3 hold. 
There exist constants C and c > 0, independent of y, d and h, such that for d > ch the 
following holds: If v E H '1() and vh C Sh with 

(4.1) fV(v - vh) Vx = o for X E SP (D,), 

then 

(4.2) liv - VhII(II(DA) ? C(llvIl,i(D^) + d'IIvIIL2(D') + d |'Iv 
- 

VhIIL2(D)) 
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Remark 4.1. Writing v - vh = (v - X) - (vh - X) for any X E Sh, the first two 
terms on the right of (4.2) can be replaced by 

inf (|lv 
- 

Xllh,(D;) + d'|lv 
- 

XL2(D)). 
X E- Sh 

Proof. We shall need a few auxiliary domains "between" Dh and D,; for this let 
Bk =B(y, (1 + I/k) * d), k = 1, 2, . . ., and Dhk = Bk n (, k = 2, 3, 4. Then 
Dh C Dh C Dh h C Dh C Dh. 

Consider first functions vh E Sh which are "discrete harmonic" in Dh2, i.e., such 
that 

(4.3) Vvh Vx = 0 for X E ShD ) 
6Rh~~~~~~~ 

We shall show then that for d > ch, c large enough, 

(4 4) ll~~~~IVhIIJ41(D,) < Cd |IlVhIIL2(DI) 

We introduce an infinitely differentiable cutoff function w, 0 < w < 1, such that 

w Il onB, suppwCB5, 

and with 

(4.5) IIwII Wk(R N) < Ckd , k = 1, 2,. 

Such a function is easily constructed by change of variables in one valid for d = 1. 
Now 

(4.6) IIVh 1 IF(Dh) < IWVh .41 (6 h). 

Here 

IVHI2IR, = JR,h `V(vh) (WV(wh) 

=fX V h v `Vhvh) + VVh WVV(`Vh) 

VW VhV(`Vh) +f VVh V(W2 Vh) 
- Vvh (VW)`h-) 

The last term on the right equals 

- V(Wvh) (VW)Vh + f VW12 v 

and hence, cancelling terms and using the discrete harmonicity of Vh, (4.3), 

IWVhIIH2(9,1) = 62IVx1 
2 + fVVh * V(w2Vh - X) for any X e Sh(Dh). 

For the rest of the proof we drop the h's in the notation for Dh, Dhk, and Dh. 
We next use Schwarz' inequality, the properties of w, and, for choosing X, the 

superapproximation hypothesis A.6. Note that, since w is supported in B5, only the 
behavior of vh on D4 need influence X, provided d is sufficiently large relative to h. 
We obtain 

IIWVhII2- (6Rh ? C2IIvhII2(4 h _(t+) < Cd LVhL2(ID4) 

+ CIIVhllBl(D 4)fhd -211Vh IIL2(D 4) + hd ||IVhII|1(D 4)} 
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Via (4.6) we arrive at 

IIVhII'(D) 
L 

Cd |IvhIIL(D4) + ChIIVhII,l(D4)d l2IIVh II L (D4) 

+ Chd l|IVh 12,1(D4) 

< Cd |2IVhII2( D4) + Chd - II Vh 112X( D4). 

In the last step we used the fact that hd -' < C. 
Repeat the above procedure, with appropriate notational changes, on the last 

term on the right to obtain 

lVh II2,(D) < Cd |2IVhII2 L(D4) + Chd -'(d |21VhII2 + hd - IIVhII H(D3)) 

< Cd 21IVhII2 (D3) + Cd 2h2IIvhII2_1(D3). 

The inverse assumption A.3 is now applied to the last term to complete the proof of 
(4.4). 

We proceed to prove (4.2). This time we employ a cutoff function, still denoted 
by w, such that 

Wo 1 onB2, supp w c B', 
and satisfying (4.5). Let P be the H '(6th)-projection to Sh. Note that since 
6% C 6A, P is also the H 1(R)-projection to Sh, if functions in Sh are extended by 
zero. Now, 

|| V - VhIII|1(D) = RoyV - Vhllli'(D) 

< (4.)V - 
P(v)001,1(6%*) 

+ IPQOV) 
- 

VhIIJ41(D)- 

Using (4.5), we have 

(4.8) RoWV - 
P((-)V)11i(6Ah) < ||WVJJ,41(6j,,) < CIIVIIIVI(D') + Cd'IIVIIL2(D'). 

Since w_ 1 on B2, using (4.1) it is easily seen that P(Qov) - vh E Sh is discrete 
harmonic on D 2, (4.3). Therefore, from (4.4), 

(4.9) IlP(oV) 
- 

VhIIJ41(D) 
, Cd '||P(WV) - VhIIL2(D 2) 

< Cd 'JJP(WV) - |VIIL2(D2) + Cd'||v - VhIIL2(D2). 

By (4.7)-(4.9) we find that 

(4.10) IIV - Vahlll(D) < IIVIIH,(D') + Cd IIvIIL2(D') 

+ Cd'JJV - VhIIL2(D') + Cd'1IIP(wv) - coIIL2(D')- 

To handle the last term on the right, we utilize a duality argument over the 
domain 6A, which has H2-regularity for the Dirichlet problem. Thus, 

(4.11) IlP(wv) - WVIIL2(D') = sup f(P(WV) - ov)P. 
CEC (D') 
IT11 L2 1 

For each fixed p, let 41 be the solution of the problem 

-AA4 = 9 in 6R, 4 = 0 on a6. 
Since P(wv) = 0 on aA, we have, from Green's formula, 

(4.12) f(P(wv) - wv)p = f V(P(wv) - xv). VAl - fWv S I/ + 12. 
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Here, by the properties of the projection P, by the low-order approximation 
assumption A.5, and by elliptic regularity, 

II= - V(wv)V(4' - Pi) < CJJwvJJ(6A,)h 114iH2(6A) 
(4.13) 

< Ch{ |IVIII(D') + d IIVIIL2(D,} 

For the term I2 we note that it only enters if B' n a6Ah is not empty. We have 

(4. 14) 1I21 <- 1WVlL2(a%t)1 V4J1L2( a 6AI) 

Since a6Yh is uniformly Lipschitz, one knows (or easily deduces) that 

l(V I L2(06Ah < C( 1 1(O L2(%i) 1'(O1lH A"i)) 
1 

(4.15) < C(d IIVIIL2(D') + IIVIIL2(D')11V1II1(D')) 

< C(d - 
+d11VIIL2(D +d 2 

VIIHI(D')). 

Further, 

| V 01L2(a6jth) < C(|||141111(%i)IN1+11H 2(%i)) 

Here, by elliptic regularity, 141: 1H2(6ALh) < C. Also, 

114I2-1 (6J) = | X 4HL2(D') 

Since B(y, 2d) n asvh is not empty, 41 vanishes at some points on the boundary 
aii that are within a distance 0(6) < d of D'. Considering the domain B(y, 4d) n 
6 D D ', 41 vanishes on a part of its boundary which contains a fixed fraction of its 
total surface measure, and hence, by Poincare's inequality, 

111IL2(D') < Cd14'1 H'(6A), 

where it is not hard to see that the constant may be taken uniformly in d and y. 
Therefore, 11 41JHI(6A) < Cd, and hence, IV41IL2(a6A) s Cd"'2. Combining this with 
(4.14), (4.15), 

1121 < C(|| V I L2(D') + dllvll 1I(D) 

So, by (4.10)-(4.13), since hd-' < C, 

l|v - Vhllf(D) < CIIVIII(D') + Cd 'IVH1L2(D') + Cd ||V - VhHL2(D'). 

This completes the proof of Theorem 4.1. 

5. The Main Result. This section contains the main result of the paper. 

THEOREM 5.1. Let the assumptions of Section 3 hold. There exists a constant C such 
that if u in C0(6t) and Uh in Sh, Uh = Pu, satisfy (1.1), then 

(5.1) u - 
UhIHL.(Oh) < C(ln h ) inf IIu -X11L() 

where r = 1 for r = 2, r = O for r > 3. 
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The rest of the section is devoted to a proof of Theorem 5.1. We first note, for 
simplicity in writing, that it suffices to establish the estimate 

(5.1)' I - UhIL (6ah) S C(ln U ) IL.(6); 

for then (5.1) would follow upon writing u -uh = (u - X)- (uh - X) for X E Sh. 

We may also assume in the proof that u E= C(g). 
For further simplicity in writing, we shall often employ the convention that, in 

norms and integrals over the mesh-domain (h, the domain is surpressed in the 

notation. Thus, hIUhIL = IIUIIL=6Rh). We remind the reader that 6,Rh C 6, is as- 

sumed. 
Let xo be a point in 6Ah where 

(5.2) I(u - Uh)(XO)l = IIU - UhhIL. 

We shall first show that we may assume that dist(xo, a6Ah) > c'h for some c' > 0; 

cf. Remark 5.1 below. 

LEMMA 5. 1. There exists a constant c' > 0 such that if dist(xo, a'6t) < c'h, then 

(5.3) IIu - UhhIL. < 2IIUIIL. 

Proof. Set So = dist(xo, a6%h). Since uh = O on a%,h, we have, by the mean value 

theorem, 

IIU - UhIIL < IU(XO)l + IUh(XO)l < IIUIIL. + OIIVUhIlL. 

Using the inverse property A.3, 

IIU - UhhIL S IIUIIL. + C80h 'IIUhIIL 

< (1 + c0oh')IIUIIL + c6oh'llu - UhIIL. 

If c6oh - < 1/3, we obtain (5.3). This proves the lemma. 
Thus, in the remainder of this section we assume that dist(xo, a6Ah) > c'h, 

c' > 0. We need some more notation. Let T be a finite element in the partition that 

has xo in it, and let T' be the part of T with dist(T', a6Ah) > c'h. Then xo E T' is 

assumed. Assume also that c' is so small that the employment of the inverse 

property A.3 over T' is justified. 
The notation just introduced will be fixed for the rest of the section. 
We have, by A.3, 

I(U - Uh)(XO)I < IIUIIL. + Iuh(Xo)I < IIUIIL + Ch / N1UhIIL2(r) 

(5.4) < IIUIIL + Ch / |2U 
I|L2() 

+ Ch / 211U - UhI L2(') 

< CIIUIIL + ChN/211U _ 
UhIIL2("). 

We proceed to estimate the last term on the right. We first use a duality argument: 

(5.5) IItU - UhI L2("') = Sup (U - Uh)T. 

g)E 40(7') 7 

11T11L2 1 

For each fixed q,, let v be the solution of the Dirichlet problem 

(5.6) -Av = 9p in 6, v = 0 on a@. 
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Such a v can be considered, loosely, as a scaled smooth "Green's function" with 
singularity at xo. By Green's formula, and letting vh E Sh be the H -projection 
of v, 

f(U - Uh)9 = -f u n+ f V(U-Uh) * VV 

(5.7) 
6 anan 

=- u # +fV.(-hE I+ 
86Rh anfl6j 

V(V- h I 
h2 

To estimate II, we have 

1i -- J JIUIIL IVvI, 

and we appeal then to the following result. 

LEMMA 5.2. For v as in (5.6) with TP E Co (T') of unit L2-norm, 

(5.8) I IVvI?ChN/2 

(5.9) IVvl < C6h N/2 

Admitting this lemma for a moment, we have 

(5.10) III| S ChN/2I|U11L. 

To estimate I2, use Green's formula over each element, 

12 = - Lh UA(Vh) + LU a (V - Vh). 

Then, from A.2, 

1121 ? CIIUIIL(IIV(V - vh)ll W.h + h'11V(v - Vh)IIL). 

We now record the crucial 

LEMMA 5.3. For v as in (5.6) with q9 E (2'(T') of unit L2-norm, and vh its 

H '-projection, 

(5.11) IIV(v - vh)I w,.h(6Ah) + h 'IIV(v - vh)IL,(6A) ? Ch /2(In n ) 

The proof of this will be given later in this section. Using the lemma, 

1I21 <- Ch N12 (ln h 11 U11LX. 

Combining the above estimate with (5.10) into (5.7) and (5.5), 

- Uh 1I L(,') < Ch (ln h 11U11LX 

so that by (5.4) the desired result (5.1)' obtains. 
It remains now to prove Lemmas 5.2 and 5.3. 
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Proof of Lemma 5.2. Let us first consider 

Ja lVvl =f at) 
which equals 

av 
sup_ J 1 

17IL,,.(a '.) = 1 Jae an n 
71ICO 

'I 
(a a) 

If w denotes the harmonic extension of -1 into 6, then, since v = 0 on Ma, Green's 
second formula gives 

| an ? = -J (?v)w = fTzw 6 ChN/2IgT11LI11W11L (6A) ? ChN/2 

where we used the maximum principle in the last step. Hence, 

(5.12) fiVvi ? ChN12. 

We need to show the same estimate with a%t replaced by aYLh. To do so, let us 
work on a coordinate patch, where, after a smooth transformation, 

x = (X'XN), X' E2 ' c c RN-i 

a. = {x: XN = 0, x' EQ', 

a h = {x: XN = b(x'), x' E Q 

with A. 1, 0 < b(x') < CS < Ch2, and where b(x') is sectionally smooth and 
uniformly Lipschitz. Note that hence (1 + lVbI2)'/2 is uniformly bounded below 
and above so that we may freely go from integrals over Q' to surface integrals over 
the corresponding part of a'th, and vice versa. With Dv a generic first derivative, 

Dv(x', b(x')) = Dv(x', 0) + 
b ) a Dv(x', z) dz. 

Here, v(x) = > GX(y)T(y) dy, so that, by the properties of the Green's function, 
(2.2), (2.3), and since dist(T', aJlh) > c'h and IzI < Ch2, 

a 
Dvx______ q)y) d < ChN/2 

aXN Dv(x' ) CY - (XT, Z)I 
( Ix - xIN + hN 

with xO = (X4, XO,N). 
Remark 5.1. To ensure the above estimate is the reason for our assumption that 

dist(T', a 6t) > c'h and the ensuing additional work in Lemma 5.1. 
Hence, using (5.12) and an elementary calculation, 

lDv(x', b(x'))l dx' 

< I Dv(x', O)I dx' + ChN/2C dz dx' 
Il Jo J~~~jx' - 4IN + h N 

< Ch N12 + ChN/>2-6 ( ChN,2. 

This proves (5.8). 
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For (5.9), in the transformed coordinates we have the estimate (5.8) over any 
level piece (x = (x', xN), x' E Q', xN = k, k S C6}. An integration in the XN 

direction then gives (5.9). 
This completes the proof of Lemma 5.2. 
We are now left with proving Lemma 5.3; this will occupy us for the rest of this 

section. 
Proof of Lemma 5.3. Set e = v - Vh. We shall first show that 

(5.13) JIVeJL < Chr/2+I(ln -h)' 
It will be seen later that this is the hard step in proving (5.11). Recall our notational 
convention that a nondisplayed domain equals 6h. 

We need some auxiliary notation. For this, recall our fixed notation xo and T', cf. 
(5.2) and the discussion immediately before (5.4). Set 

(5.14) A= {x: 2- < Ix -xol S 2J+'), j integer, 

(5.15) Qj =A. n 6t1h 

Assume for simplicity that 6th = U' 0 Qh. Next let C. > 1 be a quantity to be 
chosen later (sufficiently large but independent of h) and let J = J(C., h) be the 
integer such that 

(5.16) 2-J >C*,h >2-J-1. 

Further introduce 

(5.17) B*= {x: Ix - xol S 2-'), = B* n6h 

For C* large enough, Q,, contains T' which contains xo. Also set 

(5.18) dj = 2-j, 

and 

A= A> U A. U A>+, A;" = A>, U A; U A;+ 

(5.19) U Ajv = A'il uAjivU Ajiv 1; 
1Z2 A1' ( = Q> U U Q+ . Qv = A v n 6 

Note that 

(5.20) = j U *; 
j=0 

assume also that C is large enough so that with a positive constant c, 

(5.21) dist(T',Ajv) > cdj, j = 0,.. .,J+ 1. 

A sketch of the situation might be helpful, Figure 1. (In the sketch we place xo 
quite close to a6Ah, this being the harder case. Note also that the sketch is not to 

scale.) 
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ev~~~~~~~~~~~~~oe 

FIGURE 1 

We have now 

(5.22) liVee1 LY, = IllLtL(f) + E fVell Lj(Qj) 
0 

Here, by the low-order approximation property A.5 and by elliptic regularity for 
(5.6), 

||e|Ia)< CCF / 1hN1 Jlellit(,^ 
IIVIlL~)< CC$j/2hNV/2IIIty) 

(5.23) K CC*2h N1'2 inf j|V - XtlA (K) (5.23) ~ ~~~~~~~~~X E- Sft 

CC 2/2+ j vjj HC2Q) CCIV/2hN/2+ 1 

Next, 

IlVeCL(Q) K 2N4/2 l1ellIH(0, 

so that, with 

(5.24) S = NdN/2IIeIIA,(0) 
0j, 

we have, by (5.22), (5.23), 

(5.25) j| Vefl L CCL#/hN/+ +2 
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Remark 5.2. Note that for the function v, which is harmonic away from the 
region Q, one has 

cd N2 II viiH'(Q() < ||vii Wl(Q) ? Cd VIIvH '' 

with positive constants c and C. A similar estimate can be derived for the "discrete 
harmonic" function vh. Therefore, the bound in (5.25) appears sharp. Note further 
that the right-hand side of (5.25) can be bounded by a weighted H '-norm, viz., 

/ 1\ 1/2/ NI2 
C(ln -h f (dist(x, T') + C*h) IVe(x)12 dx 

cf. [14], [15], [17]. 
To estimate each term in S we use the local H '-estimates of Theorem 4.1. Since 

Aj can be covered by a bounded number of balls of radius dj/4, Theorem 4.1 
applies with Dh = j, Dh = Q, and d = dj. Heeding Remark 4.1, we thus obtain 

dN1/2 ei(,) < d_N/2C inf (|lv - XIiJ'(q;) + djJ||v 
- 

XIIL2(u;)) 

(5.26) ~~~+ Cd.N/2lllL( 

? Ca7 inlf (|iV- Xii wX(Q) + d)ii|V Xi LX(g)) 

XEE Sh 

+ CdN1/2 'IIeIIL2(Q;) 

By the local approximation property A.4, and since hdj' X C, 

(5.27) ( 

? ChrliiViiwo (A,,n6R) + Ch'6 E drn|Iilvil Ay"6i 

X~~~~~~~ = Sh 

m= 

Recall, (5.21), that dist(Q', Aj') > cdj, c > 0 may be assumed. Since qp is supported 
in r', the properties of the Green's function, (2.2), (2.3), give 

(5.28) iivii w, (A;'n6i) < Cdj2-N-lhN/2 = 1 ..., Max(r, M). 
Substituting now (5.28) into (5.27), and the result of that into (5.26), we obtain 
(5.29) dN/2ieii . C>2-rhN/2+r-l + CdaShNN/2- 

+ Cd)N/2 IieIILA(Q;) 

Inserting this into (5.25) and summing the geometric series and, for r = 2, noting 
that the sum involves approximately ln(l/h) terms, and also remembering that 
8 < Ch2, we find that 

iiVeiiL (6 ) < CC*N/2hN/2+I + 2N/2S 

< ccN/2hN/2+1 + ChN/2+1Xj2-rhr-2 + ChN12+I(6h 2)d 

(5.30) O O 

+ C dj/211eL 
0 

~~ ~ + (ln hIf + C~ jN iii 
0 
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Remark 5.3. If r = 2, N = 2, we may now easily conclude the proof of (5.13). 
For then we estimate the last sum in (5.30) by 

J+1 I ( j 1/2 2/ / 
J 
IIe11L2(Q,) 1 C(ln h) IIeflL2 

< Ch2 In -)/; 

the last estimate here is well known by the low-order approximation hypothesis A.5 
and a duality argument. 

In general, our argument is more involved; to estimate Jeli1L2(Q) we call on an 
additional local duality procedure. Write 

(5.31) 1e1IIL2(Q') S up feii 

I'1n1 L2 1 

For each such fixed 7, let w be the solution of 

-Aw=7 in6i{, w=O ona'%. 

Then, for any X in Sh, 

(5.32) feii = fVe. Vw = fVe V(w - X). 

We shall now construct an approximation X to w that, roughly speaking, will be 
the low-order approximation of A.5 on Qi, and will be the high-order local 
approximation of A.4 outside of Qj. The blending of the two will be accomplished 
via "superapproximation", A.6. (We thank K. Eriksson for his help in this argu- 
ment.) 

Let w, 0 < w < 1, be a smooth function on R N such that (cf. (5.19) for notation) 

(5.33) 1 on A)"', supp 2 C AJ, 

and 

(5.34) IIwII Wk(RN) < Cdj , k = 0, . .. , K (cf. A.6), 

where C is independent of j. (Construct such a function on unit size domains and 
then scale.) 

Let XH be the high-order local approximant to w of A.4, and let XL denote the 
low-order global approximant to w of A.5. Set 41 = &2(XL - XH), and let 4AS E Sh 

be the "super"-approximaion to 41 given in A.6. Then 

(5.35) As-0 outside Q.i, 

and 

(5.36) A4s- in Qs'. 

We now set X = X + 4; then, on ',X= XH+4=X and on 6h \ Qj, 

X = XH* 
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We use the X just constructed in (5.32). Then, 

fVe. V(w-x) =V Ve V(W2W+( (-_2)W -XH-W_) 

= fVe. V(W2(W -XL)) 

(5.37) G 

+ fVe . V((l - W2)(W - XH)) +Jv e. V(41 - 4s) 

=J1 + J2 + J3. 

We proceed to estimate the three terms above. 
For JI: By (5.33), (5.34), and A.5, 

1J11 < CIIeIIii (6AfnA,,)(dj|IIW - XLIIL2(6G) + IIW - XLIIfHi(6A)) 

< C(0IVvIIL2((oA\oi)nA,-) + IIeIIPI(6ihfnA,v))h. 

By the Green's function representation, v(x) = f7 GX(y)rp(y) dy (cf. (5.6)), and by 
(5.21), 

|| V ||L2(( 6A\,Rh) n A8v) < C(dj )||vvl r(i6^ , 

< C(dN -1) 
d'2 NhN/2 CS /24/2-N/2hN12. 

Thus, 

(5.38) j1 + ChIIeI1,1(6h nlA). 

For J2: Note that 1- - 2 is supported in 61 \ 
A."'. 

Since 6R \ Aj"= (6h\ Aj") 
u ((6A \ 6^\j") 

1J21 = Ve * V((1 - W2)(W - XH)) 

(5.39) < IIVeIIL,(6Jvh)C{ djcIw - XHIIL.(6G,\A;") + IIV(W - 
XH)IIL.(6JVh\A")} 

+ IIVVII L,(G,\6j)C { dj 'II Wll L((6J\i\,)\A;") + | 

We note that for k #j-3, . . .,j + 3, k > J + S say, we have by A.4 and the 
Green's function representation w(x) fI Gx(y),q(y) dy, 

dj1'IIW - XHIILX,(Q,) + IIV(W - XH)IILo(Q,) 

M 
? ChrI lWit wo (6JLfA,) + Ch'cS 2 d,k ||W|| wr(6nA,*) 

m=1 

1 ChW'l(max(d6, n))2NrC4'dkN/2 M ~ ~ ~~ = 

< Ch max dk (max(d2 , dj))2NmdN/2 
m 1 

Since Rh \ A)"' is the union of such Qk and a small inner "core" domain, for which 
a similar estimate is easily derived (for C* large enough), we find that 

(5.40) dj'IIW 
- 

XHIIL.(%,h\A\") 
+ IIV(W - XH)IIL,%R,h\A;") 

< Ch'-Idj2-N/2-r + Ch-1dI- N/2. 
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By Lemma 5.2, 

(5.41) IIVVIIL,(61\ 4,) 
< Ch /12 

and, again by the Green's function representation, 

(5.42) dj 'IWIlL ((6pR\6pA ) + Cdj /2* 

Using (5.40), (5.41) and (5.42) in (5.39), we see that 

(5.43) <J21 ? CjjVeIIL (6R ,{h' rd.2-N/2-r + h'-&idj' -N/2} + ChN128d1-N12 

For J3: By (5.35) and (5.36) and A.6, 

IJ31 = fV e V(41 - 'Ps) < I I e I I Hi I( th n AJV) I4 I1 - 4s I I H'(h nA,)\A;,) 

S C ||e| H'(6 nA) h{ d IIXL - XHII L2((9 
"A;)\A;') 

+dj'IIXL - XHbIH1((6RhfnA,v)\A')} 

C lell hfd.2 - WIlL2 + dj'IIXL - WII|HI 

+ dj|2IIXH - WllL2((6RjhnA,-)\AJ") 

+dj'IIXH - WIjI((6jthflA,)\A, )}. 

Here, by A.5, 

di2IIXL WIIL2 + dj'IIXL - WIlli' < CIIWIIH2(6R) < C. 

Further, by A.4 and the Green's function representation, 

dj 2IIXH - WIILA(eOhn Av)\A;,) Cdj dj IIXH WIl ((6i . 

< CdN/2 2{ hr|W||wr (\A) + Ca E dj IIWIIW 

<Cd 2h2 + Ch 
M 

dm-d\ -N)mdN/2 C 
m = I 

cd1-2{hrd2-N-rdN/2 aEdm-I2 N-mN2 C 
m=I 

and, similarly, 

dj'IIXH 
- Wii((6RtnAJ )\A;) S C. 

Thus, 

(5.44) IJ31 < Ch I I eII H ,(6Rh,r-,Ajv)- 

Using (5.44), (5.43) and (5.38) in (5.37), and the result in (5.32) and (5.31), 

|el L2(Q}) ? ChIlell H'(6. nA;) + ChN/2+16112d12 -N/2 

+CllVellL,(bRh)(h rIdj2N/2 
r + h -1d1 -N/2) 

+ ChN/2&Sdj-N/2. 
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Hence, from (5.30), 

IIVeIiL, CC$V2hNI2+1 + 2N/2S I ChN/+(C*/ + (In h) ) 
J + 1 

+CIIVeIILj (h r-'dj-r + h-1 ) 
(5.45) 0 

1+1 

+ CEf hdj_NI2 llellH(RAV 
0 

1+1 

+C i (h"N/26 + h N/2+161/2d - 1/2) 
0 

Here, remembering that 6 < Ch2, 
J+1 ~ ~ ~ ~~~1 C 

Zk(hr-dl-r + h-'6) < Chr-I(C*h)l + Ch In < 
______ o h (C*)r- 

Further, cf. (5.24) for notation, 

J+ I 

hdjN/12 ||lell| I 
oti n A,,) 

0 

< C hdjN/2-llell + Ch(C*h)N/2-' e II 
0 

C S + CCN/2h N/2+1 1- _S+ CCN/<lhN/2+ 1 

Also, 

+1 

(hiZ26 + hN2+6/2d/2) h In + h ChN1Ch 1 
0h 

Inserting the above three estimates in (5.45), 

IIVeIIL, < CC$N/2hN/2+1 + 2N/2S 

? ChN/2+1(C*N/2 + (In hY) )+ IVeIL, c +r C hjj 
~~(C * 

)rl 

Taking now C* large enough, we deduce in succession that 

S < ChN/2+1 (C/2 + In_ + *IVeIIL, 

and that 

IIVeJIL, ? ChN/2+(C / + (In h )). 

This proves the desired estimate (5.13). 
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It remains now to show (5.11). In the notation of (5.14)-(5.21), 
i 

11 eil W,h(6,Ih) = IVeil W.,h(i2) + E ||Ve|i Wlh(12). 
0 

Here, for any Xj E Sh, by the inverse property A.3 (where, by subtracting constants 
over each element, it is seen that it suffices to include the pure gradient term), 

IIVell Wh(01) < IIV(v - Xj)II1 wh(i2) + ChIIIV(Xj - Vh)IIL(Q;') 

< CI(v -Xj, Q', 1) + Ch'1iiVeiiLL(Q;) 

where we have used the shorter notation 

I(g, Q, p) = iiVgil wi.h(1) + h -'II Vgil ,(p. 

Similarly, 

I IVeIl w:Ah(u) < CI(v X*, Q* U Qu , 1) + Ch iVeL I(Q UQ ). 

Hence, 

iiVeil <iA(6jI) ? CI(v - X*, Q* u QJ, 1) + CE I(v - xj, Qj, 1) 
(5.46) 0 

+ Ch -'ilVeiiLI(K. 

Here, by low-order approximation A.5, 

I(v - X*, Q* u Q,, 1) S (8C*h) N/2 I(v - 6X % 2) 

< C(c*h) /2iiVIIH2(6A) < ChN12. 

By local approximation A.4 and the Green's function representation of Section 2, 
using (5.21), 

I(v -Xj, Q, 1) < 4N JNI(v - x> ) 
M 

( CdjNhrllvll W, (qnA1") + Ch 26 E djm lhIvII oR, nA; 
(5.48) 

o 
+C m = IW0 A 

Cd)N(h r-2d2-N-rhN/2 + Ch - 2adl-Nh N/2) 

< ChN/2(hr-2d2-r + d 

where the last step used that 6 < Ch2. 
Inserting (5.47) and (5.48) in (5.46) and using (5.13) for the last term of (5.46), 

ii Vell w;,h(6a,) < ChN/2(n - ) +hN/2 (hr2d 2r + dj) ? ChN/2(ln I) h ~~~0h 

This completes the proof of Lemma 5.3. 
Theorem 5.1 is now completely verified. 
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Cornell University 
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