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A Collocation-Galerkin Method for a First Order
Hyperbolic Equation With Space and Time-Dependent
Coefficient

By David Archer and Julio César Diaz*

Abstract. A collocation-Galerkin scheme is proposed for an initial-boundary value problem
for a first order hyperbolic equation in one space dimension. The Galerkin equations
satisfied by the approximating solution are obtained from a weak-weak formulation of the
initial-boundary value problem. The collocation points are taken to be affine images of the
roots of the Jacobian polynomials of degree r — 1 on [0, 1] with respect to the weight
function x(1 — x). Optimal L*(L?)-norm estimates of the error are derived.

1. Introduction. In this paper we propose a collocation-Galerkin scheme for an
initial-boundary value problem for a first order hyperbolic equation in one space
dimension with a time- and space-dependent coefficient.

Collocation-Galerkin methods were originally introduced by Diaz [3], [4] for the
two-point boundary value problem. These methods were introduced in order to
define collocation-like schemes for problems in which the local behavior of the
solutions was best represented by spaces of lower continuity than required by the
collocation scheme. The continuity constraints removed were replaced by condi-
tions on the nodal jumps. It was shown in [3], [4] that certain Galerkin equations
impose conditions on certain jumps of the approximating function across the
nodes. For a second order problem, the L2-Galerkin formulation imposes jump
conditions on the first derivative, while the H ~!-Galerkin formulation imposes
conditions on the jumps of both the function and its derivative. For elliptic partial
differential equations, Wheeler in [7] has described and analyzed a procedure that
uses an interior penalty L2-Galerkin formulation to control the jumps across the
elements.

In this paper we extend this class of methods to initial-boundary value problems
for a first order hyperbolic partial differential equation. The collocation method for
this class of problems was described and analyzed by Archer in [1] using continu-
ous piecewise polynomial spaces. The scheme presented here uses collocation on
discontinuous approximating spaces. The continuity conditions of the approximat-
ing space at the nodes are replaced by Galerkin equations similar to those
described by Baker in [2] using a weak-weak formulation of the initial-boundary
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38 DAVID ARCHER AND JULIO CESAR DIAZ

value problem. Like Baker’s scheme, this scheme is analogous to H ~'-Galerkin
methods, more specifically to the collocation-H ~!-Galerkin methods proposed by
Diaz [5] and Dunn and Wheeler [6].

In Section 2, the collocation-Galerkin scheme is defined and some notation is
introduced. In Section 3, the convergence analysis is presented. To this end, we
introduce a first order projection with respect to the space variable and derive
optimal global estimates for this projection. The remainder of the analysis consists
of comparing the collocation-Galerkin solution with the first order projection. The
use of estimates derived for this projection and the triangle inequality then leads to
the desired result. Similar ideas have been used by Diaz [5] to analyze a colloca-
tion-H ~'-Galerkin method for parabolic problems with time-dependent coeffi-
cients.

2. The Hyperbolic Problem and Some Notation. In this section, we describe the
first order initial-boundary value problem under consideration, introduce the
continuous in time collocation-Galerkin scheme for this type of problem, and
define some notation to be used in the analysis of the scheme.

2.1. The Initial-Boundary Value Problem. Consider the first order hyperbolic
initial-boundary value problem

% + %(a(x, Hu) =f(;c, 1), (x,0) eI xJ,
(2.1) u(0, t) = g(2), telJ,
u(x,0) = yy(x), x€1I,

where I = (0, 1) and J = (0, T). Assume aq, a,, a,,, 4, a,, and a,,, € L*(]), uni-

formly in ¢. Also assume that there exists a positive constant g, such that
ap < a(x, 1), (x,0) €I X J.

Before describing the collocation-Galerkin approximation to (2.1), we introduce
some notation. Let § = {0 = xy < x; < - - - < xy = 1} be a partition of / with
L =(x_y,x)h=x;—x_,fori=1,...,Nand h = max, .,y h. We assume
that the class of partitions & is quasiuniform; that is, there is a constant o,
independent of A, such that ok < min, ;. k. For a positive integer r, denote by

P.(D) the class of polynomials of degree not greater than r restricted to the set D,
and let

M, = M_,(8) = {v: 0|, € P(I),1 <i <N},
and for an integer k satisfying 0 < k < r, define
NG, = M(8) = H**'(I) n M, N {v: v(1) = 0}.

Let J,_, be the Jacobi polynomial of degree r — 1 on I with respect to the weight
function x(1 — x). The collocation points are defined to be the affine images in
each subinterval of the roots p; of J,_,. The N(r — 1) collocation points are then
given by

xX; = X;_y + hp, 1<j<r-1L1<i<N

The collocation-Galerkin method determines a differentiable map U: [0, T] —
O ! which satisfies (2.1) at the N(r — 1) collocation points and a weak-weak
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form of (2.1) with respect to M. Thus, for ¢ € (0, T}, we require
(U, + (aU), — f)(x;,1) = 0, 1<j<r—1,1<i<N,

(U, V)= (U,aV,) = (£, V) + a0, )g()V(0), V € N,
and fort =0

(2.20)

(2.2ii) %(“(U— W)emy, =0, 1<j<r—LI<i<N,

(U_uo»an)=0» Vec_')fu),
where (¢, ¥) = [, ¢, ¢ is the L-innerproduct on /.
2.2. Semidiscrete Innerproducts. In order to analyze the method (2.2), we restate it
in a semidiscrete variational form that uses the semidiscrete innerproduct and

bilinear forms that are introduced in this section.
A subspace of 9Ny important to our presentation is defined by

Z;=24(8) = {v € MGlo(x;) =0,i=0,1,...,N}.
Z§ can be characterized by the property
(2.3) MG = Z§ & M.

Let the positive weights w;,, i = 1, ..., r — 1, be the unique choices such that
1 r—1
J X = p() dx = 3 wple).  p € Py (D).
j=1

Let v and ¢ be defined on I, and let v satisfy v(x;) = 0,0 < i < N. Then define the
discrete bilinear form

(9, 0): = "iril W,M"_f)

, 1<i<N,
/=1 7l =p)

and

N
(p0) =2 (&0

i=1

Note thatif ¢ € P,_(I;) and v € Z,

(¢, 0); = f, #(x)0(x) dx = (&, v);.

Now let ¢ be defined on 7 and let y; € I satisfy (¢ — ¢,)(x,) =0, 0 <i < N.
Let ¢, = ¢ — ¢, and note that y,(x;) =0, 0 < i < N. For a function ¢ defined on
1, let

<¢’ 4’>: = <¢» ‘l/2>,' + (¢, 4’]),’» 1 <i < N-
Notice that if ¢ -y € P,,_ (1)), then
(2.4) (b, )i = (&, ¥):-
In particular, if € M ' and ¢ € MY, then

(2.5) {o, ¥ = (¢, ¥).
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For a function a € L*(I)) with first derivative a’ defined on each I, we define an
additional semidiscrete bilinear form JC(-, -) by

-4 4
(JC(¢’ ‘l’) - < dx (a¢)7 ‘l/2> ( ’ )’
where ¢, and , are as above. Note that if $ € IN_, and y € I, then

d
i}C((P, \1/) - - (¢» azx' ‘P)y

when a € P(1)), for each I,.

With the foregoing notation, it follows that U(-, 1) € 97! satisfying (2.2) also
satisfies
26) (U, V) + 33U, V)={£V)+ a0 ng()V(0), VM.

The use of relations (2.5) on Egs. (2.6) shows that the collocation-Galerkin
method is equivalent to finding U: [0, T] — 9N_,! satisfying
(U, V) + IUU, V)= {f, V) + a0, )g(t) V(0), Veongted,

(U, 0) — uy, V) =0, V € Iy,

Notice that because the solution u to the initial-boundary value problem (2.1)
also satisfies Egs. (2.6), we have
28) (U, V)+ XU, V)=Lu,V)+ H(u, V), Ve teJ.

Before proceeding with the analysis, we introduce some additional notation. Let

E denote a fixed interval. For integer s, H*(E) denotes the closure of C®(E) in the
norm

2.7)

s 1/2
1AW oy = ( 2> ||ﬁ')||2LZ(E)) , 520,
i=0

and

|/ £ f(Ox() d¥]

s <0,
0~ xEC®(E) Xl 1 - +E)

”f”H’(E) =

respectively, where | f ||2Lz(5) = [ fA$) d¢. Also, let T € (0, ) be fixed, then
define forp = 2,00

L7(0, T; HY(E)) = {0: [0, T] = H*(E)| l|oll oy < 0},
where
T 1/2
lolrcen = ( [ o€, Dlie )
and

loll Loy = sup [0, Ol gky-
0<I<T

1/2
d,) .
H(E)

For simplicity we shall suppress the dependence of E whenever E = I.

Also for g a positive integer, let

ak
at

q
uwmmnmw»=(2 N

=0 Y0
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An estimate for the H ~'-norm of elements of 97!, which we use in our
analysis, is given in the following lemma. The proof is presented in the appendix.

LEMMA 2.1. If F € W\, then there is a constant C, independent of h, such that

F,
”F‘llli_l < I(F, l)l + C sup I( > X)l .
O x € MG [IxIl 2

We now state some well-known inequalities that we shall use later. Let u be the
length of the interval E. There exist constants C, and C,, independent of u, such
that for ¢ € H'(E)

(2.9) llbll L=y < Cl{ 22| ey + #_|/2||¢||1_2(£)}»
and for ¢ € P(E),s > 0,

(2.10) 9’1l .2e) < Co'19ll 2y (inverse property).

3. Error Analysis. Let u denote the solution to (2.1), and let the map U:
[0, T] — 9N, denote the solution to (2.3).
The central result of this paper is given by the following theorem.

THEOREM 3.1. Let u denote the solution to (2.1), and let the map U: [0, T] — ON_}!
be the solution to (2.2). If u, u,, and u,, € L*(0, t: H'(I)), then for h sufficiently small,
there exists a constant C independent of h, such that

N 1/2
lu = Ull w1, 22 < C [( > W |ul3e,r: H'(l,.)))

i=

N 1/2
+h(2 hizr_2||u||212(o.r;H"'(lz))) }

i=1

In order to prove the theorem, we introduce the first order projection. In the
following two sections, we compare this projection to both u and U, obtaining the
estimates that we use in the proof of this theorem.

3.1. First Order Projection. In this section we introduce a map W: [0, T] —» O}
via a first order projection of u with respect to the space variable and derive error
estimates for this projection. Since the coefficient a is time-dependent, in this
section we also obtain estimates for time derivatives of u — W.

The map W: [0, T]— O'7,! is defined, for t € J, by

. 9 d . .
(3.10) a(aW)(xij, 1) = a(au)(xij, 1), 1<j<r—11<i<N,
and

(3.1ii) (W,aV,) = (u,aV,), V € M.

The estimates of u — W are contained in the following theorem which sum-
marizes the results of this section.

THEOREM 3.2. Let u be the solution of the initial-boundary value problem (2.1) and
W the solution of Egs. (3.1). If, for some integer k > 0,

k
9% ¢ 1o, T3 H'(1)),
ok
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then
kw
ark
Furthermore, there exists a constant C such that

<cs (

€ L(0, T; On}).

Vi

32 :
(€)) o

2 1/2
L"(H’(l,-))) .

We divide the proof of Theorem 3.2 into several lemmas. In Lemmas 3.2 and 3.3
we consider the case k = 0. The case k > 1 is a consequence of Lemma 3.4. In
Lemma 3.1 we derive a duality result that is used in the analysis of the first order
projection.

ak N 5
2w 5w

i=1

LP(LY)

LemMa 3.1. Let m € LX(1) with n, € LX), 1 <i < N. Let £ € H'(I) satisfy
&(1) = 0 and
¢
-az = x €l

Also let x € O satisfy x(x;) = &(x,), 1 <i < N. Then for h sufficiently small there
exists a constant C, independent of h, such that

ud d
(33) Il < c{ ) h.-unxnLz(,,)||squzu,.,} ~(mazzx)

Proof. By the assumptions on a it follows that

&3

axL

, < |2
Let{ = § — x; then
_ %)Y _ Y _(, &
(n,m) = —(n,aax) = —(n,aax) (n,aax).
Notice that {(x;) = 0; thus
A aE) = [ 22) . S (2m
("’08X) h (n, BX) +2 (ax’asb)i

i=1

N
<C { Il 2812 + 2 IIWXIILz(,,.)Ilflleu,)}
i=1

N
< C{hllﬂllzL2 + 2 hi”nx”Lz(l,)llgx”Lz(l,)}'
i=1

Thus taking A sufficiently small concludes the proof of the lemma.
In order to prove Theorem 3.2, we introduce a map R: [0, T]— 9U~,' and
derive error estimates for u — R and W — R. The map R satisfies, fort € J,

. oR du . .
(3.4i) a(x,.j, t)—a(xij, 1), 1<j<r—-11<i<N,
and
(3.4ii) (R,aV,) = (u,aV,), V €M,.

Estimates for u — R are presented in the following lemma.



A COLLOCATION-GALERKIN METHOD FOR A HYPERBOLIC EQUATION 43

LEMMA 3.2. Let u be the solution to (2.1) and the map R be the solution to (3.4). If
u € H'(I), then, for h sufficiently small, there exist constants C, and C, independent
of h, such that

e

< Ch" Y ul| e
‘Lz(l,) = ” “H (1)
and

N 1/2
o2
Hu—mm<C(2thWm).

-

Proof. We first demonstrate the existence and uniqueness of R. From (3.4i), by
interpolation we conclude the existence and uniqueness of R . To show that R is
unique, we assume that both R, and R satisfy (3.4). Then E=R, — R is a
constant on each subinterval /; that we call 8. Now, using the Galerkin equations
(3.411), we find

(E,aV,)=0, V €9,

Fori =0, l , N — 1, let V, be the continuous piecewise-linear function such
that Vi(x;) = §;, 0 <j < N. The space Mg is the linear span of these functions.
Hence by taking V=V, i=0,. — 1, since a(x, ) > a; > 0 for (x,t) € 1
X J,

xl
f adx>0, i=1,...,N.

Xi—1

Thus B, = B, ="--- = By =0, which implies that £ =0 and establishes the
existence and uniqueness of the solution R to (3.4). By (3.4i) and interpolation at
the collocation points, we have

ot - 7

< Ch 7y

Lz(l.) oy

Lety = u — R, and let ¢ € H () satisfy ¢(1) = 0, and

d¢
—aa— N x el

Hence, by Lemma 3.1 and (3.4ii),

N 1/2
2 2
(RZERS C( 21 hiz""’X”Lz(li)) .
i=
The estimates for W — R are contained in the following lemma.

LEMMA 3.3. Let u and the maps W and R be the solutions to (2.1), (3.1), and (3.4),
respectively. Then, for h sufficiently small, there exists a constant C, independent of h,

such that
2 1/2
-}
L*(1)

”W—mw<c[mu—mm+(2h4

i=1
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Proof. Let E= W — R and e = u — R. Then, at the collocation points because
of (3.1i) and (3.4i), we have

aE) () = 2 (a(W W) (x,) + 2=(alu = R))(x,)
= a(ae)(x,.j) ae (x;) + a.e(x;) = a.e(x,).

Since
o, = (@) a0

a a
then

a a

() = (- ZE+2e)(xy)
and
|E(x,)] < CLIE =gy + llell Loz}

Hence

1Ed Loy < CLIEN Loqry + llell Lmry}-
Using inequalities (2.9) and (2.10), we have

—-1/2 1/2 —
IEd L=y < C{BT2NEN 2y + BN EN iy + B 2llell iy + B2l ell 2y }
_l -
< C{hi /ZHE”LZ(I,) + hi l/2”9”1}(1,) + hil/2||ex||1.2(1,.)}~

It then follows that

(3:5) IEdll L2y < CLIEN Laay + llell zay + Aillecll raay }-
Now, we use duality. Let ¢ € H (1) satisfy ¢(1) = 0, and
aa—d> = -F, x € IL
dx

Thus, by Lemma 3.1, (3.1ii) and (3.4ii), we obtain

L*(l,))

Lt el 5

2 N 9
[ E]lz> < 2 ”Ex"Lz(l,)hi O
i=1 X

9

u(l,))’

where we have used (3.5). Hence, using the Cauchy-Schwarz inequality, we obtain

(hIIEIILZ

|| 2 Rlled )| 5

1/2
"E"Lz < C(h"EuLz + h”e"L2 + ( 2 h4" "L’(l,)) )"E”Lz

Thus, on choosing 4 sufficiently small, we obtain

N 1/2
2
| Ellz < C { hlle| .2 + ( 2: h;‘||e,||,_2(,i)) }

which proves the lemma.
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The estimates (3.2) for k > 0 are derived via an inductive argument. However, in
order to avoid cumbersome details, we show the ind_uction step for W,. To do this
consider a map Y: [0, t{] - 9N 7! satisfying, for t € J,

. ] a . .
(3.61) a(aY)(x,.j, 1) = a—x(au,)(x,j, t), 1<j<r—1L1<i<N,
and
(3.6ii) (Y, av,) = (4, av,), Ve IN.

Optimal estimates for Y — u, follow from Lemmas 3.2 and 3.3. We compare W,
and Y in the following lemma.

LEMMA 3.4. Let u be the solution to (2.1), the map W be the solution to (3.1), and
the map Y the solution to (3.6). Then, for h sufficiently small, there exists a constant
C, independent of h, such that

N 1/2
Y = Wyl <Cllu— W+ C{ > hY(u— W)x||21,z(1‘)} .
i=1

Proof. Letn = W, — Y and e = u — W. Then, from (3.1) and (3.6),

o)y ) =[ = 3z ae) + 3 (atu, ~ )]0

d%ae 9 3
_[_ arox E("'e)}(xif’ 1) = 55 (ae)(x; 1)

=[a,e + ae](x 1)
Note that for sufficiently smooth ¢
_(a9), _ad

by - ;

a a

hence

a 1 1
Sg(xy’ t) = ;[(‘m)x - xn](x,jy t) = ; [a‘xe - axn + a,ex](xg, t)

(o2 %

Thus, by estimating and using (2.9) and (2.10), we obtain

3.7 Il 2ry < {Imllezany +lelezay + Alled )
We use duality now. Let ¢ € H ' satisfy ¢(1) = 0 and
a9
—az2 = el
T .

Thus, by Egs. (3.1ii) and (3.6ii), we have for x € Mg

sy (%))
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Hence, if we pick x such that x(x;) = ¢(x,), we obtain by Lemma 3.1, (3.7) and
(3.8) that

2 ax ol
il < (e agy) + € 2 Alindaled

N 1/2
2
<C {Ilellu + A|n| .= + ( 21 h.-’llnxlluu,>) }ll¢x||Lz-
im

Therefore

N 1/2
[l < C { lell2 + Allm||.2 + ( -2. hfllnxlliz(,,.)) }

Taking h sufficiently small concludes the proof of the lemma.

The proof of Theorem 3.2 now follows from Lemmas 3.2, 3.3, and 3.4 and the
triangle inequality.

Using arguments similar to those used to prove Theorem 3.2, we can derive
H ~'-norm estimates of u — W which will be used in obtaining the final estimates.
These estimates are contained in the following corollary to Theorem 3.2.

COROLLARY 3.1. Let u and W be as in Theorem 3.2. Then there is a constant C,
independent of h, such that

ak( W) Y "
—\Uu — —\u — .
Atk H atf( ) 12

k
<Ch>
j=0

Proof. The case k = 0 is proved similar to Theorem 3.2 of Baker [2]. For k > 1,
use Eq. (3.8) and proceed similarly to the arguments in Lemma 3.4.

3.2. Estimation of U — W. In this section we compare the maps U and W. To do
this, we derive some quadrature estimates due to the semidiscrete innerproduct and
use them to obtain estimates for E = U — W. There are two basic estimates that
we derive. First we estimate || E,|| 4. Then || E|| ;2 is estimated. The estimates for E
are contained in the following theorem.

THEOREM 3.3. Let u be the solution to (2.1) and let the maps U and W:
[0, T]— O be the solutions to (2.2) and (3.1), respectively. If u, u,, and u, €
L*0, T; HX1)), then, for h sufficiently small, there is a constant C, independent of h,
such that for 1 <s <r — 1

du
a

N 2
U— 2 < Ch lu — Wi + h> .
" W” L (LZ) { ” W"HI(LI) igl t H'(H’(li))

In order to prove Theorem 3.3, we first derive some basic results. Let ¢ =
u — W. From (2.8) and (3.1) we obtain

(3.9) (%(u— w), V) L IU - W, V)= (e, VY, V€O,

For ¢ € L? and defined on each I, and V' € 9, let

N
qi(¢’ V) = <¢’ V>1 - (4’» V): and Q(¢’ V) = 2 qi(¢’ V)

i=1
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Also, for R € ! and V € I, let

O(a, R, V) = - (R, a-aai;) + IR, V).

Hence, we can rewrite (3.9) as
(3.10) (E, V) — (E, a%—’;) = (e, V) + qluy V) + O, E, V), V€O,

In order to derive the error estimates, we must estimate the quadrature errors ¢
and Q. These estimates are a consequence of the following two lemmas.

LEMMA 3.5. Let ¢ € H*(I)), 1 <s < r,and V € O, Then, there exists a constant
C, independent of h, such that

la:i(¢, V)| < ChE bl | V' |l e2aay-

Proof. Because of (2.3), for ¥ € 9N, there are unique ¥, € M, and ¥V, € Z;,
such that V' = V|, + V,. Moreover,

| Vl;”Lz(l,) =|(V =Y ILZ(I,) < V' |2y
and g(¢, V) = q(¢, V,). Choose x € P,_ (1)) such that
(3.11) ¢ = Xlle2cy + Bll(@ — X) || 2y < CH|||| 1r2ay-
Note that, for ¥ € IMgand 1 <s <r,g(x, V) =0.Lety = ¢ — x. Then
q(, V2) = q(x, V2) + a(¢. V3) = q:(y, V)

5 3w ) ey ag

=7 e(l-p) s
S Ch¥ =l Vallocry + Cl¥l 2l Vall 12,
< Ch{|[Wlleay + WY a3l ey + Ikl Vill oy
< B0l apll VNl ey

where we have used inequalities (2.9), (2.10), and (3.11). This completes the proof
of the lemma.

LEMMA 3.6. Let a” € L™(I), R € ', and V € M. Then there exists a
constant C, independent of h, such that

d ” ’
9 2 @), V)| < Al Vemn Rl ol Ny

Proof. As in the previous lemma, it suffices to consider V' € Z. In this lemma a
more careful argument is needed to exploit the fact that R is a piecewise poly-
nomial. Let a; € P,(I;) such that a(x) = a(x) + a(x), where

lall=cry + Al L=ry < ChE|@”|| L=g-

Because of (2.4), we have

qi(%(aR), V) = qi(ad;(aR), V).
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Moreover, since V € Z(,

(3.12) q,.(;;(aR), V) - <—:—x(aR), V>i + (R, a%)i.

Now we estimate each term on the right-hand side of (3.12) as follows. For the first
term

N d(aR)/dx|,.. [ V'(§) dE
<—d—(aR),V> =h3 w =, S5
dx i j=1 ()1 — py)
< CR2{|IR | =iy + AR | Loy Y@” | L=eapll V'l 2cry

< ChY|@” || Loy || Rl 2yl VN 2y

In the foregoing we have used inequalities (2.9) and (2.10). The second term is
estimated using Cauchy-Schwarz inequality

d ,
(R agz¥), < Clalleapl Rzl ey

< ChY|a" || oy Rll el V| 2.
Estimates (3.13) and (3.14) and Eq. (3.12) complete the proof of the lemma.
Now, we estimate E, in the H ~'-norm. For this, we write (3.10) as

(3.15) (E, V) = (E a%—:) +(en V) + q(u, V) + Q(a, E, V),V € I,

and estimate each term of the right-hand side. The first two terms are estimated as
follows:

(3.13)

(3.14)

( 1%
ox

E.a%C) < CLE|al Vi < Ch™ | EJ Wiz
and
(&, V) < Cllgll 2l VIl 2
In order to estimate the quadrature terms, we make use of Lemmas 3.5 and 3.6
as follows; by Lemma 3.5, we have, for 1l <s <r — 1,

N N
9 V) =| 2 e V)| < 2 o, V)

N N 1/2
, 2
<C 21 BNl sV 2y < C( 21 "?II“:IIH«,,)) W] -
i= i=

By Lemma 3.6, we obtain

|0(a, E, V)| < CH|E|l 2| V]|
Hence

N 1/2
(E, V) < c(h-'uEuu el + ( ) h,-”uu,ui,m) )u g

Now it follows by Lemma 2.1 that

N 1/2
3.16) uE.u”-.<c(h-'uEuLz+ue.||Lz+(§, h%’uu.lh,«,,)) +|(E, l)l)-
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We now complete the proof of Theorem 3.3 by deriving an estimate for || E||,: in
terms of || E,|| -1
Let the map y: [0, T'] — 9N satisfy

g—i(x, 1)=-E(x,1), tE€J,x€EIL
Then
(3.17) ¥l
Choose the map V: [0, T] — 9Ny such that

H* < C”E”H:—I, S = 0, l.

V(x,t) = aT‘f(x, 1), t€J;x€EIL

With this choice of V in (3.10), the terms on the left-hand side of (3.10) can be
estimated as follows:

(3.18) (E, V) =~ (V,, V) =1(V(0, )’ = L|(E, 1)’
and
vy _ Y8 oy N_1d oo v 1,
_ (E,aa) = (E, aE,) 2(at(E ),a) =3 dt(E ,a) 2(E ,a,)
(3.19) L .
2
> 5E”\/ZE”LZ — C| E||z>

Hence, on using (3.18) and (3.19) on (3.10), we obtain for this choice of ¥ that
1 1 d 2
(320) 5 V30, 1) + 5 —|VaE|x < CLEz: + (e, %) + qus %) + Q(a, E, ).

The last term of (3.20) is estimated using Lemma 3.6, (2.10), Cauchy-Schwarz
inequality and then estimates (3.17) and (3.16) to obtain

|Q(a, E, ¥,)| < Ch||E|l 2| ¥ill .2 < CRIE]| 2] Exfl -

N 1/2
- 2
< ChllEllu{h N E] + ( 21 "iz’lluzllmu,>) +|(£, 1) +||6,||u}'

Using the inequality ab < 3(a* + b?), we get

N 1/2
Q(a,E, ) <C {IlElliz + he||7: + h’( 2 hf‘llu,llim,>) }
(3.21) i=1
+nh¥(E, 1.

Thus, on using (3.21) on (3.20), choosing n appropriately, and using the fact that
%0, t) > 0, we obtain

1 d 2 N
3 ;;IIVEEIIU <C { I Ez: + RYe 72 + hz( 21 B u| Hm)]

+ (et’ ‘Pl) + q(ul’ ‘Pl)’
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and, on integrating over ¢ from O to 7, we get

2
[Va E||x(r) < C{n E|[2(0) +|| E| 220 + Pl 20: 12)

e £ Rl
+2f07 (e, ¥) dt + 2[0' qau, ;) dr.
Using integration by parts in ¢ on the last two terms, we obtain
[ o) e = (om0 M) = (5 0,90, 7) = [ (e ¥)
and
[ 0t ) de = a7, 9, 0) = a0, 9, 0) = [ a(uy, )

These terms can be bounded as follows: the first one using Cauchy-Schwarz
inequality, (3.17), Corollary 3.1, and the inequality ab < 3(a® + b?), to get

| fo " (e ) dz| < C{lled - MY (r) +edl - O ¥] (0)
+ ||5n||L1(o,r; H ")"‘I’"L’(O.r: H')}
< C{h(|lel|(r) + &l AT E]| a(r)
+ h(]|¢l|2(0) + || (0))] E]| 2(0)
+hlell o )| Ell 2o.r; 1)
< C{IENAO) +| |20 12 + Wl 1) + 1l E|2(r)-

Similarly, using Lemma 3.5 and proceeding as above, we get

| fo a(u, ) dr| <cC { IE3:00) + | Ell 3022

im]

N
2 2
+h2( 2> h:b” Ul a0, H’(I)))} + || E|| (7).

Hence, on combining the above estimates and choosing n appropriately, we
conclude

| E|z(7) < c{ || E||2:(0) +||E||iz(0,,; 12 + hY€] wronr)

N
2
e Z Bl ) -
2

Therefore, from (2.2ii), (3.1), and Gronwall’s lemma, we conclude the proof of
Theorem 3.3.
Theorem 3.1 follows from Theorem 3.2, Theorem 3.3, and the triangle inequality.

4. Appendix. In this appendix we prove Lemma 2.1. To do this we prove some
approximation results for the projection of a function into NG using M as test
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space. The estimates are contained in Lemmas 4.1 and 4.2. The projection is
defined as follows:

Consider a function v € H*(I), v(1) = 0, fors > 0, and let V' € 9N satisfy
(4.1) (v—-V,Q)=0, VQ € M.

In order to obtain estimates for this projection, we define a local projection
which is defined and analyzed in the following lemma.

LEMMA 4.1. Let v be a function on the interval F = [b,d] and v € H*(F),
1 <s<r+l,andlet Y € P(F)satisfy

(42) [(v-1)gdx=0 VO €P_(F),

F
and Y(d) = v(d). Then, there is a constant C, independent of h, such that
(4.3) 1Y = ollexry + w|(Y = 0)ullary < Cu’l|o] mer)
and
(4.4) [(Y = 0)(b)] < Cu’~"2||0| wecry

where . = |d — b|.

Proof. Let w(x) = d — x, and define W and { in P,_ (F) by the relations

Y(x) = o(d) + w(x)W(x),  x(x) = o(d) + w(x)$(x),
where x € P.(F), x(d) = v(d). Then (4.2) is equivalent to

LW(W ~ £)Q dx =fF(u - X)Qdx, VQ € P,_(F).
Take Q = W — { to get

[ wordx = [ (v~ xQdx <lo = xllxr| Qe

F F
By changing variables from [b, d] to [— 1, 1] and considering an appropriate Ritz
quotient, it follows that there is a constant C, independent of u, such that for
Q € Pr— I(F)
2 2
Cull Qllzry < [ wO? dx.
F
Thus || Q|| 2/ < Cllv = Xl L3F); moreover
1Y = Xl =1wQl ey <IWleaeml| Qllexey < Crl|Qll2ry

Thus

(4.5) 1Y = xllz2cry < Cllo = Xl 2r)
and, by the inverse property (2.10), we get

(4.6) Y = sl z2ry < CNY = Xl 22y

From the triangle inequality, (4.5), and (4.6) we get (4.3). To obtain (4.4) notice that

Lo = Y)X(b) = —fp(u — Y)(v = Y),dx <|jo = Y| zm (0 = Vel

from which use of (4.3) gives (4.4).
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In the following lemma we state and prove the approximation results for (4.1).

LEMMA 4.2. Let v € H*(I), v(1) = 0, and let V € N satisfying (4.1). Then, there
exists a constant C, independent of h, such that

o= Ve + hll(o = V)2 < Ch Yollgn 1 <s<r+1

Proof. The proof demonstrates that the following estimates hold for each subin-

terval /.
llo = Vlizzay + Afl(o = Milleay
4.7 N
< C{hf"”l ey + hil/z( 2 BT H‘(l/))}
J=i+l
and
& 1/2
(4.8) [(v = ¥)(x)| < C( 2 B H'(I,))-
J=1i

The lemma follows readily from (4.7) and (4.8). Notice that these estimates
clearly demonstrate that the “pollution” effect as one proceeds from the right to
the left of the interval remains bounded at the level of the discretization error;
therefore, the loss of a power in the estimate.

Take Q € P._,(Iy) in (4.1), then by Lemma 4.1 these estimates hold. We now
assume that (4.7) and (4.8) hold for I, |, . .., Iy, and we show that they hold for
I.

Let W € P.(1,) satisfy W(x,,,) = v(x,,,) and

(4.9) f, (W= 10)Qdx=0, YO € P,_,(I,).
Thus, by Lemma 4.1,
(W = o)y + All(W = O)ll L2z < ChEl|ol| sy
and
(W = 0)(x)| < Ch™2|[0]l yeca,)-
Using (4.1) and (4.9), we get

f(W— V)de=f (v-V)Qdx=0, YVQEP _,
I Iy

Thus (W — V)(x) = C,L,(x), where L (x) is the Legendre polynomial of degree r
on the interval /, and

C, = (v(xe1) = V(xs1))/ Lk 4 0)-
Thus, by our assumption that (4.8) holds for /, . |, we get

IW = Vllzaay <ICHIL 2,y < CHTY2C

N
< Ch,:/z( §+l hjx_l/zllvlll'l’(l/))

j=

nd [(W = V)x)| = [(W = V)(xie, -
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Hence, by the triangle inequality, (4.7) and (4.8) follow. This completes the proof
of the lemma.

COROLLARY 4.1. Let v and V be as in Lemma 4.2. Then, there exists a constant C,

independent of h, such that
IVl < Cllofia

We are now ready to give the proof of Lemma 2.1. Let F € 9U,' andv € H".

Then for V' € Mg
(F,v)=(F,v—0(1) — V) + (F,o(1)) + (F, V).
Take V' € 9N to satisfy
(v —o(l)— ¥)=0, Vxem"

Hence, by Corollary 4.1, || V|| ;2 < C||v|| s. Thus

(Foo) _ [(Foo())] . ~(F. V)
o < Mol T € VI

B (TN € )
lloll 4 owxeon lIxllzz

which proves the lemma.
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