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A Superconvergent Finite Element Method 
for the Korteweg-de Vries Equation 

By Douglas N. Arnold* and Ragnar Winther 

Abstract. An unconditionally stable fully discrete finite element method for the Korteweg-de 
Vries equation is presented. In addition to satisfying optimal order global estimates, it is 
shown that this method is superconvergent at the nodes. The algorithm is derived from the 
conservative method proposed by the second author by the introduction of a small 
time-independent forcing term into the discrete equations. This term is a form of the 
quasiprojection which was first employed in the analysis of superconvergence phenomena 
for parabolic problems. However, in the present work, unlike in the parabolic case, the 
quasiprojection is used as perturbation of the discrete equations and does not affect the 
choice of initial values. 

1. Introduction. The Korteweg-de Vries equation arises in the modelling of long 
unidirectional water waves of small amplitude and similar phenomena. See [6] for a 
discussion. We shall consider the periodic initial value problem. Thus, given a 
smooth 1-periodic function uo, the solution u(x, t) is defined by 

u, + 2uux + u,xx= O, x E R, O < t < T, 
(1.1) u(x, 0) = uO(X), x E R, 

u(x, t) =u(x + 1,t), x E R, O < t < T. 

In [7] the second author presented a finite element procedure for approximating the 
solution. In this procedure spatial discretization is accomplished by a Galerkin 
method with the trial and test spaces consisting of piecewise polynomials of 
differing degrees. Timestepping is by an unconditionally stable three-level scheme 
which requires the factorization of only a single periodic band matrix once for all 
timesteps. It was shown that as the mesh is refined the approximation converges in 
the L2 and H' norms at the optimal asymptotic rate for the degree of the trial 
functions employed. 

In this paper we introduce a related finite element method which retains these 
desirable properties and is, in addition, superconvergent. This means that as the 
mesh is refined the function values at the nodes of the partition converge with an 
asymptotic rate roughly equal to twice the global rate. The present method is 
distinguished from that of [7] by the presence of a particular small time-indepen- 
dent forcing term in the discrete equations. This term is closely related to the 
quasiprojection introduced by Douglas, Dupont, and Wheeler in their paper [5] 
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establishing superconvergence for finite element methods applied to linear second- 
order parabolic and hyperbolic problems, and generalized to nonlinear parabolic 
problems in [1]. However, unlike in these works, we do not use our quasiprojection 
to alter the initialization of the method. Rather the defining equations themselves 
are altered. 

The extra computational work involved in the present scheme as compared to 
that of [7] is small and does not increase with the number of timesteps, although 
additional code is required. The authors feel that the present scheme supercedes the 
earlier one at least whenever high accuracy is desired. The implementation of the 
scheme is summarized in Section 5 of the paper. 

An alternative to the Korteweg-de Vries equation has been proposed in [3]. 
Superconvergence of a standard finite element method for this and other Sobolev 
equations has been established by related but simpler means and without the use of 
a quasiprojection [2]. 

2. Notations and Preliminaries. Thejth derivative with respect to x of a functionf 
will often be denoted d'f, and dxf will be abbreviated to dJ. Similarly, d'f denotes 
the jth derivative with respect to the temporal variable. For small j the subscript 
notation will also be used: f f f,, etc. 

If J is an interval and m a nonnegative integer, H'(J) shall denote the usual 
Sobolev space. When J is omitted the unit interval I is assumed. The addition of 
the subscript p indicates periodicity: 

Hp 
M 

{f EE H m(I) i d'fI' = ?, j = O, 1, . . . , m -1} 

The norm on this space is the usual Hm norm and will be denoted by Ilm or 
simply 1 if m = 0. The dual norm to Hm with respect to the Ho inner product is 
denoted 11 Ii-m Each of these spaces is a Hilbert space and, for m positive, a 
Banach algebra. 

Bona and Smith [4] have established regularity results in these spaces for the 
equation (1.1). In particular, if uo is a smooth periodic function, then u is smooth 
and there is a constant C, depending only on Ijuoljj and s such that 

IIduIIs-3j < C, 0 < t < T, 

for integers s > 2 and j > 0 satisfying s - 3j > 0. This is shown in the proof of 
Theorem 3 of [4] for the pure initial value problem and s > 3. The case s = 2 and 
that of periodicity conditions are covered in the appendices. 

We let (0, 41) = f1 ?(x)4+(x) dx denote the inner product in Ho. If S is any 
subspace of Ho, then 

S= cf-S (f, 1) = O} 

is the closed subspace consisting of functions with mean value zero. Note that on 
the space H 2 the inner product AQ(, 41) = (ox, 4x) gives rise to a norm equivalent to 
the H ' norm. 

A bounded linear operator A: Ho -* H. is defined by (Ao)x = 0 - (0, 1). Note 
that A maps Hm-' boundedly into Hpm for m > 0. In fact 4 H+ IIA4Iim + 1(0, 1)1 is 
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equivalent to the m - I norm. Also Al = 0 and AO. = - (, 1). Moreover, for 
4, 4, E Ho 

(AO, 41) = (AO, 41 - (4,, 1)) = (AO, (A4/)x), 

and hence A is antisymmetric on Ho. 
The finite element spaces are defined with reference to partitions 6 = fxi}m O, 

where M is a positive integer depending on 3, and 0 = xo <x * < < XM = 1. 
For a fixed integer r > 2, let 9r,(8) be the space of all continuous functions on I 
whose restriction to each interval [xi 1, xi] coincides with a polynomial of degree 
less than r. The trial and test spaces we shall use are, respectively, 

S=SH = H n ,(8) and S* = SS* = Hp2 n 6r+I(S). 

Note that dim S = dim S* = M(r - 1). 
An elliptic projector P: H' -> S is defined by A(P14, 41) = A(4, 4,) for all 4, E S 

and (P14, 1) = (4, 1). We set V = P,u. We also let PO: L2 __ S denote the L2 
projection. 

Let h = h6= max(x, - x, ). It is well known that there is a constant C such 
that 

IIP1w - wll + hIIPw -wll < Chsllwll, w E HS, I < s < r. 

In addition, we assume that, for some constant C, PPOwIll < Cllwlll for all 
partitions under consideration. This is the case if we restrict ourselves to a 
quasiuniform family of partitions. It implies that 

(2.1) 1 ?f1l <C sup{(4,l 4) I 4' E S, II4,II1 = l} 4 E S. 

Let N denote the number of timesteps and k = T/N the timestep. We shall 
introduce numerous functions W defined on a subset of (0, 1, . .. , N) and taking 
values W" E Ho. In particular with each function f: [0, T] -* Ho we have an 
associated function defined by fn = f(nk). When f is C2 we also define an 
approximationf tof' by 

(2.2) f = J? + kf,? + k2f,?0/2. 

If W is defined on (0, 1, . .. , N), then we define D+ W, DW, and W by 

D+ Wn = ( Wn+ I - Wn)lk, n = O, 1, . . .,I N - 1, 

DWn = (Wn+l - Wn-1)12k, n = 1, 2, . I ., - 1, 
Wn = (Wn+l' + Wn')/2, n = 1, 2, ..., N - 1. 

Having set forth these notations, we define the fully discrete finite element 
solution to the Korteweg-de Vries equation as the function U: (0, 1, . . ., N) -* S 
satisfying 

(DU, X) - ((U)2, XX) + (UX XX) = (e, x)j 
(2.3) 

X E S*, n = 1, 2, .. .,N1. 

Here the perturbation E e S and the initial functions U0 and U' have to be 
specified. We shall always assume that c is independent of n and satisfies 

(2.4) 11?l1, < C{k2 + hr-'} 
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In the case e _ 0, this method was analyzed in [7] and optimal order H' and Ho 
error estimates derived. Note that once c, U?, and Ul are given, the determination 
of U requires only the factorization of a single periodic band matrix, once for all 
timesteps. 

Observe that the mean value of the solution u of (1.1) is independent of time. If 
U? and U' are specified such that (U?, 1) = (U', 1) = (u0, 1), as they will be, then 
the method (2.3) is equivalent to determining U: (0, 1, . . . , N) -* S + (u0, 1) = 
(W E S I (W, 1) = (u0, 1)) suchthat 

(2.5) - (ADU + (U)2,)+ A(U,,)= (e, ), IL E S, n = 1, 2, ..., N- 1. 

Assume that E E S is determined by 

(2.6) (E )-(A W + (U')2, ) + A(U0 + kW, I), I E S, 
for a given W E S. Then (2.5) implies that 

(2.7) DU' = W. 

In this way the perturbation c serves to impose a specific value for DU'. This will 
be used later to guarantee that I D(un - Un)II, is sufficiently small. Let us remark 
in passing that the technique of perturbing the discrete equations to force the initial 
value of a time difference or derivative is applicable more generally. 

Now, let e = u - U denote the error. The H' convergence estimates for the 
method (2.3) are stated below. These estimates generalize those of Theorem 5.1 in 
[7] and may be obtained by an argument similar to the one in [7] by considering the 
perturbation E as an additional error term. 

THEOREM 2.1. Assume that the perturbation E satisfies (2.4). Then there is a positive 
constant C, depending on IIuoIlr+9, such that if h < C- and llelll, Ile'lll, IID+e0IIj, 
and II D + e' I1, < C, then the error in the solution U of (2.3) satisfies 

Ilenll < C(k2 + hr- + IleIll + IIe'II,), n = O, 1, . .. , N 

and 

IID+enII < C(k2 + hr-' + IleIll + Ile'll + IID+e0II, + IID+e'll,), 
n = O, 1, . . . , N-1. 

Note that Theorem 2.1 does not provide error estimates in terms solely of known 
quantities, because D +e' is not known a priori. This difficulty may be overcome by 
proper choice of the perturbation E as indicated in the previous paragraph. In 
Section 4 we shall make particular choices of U0, U', and E. It should be remarked 
that the methods of [7] may also be used to prove optimal order error estimates in 
Ho, but we shall not need these. 

3. The Superconvergent Perturbation Method. In this section we specify the 
perturbation function E and the initial values and state the superconvergence 
theorem. To motivate our choice of E, we consider first a semidiscrete finite element 
method for the linear equation u, + ux + uxx, = 0 and outline in this simpler 
context the main ideas leading to the superconvergence estimate. The fully discrete 
nonlinear case will be treated in full detail in the following section. 
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The exact solution u: [0, TJ -* Hp to the linear equation is determined by its 
mean value and the equations 

(Ju,,ut)- A(u,,u) =0, it E- Hp, 0 At < T, 

where Ju = Au, + u. The approximate solution U: [0, TJ -] S + (u0, 1) is defined 
by the system of ordinary differential equations 

(J U, tA( U,) = -(,,) E50 < t < T. 

The perturbation e E S will be specified below. The initial value of U is taken to 

be V(O) (for the time being V denotes the elliptic projection of the solution of the 

linear equation). In order to be sure that the discretized system has a solution, we 

assume that POAS = S, or, equivalently, that PoS* = 5. However, no such as- 

sumption will be necessary when we consider the fully discrete method. 

Our goal is that the error e = u - U satisfy in addition to the global estimates 

(3.1) Ilell, + 11e,11, < Chr- , 0 t < T, 

also the superconvergent estimate 

(3.2) 1 e(x- t) I<Ch2(r-1), CS, 0 <t <T. 

We begin by comparing U to V. Letting Z0 = u - V, 00 = V - U, we have 

(JV, )-A(V,) = -(JZ0,), 4 E S, 0 t < T, 

so 

(J@O, 1A)-(0o, 1)=-(JZ0 -E ), S , 0 < t < T. 

The quasiprojection is a sum whose terms, Zi: [0, T] -- 5, are inductively defined 

by the relation 

A (Zi,) =(JZi - I-J(Zi - 1)(O), SE5, 0 < t < T, i = 1, 2 .... 

From this definition follow four essential consequences, which will be proved in the 

nonlinear case. First, setting t = 0, we have Zi(O) = 0 for i = 1, 2..... Second, the 

successive terms decrease in size. In particular, forj = [(r - 1)/21 

(3.3) IlZjll + Ild,Zjll < Ch2(r-) 0 < t < T. 

Third, using the techniques available for analyzing superconvergence for elliptic 

problems in one dimension, one can show that 

(3.4) IzC(S t)j Ch2(r1), x Ed, 0 < t < T, i = 0, 1, ... j. 

Finally, the definition of the quasiprojection is contrived so that if we substitute 

X.. I Zi into the form associated with the linear differential operator, the time- 

dependent terms form a telescoping sum: 

=(JZi, A - (Zi, ((T 

AJZj Zo) + 
Jf E Zi(O)), , S , 0 < t < T. 
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Therefore, setting 0 = 00 - i I Zi, we have 0(0) = 0 and 

(3.-5) (JO, A A(O, i) j - + i(~ E i 0 - ', ), 0 <S,O< T. 

Now, e = 0 + Xj_o Zi, and so, in view of (3.4), to establish (3.2) it suffices to 
show that 11011, S Ch2(r-l) for all t. This may be accomplished by the method of 
energy estimates if the quantity JZj + J(X2-o ZiXO) - E, appearing on the right- 
hand side of (3.5), is of order hur-l) in Ho. In light of (3.3) this is so if and only if 

-J(ii-o Z,XO) is of this order. A particularly convenient choice is e = 

J(X:io Zi)(O). With this choice (3.5) becomes 

(JO, t)-A(O,.) = -(JZj -J(Zj)(O), t), I E 5, 0 < t < T. 

It then follows that O,(O) = 0. This enables us to show that 11e,(O)II, < Chr-1, and 
thus to obtain the optimal order estimate on e, stated in (3.1) by an analogue of 
Theorem 2.1. Such an estimate is essential in the nonlinear case. 

Returning now to the Korteweg-de Vries equation, we define the fully discrete 
finite element method which will be analyzed in the next section. The definitions of 
the quasiprojection and perturbation we now offer will remain in effect for the 
remainder of the paper. These are similar to the definitions given above but are 
complicated by the nonlinearity and time discretization. 

Let ZO = u- V. For i = 1, 2, . . ., j = [(r- 1)/21 define Zi: [O, T] -S by 

A(Zi, IL) = (Ad, + 2u] Zi-, -[A dtZi + 2uZ I], ) (3.6)L'-+2Z,]4 
E- 5, 0 < t < T. 

Recall that the bar notation represents an extrapolation to t = k defined in (2.2). 
We now determine our finite element method by fixing values for U?, U 1, and E. 
Let E E S be defined by (2.6) with 

(3.7) W = V, - E dt Zj 
i 1 

Choosing initial values U0 = V?, U' = V, the approximate solution is then de- 
fined by (2.3) or, equivalently, (2.5). 

By (1.1) and the definitions of U0 and V, we have for all ,u E S that 

A(U + kV , ) = A(uo + kiu, Z) = A(u', ) - (d2(u0 + ku - u'), y) 

= (Au,' + (u')2, ) - (d2(u0 + kui - u'), 4) 
Hence, 

- (A + (U)2, L) + A(U0 + kV,,u 

= (A(- i ) + A(u,' -u) + (u') -(U') - + ku,-u'), ) 

= (A dtZo + 2u'Zo + 2u-(u- ii) + A(u,' - iit) 

-d 2u0 + ku, -u 1) - (e 1)2, IL). 



A SUPERCONVERGENT FINITE ELEMENT METHOD 29 

Therefore, from (2.6), 

i 
(E,) = (A E d,Zi + 2u'ZO + 2u'(u' -) 

i-O~~~~~~~~~~~~~~ 

+ A(u,' - ii) --dx2(u0 + ki-, u') - (e')2, - k , A( dZ,, i) 

=E(A dtZi + 2Ui z), 
i=O 

(3.8) J 

+2(u + 2)(u' - u-) - 2i Z, + A(u,' - i-) 

-dx2(uO+ kit - u') -(e1)2, u) 

-k , A(dtZ.,,L), GES. 
i-l 

In the next section we will show that 

(3.9) 1l,6111 + Ilell1, + Ile'll, + IID+e01I, + IID+e'll, < C(k2 + hr-I), 

and hence, by Theorem 2.1, we have the global estimates 

(3.10) max IleIll, + max IID+eIll, < C(k2 + hr- ). 
O<n<N 0(1n -N- I 

The major result of this paper is the following theorem, which is proved in the next 
section. 

SUPERCONVERGENCE THEOREM. There exists a positive constant C (depending on 
IIU0IIr+31+9) such that if h < C-1, then 

ien(5)l <( C(k2 + h2(r-1)) 5 E8, n = 0, 1, ... , N. 

4. Proof of the Superconvergence Ibeorem. The first step of the proof is the 
estimation of the terms of the quasiprojection. As is often the case in analyses of 
superconvergence, an appropriately constructed family of negative-order Sobolev 
norms is essential. Following [5], [1], we fix a particular knot x- E 8 and define for 
positive integral s 

HS = Hp n Hs((x-, Jx + 1)). 

The norm on this Hilbert space is the restriction of the usual norm on 
Hs((5- 5- + 1)) and will be denoted III - Ills. Note that H' = Hp with the usual 
norm. Since x- is a node, the functions in S approximate functions in Hs well. 
Specifically, there is a constant C such that 

inf l14)- t.llll < Ch-1lllllls, 4 E HS 1 < s < r. 

LEMMA 4. 1. Given p E HO, there exists a unique function 4 E Hp such that 

(4.1) A (p,4)=(A,P), 4iE H1. 
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Moreover, if p E Wl, then 4 E Hf+2, and there exists a constant C, independent of p 
and x, such that 

(4.2) III4)IIIs+2 S C ilpills. 

Proof. By the Riesz representation theorem there is a unique element 4 of H. 
satisfying (4.1). It is easy to see that 4 is the solution in Hp of the differential 
equation 

-oxx = P- (p, 1). 
Since jk(xjI S IlxII S IIPll S IlIplIll regularity of the Dirichlet two-point boundary 
value problem implies (4.2). El 

Next define for each Z E H 1 and each nonnegative integer s 

IIIZIIK-S = sup{A(Z, 4) I 4 E (Hs+2)^, 1110111s+2 = ')- 
The importance of these norms depends on the fact, proven below, that IIIZ "I, 
dominates the nodal value Z(x-) for Z E Hp,. This property is of course not 
possessed by the more familiar norms IIZIL_s. 

LEMMA 4.2. Let s > 1 and v E Ls. Then 

I(vZ, p)l + J(AZ, p)l S C lZpII,_sIIIpIIs Z E Ht, p E J, 
The constant C depends on s and v, but is independent of x. 

Proof. Since lllvpllls Clllvlllslllpllls, it suffices to bound I(vZ, p)l only in case 
v = 1. Define 4 as in Lemma 4.1. Then 

I(Z, p)l = IA(Z, 4)1 < I1IZIIIsIII4IIIs+2 < CIZ 11IsIIIlPIIls. 

Also 

J(AZ, p)l = I(Z, Ap)l ? CIIIZIII-slllApllls ( C2Z1pIll. 

LEMMA 4.3. For all integers s and all Z E Hp, 

A30x) < Clllzills-S 
The constant C may be taken to be independent of x. 

Proof. Note that if s < 0, the desired result holds with C = 1. Let G be the 
periodic function defined by 

G(x) = 6(x- -x)(x -x- 1) + I] /12, x < x < x~ + 1. 
Then G E (Hs)' for all s > 0 and IIGI IIs < IIG 1112. It is easily checked that 
Z(x) = A(G, Z), and so IZ(xI)l < II G 1112111Z IIZIs E 

We are now ready to analyze the quasiprojection. 

PROPOSITION 4.4. Let s > -I and m, i > 0 be integers such that s + 2i < r - 2. 
Then there is a constant C, independent of xi, for which 

111a'ZII_ < Chr+2i+s 0 <t < T. 

Proof. By induction on i. From the definition of V and the approximation 
properties of the space S, we have 

IIdtmZ0II2 = inf A(dtmZo, damu-,u) <CIIdXd,mZ0IIhrl. 
, E s 



A SUPERCONVERGENT FINITE ELEMENT METHOD 31 

Since the definition of the elliptic projection also implies that (d,mZo, 1) = 0, it 
follows that IId1mZ0Zo1I < Ch'- 1. To estimate IIIdF'ZoI IK < s < r - 2, we consider 

E H si2 i Then 

A(d,mZo, 4) = inf A(dtmZo, 
4 

-,) < C111dmZo7011111110Is+2, 

so _IIIaCZohI r This proves the proposition in case i = 0. 
Suppose now that 0 S i < (r - 1)/2. By differentiating (3.6) m times with 

respect to t, setting ,u = dmZi, and invoking the inductive hypothesis, we observe 
that 

m+3 

IIId, mZJI1 < C I sup _11d1/Z1_111 < Chr+211. 
1=0 O<t<T 

To complete the proof we must show that 

Illd,mZilll - 2 -Chr2H, 
0 < s S r-2-2i. 

First let m > 0. For 4 E (Hs+2)^ with 111111s+2 = 1, 

A (d/mZi, 4) = inff [ A (dmZi, - ,) + (A dm + 'Zi - 1 + 2d/m(uZi -1), ) 
ttES 

- (Adtm +lZi -, + 2dtm(uZi- 1), -k -] 

m+1 m+1 I 
< C hs+1IIJdImZiJJJ, + E Illdt/Zi,-II-s-2 + hs+l E Illd/Zi-1111, 

1=0 1=0 

which together with the inductive hypothesis yields the desired estimate. In case 
m = 0, we obtain the result by essentially the same argument, including one extra 
term from (3.6). E1 

Recall thatj = [(r - 1)/2]. 

COROLLARY 4.5. If r is even, then 

I IldmZIll < Ch2(r 1) 0 < t < T. 
m=0 

If r is odd, then 

ld%mZjIll S Ch2(r1) 0 < t S T. 
m=0 

COROLLARY 4.6. For i = 0, ,... j, 

Zi(X-, t)I c(k2 + h2(1)) E, 0 < t < T. 

Proof. Set m = 0, s = r - 2j - 2 in the proposition and invoke Lemma 4.3. 

COROLLARY 4.7. For i = 1, 2, . . .j, 

IZi1II1I + Iz11I, + 11 Zi 11I < C(k2 + h2(r-l)). 

Proof. From (3.6), 

lldxZi11I S IIA(dZZi? - d,Zi-1 )11i1 + 21lu'ZiL I uzi-111 l, 



32 DOUGLAS N. ARNOLD AND RAGNAR WINTHER 

so IlZilIll < Ck3. Therefore, iiZiii, S iZ1111 + liZi - Zillll < Ck3. Finally, 

IlZi111 S IlZ 111l + k sup IdZiII I C(k2 + h2(r-l)) 

by the proposition. El 

COROLLARY 4.8. The global estimates (3.10) hold. 

Proof. It suffices to prove (3.9). From the choices of U0 and Ul it follows that 

Ile11, + le'll, + IID+e0II, S C(k2 + hr-I) 

By (3.7) and (2.7), we have 

De' = (Du'-DV') + (DV'- V) + d,Zi, 
i= 1 

and hence, by Proposition 4.4, IIDeII < C(k2 + hr-i). Therefore, D+ee = 2De'- 
D + eo is of the same order. 

It remains to bound 11,H1*. From (2.1) (with 4 = E), (3.8), and the proposition it 
follows that 11E,61 S C(k2 + hr-I ). [l 

Before proceeding to the proof of the superconvergence theorem, we prove one 
final lemma. 

LEMMA 4.9. For each q > 0 there exists h,, > 0 such that for h S h. and p E Hp 

IIPI12 < 7IIPxII2 + IIP0ApII2. 

Proof. Clearly 

IIPI12 (Ap, px) < 2 IIPxII2 + IAIAPII2. 

Now 

IIApII2 = 11POApl12 + II(Po - I)ApII2 < 11PoAp112 + Ch4IIpxII2. 

The lemma foliows with h, = (q/2C)"/4. E0 
We now turn to the proof of the superconvergence theorem. Setting 00 = V- U 

and 0 = 00- I Z, we shall employ the decomposition of the error e = 0 + 
=0 Zi. In light of Corollary 4.6, it suffices to prove that 

(4.3) 110111 < c(k2 + h2(r-l)), n = O, 1, . .. , N. 

This we shall accomplish by the method of energy estimates. 
From the Korteweg-de Vries equation and the definition of the elliptic projection 

we have 

- (ADV + (U)2, ) + A(V,M) 

=(ADZo -A(Du - a) + (U)2-"2 , yES. 

Comparing this equation with (2.5), we see that 

(4.4) B(0o M) = (JZO- -A(Du - i,) + (U)2-(U)2 (e)2 ,), yES, 
where Jo = ADO + 2uo and B(O, t) = -(JO, ,u) + A(O, 4). Note that the linear 
operator J and bilinear form B are time-dependent. 
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The quasiprojection was constructed so as to cancel those terms of magnitude 
greater than O(k2 + h2(- 1)) entering into the right-hand side of (4.4). Indeed we 
may rewrite (3.6) as 

B(Zi,) = -(J(Zi -Zi 1) + A d,Zi - I + 2uiZi I 

+A(DZi-I- dZi-Z1) + 2(uZi- - uZi-), 1) M E S. 

Therefore, 

i= 1 i- o 

j-' 
- (A(DZI - d,Z) + 2(uZ, - uZ), 4 , S. 

i=O 

Combining this equation with (4.4) and (3.8), we have 

(4.5) B(9, M) = (Q, j), n = 1,2 .. ., N - 1, 
where Qf E S is defined for 1 < n < N - 1 by 

_ ~~~ ~~~~~~~ _ (U2 ) (Q, j~~) = (JZ1 -A d,Zj - 2u-Zj - A(Du- i,) + (u)2 - (u)2-(e)2 

+ E [A( DZ - d, Z.) + 2(uZ, - uZ,) I-2(u' + )( u ) 
i=O 

j 

+2u- Zi-)A(u,' + d2(uo + ku-,-ul) + (el)2, 
i = 1 

-k E A(d,Zj,,), MES. 
i-i1 

Using Proposition 4.4, Corollaries 4.5, 4.7, and 4.8, and (2.1), we have 

max IIQ'IlIL + max IIDQnll_l < C(k2 + h2(r-l)). 

Note also that 90 = _In= Zi, and 9' = V1 - V- EiI Zil, so (4.3) will be 
established if we show that 

(4.6) max lnl < C(| ||001 + 1191111 + max IIQnll_ + max IIDQnll_). 

Setting 
m 

m = 11901112 + 1191112 + max IIQI111 + max IIDQnII , + k i 110n1 
"iii + ~"' 

<1n <N-1I 2<n<N-2 n=O 

we may further reduce to proving that 

(4.7) ii mii2 S m = 2, 3,..., N. 

For, by the discrete form of Gronwall's lemma, (4.7) implies (4.6). Finally, by 
Lemma 4.9, (4.7) reduces to the two estimates 

Ildxm 112 + Ildxom+112 < C(-m+l + IIomII2 + 11m+1112), 
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and 

(4.9) |IP0A9ml12 + jjP0A9m+1112 I cm+1 m = 1, 2, .. ., N - 1. 

Each of these inequalities will follow from an appropriate choice of ti in (4.5). 
First, let ji = DO', giving 

Ildxon+'112 - Ildxon-112 = 8k(unon, Don) + 4k(Qn, Don), 
n= 1,2,...,N-1. 

Sum this equation as n ranges from 1 to m, m < N, using the summation by parts 
formulas 

m m-I 

2k , (Qn, Don) = -2k E (DQn, 9n) + (Qmr Om+I) 
n=1 n=2 

+ (Qrm-I Om) _ (Q1, 90) _ (Q2, 01) 

and 
m m-1 

2k Y, (unOnI Don) = -k (D un, onon+1) + (Um, 9mom+1) - (ul 9091) 
n=1 n=1 

Since un and D+un are bounded, (4.8) follows easily. To prove (4.9), set ti = PoAOn 
in (4.5), getting 

11pAon+ 1 112 _11 p AOn-11 12 

= 4k[- (2u"9n, POA9n) + A(9n, pOAMn) - (Qn, pOAOn)]. 

Again, this equation is summed over n = 1, 2, . .. , m < N. Because we have 

assumed that PO is bounded in H 1, the inner products may be bounded in a 
straightforward manner to yield (4.9). This completes the proof of the superconver- 
gence theorem. 

5. Implementation. In this section we discuss the implementation of the proposed 
method. The key steps are summarized at the end of the section. 

An efficient implementation should be based on (2.3). Except in the case r = 2, 
the spaces S and S* have local bases with elements supported in at most two 
subintervals, and so the coefficient matrix indicated by (2.3) will have periodic 
banded structure. This matrix is independent of the timestep. (In case r = 2, S* has 
a basis consisting of quadratic B-splines with supports in three subintervals.) The 
equivalent form of the method given by (2.5) should be avoided in practice since, 
with a usual choice of basis, it leads to a full matrix problem. 

From (2.3) we see that in addition to U0 = V0 and U ' = V, the quantity (e, Xx) 
must be computed for all X in a basis for S*. This is accomplished by first 
computing the function W given by (3.7) and then using (2.6). 

We shall sketch a practical procedure for the computation of U?, U 1, and (e, Xx 
For simplicity we assumej = 1, i.e., that the trial functions are quadratic or cubic. 
The procedure in case of higher-order elements follows along similar lines. 

The initial profile is given. From the equations 

u, = -2uux - uxxx 

u,, = -2(uu,)x -u,xxX 

u,,, = -2(u,u, + uul,)x -uxx 

u,,,, = -2(3u,u,, + uu,,,)X - u,,,xxx, 
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d,mu0 is determined for m < 4. Next dmVO E S + (dmuo 1) must be determined 
satisfying the equations 

(5.1) A (dam V?0, ) = A (dm, ,I), M 1 s. 

It is suggested that d,mV0 be computed as -(4, 1) + (dmuo, 1), where 41 E S0 = 

(X E S I X(O) = 0} is determined by 

(5.2) A(4, t) = A(dmu 0, ) i E S0. 

The space S0 is preferred to S since it has a local basis consisting of functions 
supported in only two adjacent subintervals on [0, 1]. The matrix is thus banded 
(without corner elements such as arise in periodic problems). Its factorization 
should be computed and stored as it will be used several times. 

Once the functions dm V0, m < 4, are computed, then U?, U 1, and also dmZ0? are 
known. Next d,aZ?, m < 3, must be computed using the defining equation (3.6). 
Differentiating this equation m times and setting t = 0 yields an equation for 

= d,mZ? of the form 

(5.3) A(+ M) =Sf , . 

Here the unknown function 0 is sought in S, andf E HO is known. As above, one 
can avoid the space S in favor of S0 by computing 4 E S0 such that 

A (+, A) = (f -(f, 1), A), tL E So, 

and setting + = 4-(4, 1). Since every function in S differs from a function in S0 
by a constant, it follows that A(O, tL) = A(4, tL) = (f - (f, 1), tL) for all M S, 
whence (5.3). 

Finally, it is now straightforward to compute the necessary inner products (e, X) 
from (2.6) and (3.7). 

For convenient reference we list here the major steps of the computation. 
1. For m = 0, 1, . . ., 4: 

1.1 solve (5.2) for E SO; 
1.2 set d"mV0 = - (4, 1) + (dmuo 1); 
1.3 set dmZo = dmuo - d VO. 

2. Set U? = V?, U ' = V. 

3. Find 4 E So satisfying 

A(,, jL) = ([AdtZOO + 2u0Z] -[A dtZ + 2U-zo ) 

-2(u%Z' - u-Z0,l )(t,L 1), A & SO. 

4. SetZ?= 4, -(4,1). 
5. For m = 1, 2, 3: 

5.1 find 4 E So satisfying 

A(4, t) = ([Adm+'Zoo + 2d,m(uZO)O], M) 

-2(dtm(uZO)?, 1)( A1, 1), 11 E So; 

5.2 set dmZ? = 4-(4 1). 
6. Set W = V,- dtZ1. 
7. Set(c, X) = -(AW+ (U')2, X) + A(U? + kW, XX E S* 
8. For n = 1, 2, . . ., N- 1 define Un' l S + (u0, 1) by (2.3). 
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6. Errors in the Data. In the proof of the superconvergence theorem we have 
assumed that the quantities U?, U ', and W entering into the scheme given by (2.3) 
and (2.6) were taken to be V?, V, and V, - EJ d,Zi, respectively. In fact, it is 
sufficient that these values be approximated to order k2 + P '), as is sketched in 
the final paragraph. 

Let WO = V,- i= I d,Zi, and let e0 be the corresponding solution of (2.6), i.e., 

(6.1) (Ec, Mt) = -(AWO + (U')2, tL) + A(U0 + kWo, M), E S. 

Consider the method given by (2.3) and (2.6) with U?, Ul E S + (uo, 1) and 
W E S arbitrary. Supposing that the quantities 1U0 - Voll1, ii U' - V-1,, and h 
are sufficiently small, minor modifications to the argument of Section 4 yield the 
estimate on the error en = un - U' 

Ien(-)I < C{k2 + h2(r-) + iiUO - V0II, + iiu'- Fitl 

(6.2) +I li - OI l_ + IIW- W0112 + IID+e0l12}, 

Jx ES6, n = O, 1, . . . , N. 

Also from (2.1), (2.6), and (5.1) we obtain 

lIE - eoili C(I W - Wi OI2 + kil W - Wolll}. 
It follows that if U0 - V?, U'- V, and W - WO are O(k2 + h2(rl)) in ap- 
propriate norms (e.g., in H 1), then the superconvergence theorem stated at the end 
of Section 3 holds. 
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