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By B. N. Parlett, H. Simon and L. M. Stringer 

Abstract. The Lanczos algorithm applied to a positive definite matrix produces good 
approximations to the eigenvalues at the extreme ends of the spectrum after a few iterations. 
In this note we utilize this behavior and develop a simple algorithm which computes the 
largest eigenvalue. The algorithm is especially economical if the order of the matrix is large 
and the accuracy requirements are low. The phenomenon of misconvergence is discussed. 
Some simple extensions of the algorithm are also indicated. Finally, some numerical 
examples and a comparison with the power method are given. 

1. Introduction. Let A be a positive definite matrix of order n with eigenvalues 

O<X1AX <A2 ** * ?Xn 

For some applications a rough approximation to A, i.e., the spectral norm of A, is 
all that is wanted, for others a rough approximation to AnXA/I i.e., the condition 
number of A. At the other extreme are nuclear engineers, who often want a good 
approximation to A,, 6 significant decimals at least and the eigenvector as well. 

In [1] O'Leary, Stewart, and Vandergraft consider the power method and the 
associated sequence of Rayleigh quotients PI, P2, p3, .... They point out that the 
often miserable asymptotic convergence rate of the Pk is irrelevant unless it is 
necessary to have 

- P k < 10-2 (say). 

They show that even for the nastiest distribution of A, for a 1000 by 1000 matrix we 
can expect to have Pk with one correct decimal after 21 steps. 

These observations are interesting, but it does not follow that the power method 
is the appropriate algorithm for rough approximations to Xn. We should add that [I] 
does not claim that the power method is the preferred algorithm although an eager 
reader might well draw that conclusion. 

Here are some points we wish to make. 
1. If the user is only interested in the rough order of magnitude of A, then the 

appropriate action is to compute maxi aii and IIA 11,, the maximum column sum. 
This yields a lower bound and an upper bound with no multiplications. If A is 
large and sparse, then A 11/A, cannot get close to its upper bound V . A better 
estimate of the ratio is , where m is the average number of nonzero elements 
per row. 
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If it is not convenient to access the elements of A, then the techniques described 
below should be considered. If something better than an order of magnitude 
estimate of A., is wanted, then these techniques should definitely be considered. For 
interactive or hand held computation the power method with Rayleigh quotients, 
as in [1], may be preferable to our Lanczos algorithm when only one digit in IIAll is 
wanted. 

2. The choice of tolerance on the error, which is often delegated to the user, is 
not a trivial matter. If the user says he wants only one correct decimal and 
x = 103, then he must be content with any answer exceeding 950. Are all such 
high eigenvalues indistinguishable for his purposes? He may, on reflection, wish to 
change his tolerance. 

Sometimes users do want an approximation u which is closer to An than to A"_ 
but not by much, say (A.-,u )/(, - A, 1) < 1/10, unless A,,-_ is very close to A, 
say (, - An 1)/An < 10-6. This is, of course, a more difficult specification to meet. 
These points are pursued further in Section 6. In our opinion the required 
accuracy should increase linearly with n. 

3. In [1] the authors focussed on the eigenvalue distribution which causes the 
slowest convergence of the Rayleigh quotients Pk. In practice, as those who have 
used the power method are painfully aware, the most troublesome distributions are 
quite different. A difficulty which afflicts both the power method and the Lanczos 
algorithm is misconvergence. Consider the following values: A. = 1000, A - I = 985, 

-2 = 983, A.,3 = 981, A.,4 = 955, .... It happens, not infrequently, that the Pk 

converge quite nicely to 985 and settle down there for several steps. After a while 
the Pk will start to increase again noticeably and soon converge to the correct value 
of 1000. 

An impatient criterion for termination will mistake the pause at 985 for conver- 
gence to that value. On the other hand a cautious algorithm will be inefficient in 
timing comparisons. This topic is pursued further in Sections 2 and 6. It would be 
interesting to quantify the trade-off. As so often occurs in numerical analysis, the 
real difficulty is the criterion for stopping. 

4. The authors in [1] mention that the Lanczos algorithm is more powerful than 
the power method but suggest that to invoke it to obtain a one-decimal approxima- 
tion to A, is overkill. 

It is true that Lanczos codes are usually designed to find several eigenvalue/vec- 
tor pairs, and the reliable ones are rather cumbersome. However, because of its 
power the Lanczos algorithm 

(i) uses almost the minimum number of matrix-vector multiplications, whatever 
the required accuracy; 

(ii) can cope with misconvergence much more adroitly than can the power 
method. 

For this special problem several features of general Lanczos codes can be dis- 
carded, and the stripped down version is quite short; see (2.4). Both Lanczos and 
the power method require about the same amount of working storage: 2 n-vectors 
plus some extra cells. Last, but not least, the Lanczos code is well suited to either 
high or low accuracy calculations. 

A separate short program can use the output of the main one to compute the 
associated eigenvector when that is required. 
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The aim of this paper is to present our algorithm and to show how it and the 
power method perform on a variety of eigenvalue distributions. The phenomenon 
of misconvergence is explored in the process. A simple modification of our 
program yields increasingly good approximations to An/Al. 

2. The Lanczos Process. The simple Lanczos algorithm for a symmetric n X n 
matrix A computes a sequence of Lanczos vectors vI, V2, V3,... as follows: 

1: choose an arbitrary v, I1v I = 

2: u, = Av, 
3: forj = 1, 2,... do 

(2.1) i vu - rj u= u- a vj 

pi= Ilrill 
Vj~ = 

II,,II 

U + = Avj+I - f>v. 

One pass through step 3 is a Lanczos step. These equations can be condensed in 
matrix form as 

(2.2) A Vj- VT=f3vj+eT 

where Vj =(VI, V2, . ,vj), ej 
T = (o, 0, 0, . ,1) and 

a1 f3I 0 

81 a2 /2 

(2.3) 1)= . 

* * 13 -2 a>i f31i- 

* * 0 fO 3 I a(j 

The algorithm terminates if ,Bj = 0, and this will happen for somej < n in exact 
arithmetic. The eigenvalues of the tridiagonal matrix T1, also called the Ritz values, 
are the Rayleigh-Ritz approximations to eigenvalues of A from the subspace 
spanned by the vectors vP, v2, . . ., vj. More details on the Lanczos process can be 
found in [2]. 

Let ij be the largest eigenvalue of Tj. 
Usually the extreme Ritz values are, even forj ] 2V\/, good approximations to 

the corresponding eigenvalues of A. We therefore propose the following strategy 
for finding Xn: 

forj = 1, 2, 3,... do 
1.1: take a Lanczos step 

(2.4) 1.2: compute a narrow interval which contains A 

1.3: compute a bound on Ii - XI 
1.4: if the bound is small enough then stop. 

The details of 1.2, 1.3, and 1.4 will be discussed in the following sections. 
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Our FORTRAN program for algorithm (2.4) consists of 55 executable state- 
ments. This number does not include separate subroutines for computing 1.1, 1.3, 
and Sk(x). None of these exceeds 14 statements. 

As Section 6 reveals, we have no guarantee that the eigenvalue X to which t$ 
converges is ?. However, our convergence criterion will not be met until the 
(uncomputed) Ritz vector belonging to 4j is a reasonable approximation to X's 
eigenvector. This level of caution seems to prevent misconvergence in practice at a 
moderate cost. The yet more cautious criterion described in Section 6 prolongs the 
algorithm by 50-100%o. The old-fashioned criterion of stopping when the change 
in the 4i's is less than the tolerance is just not reliable enough as our examples 
show. 

The storage requirements of our algorithm are quite modest because one Lanc- 
zos step can be implemented in a way that requires only storage for the n-vectors u 
and v and 2j storage for the aj and fj3. But as j < n (as typical example take 
n = 500 and j < 50), the main storage requirement lies in the 2n which is 
comparable to the power method. 

We should also remark that if A is sparse (say 10 nonzero elements per row) and 
of narrow bandwidth w, then each step will require 15n operations, and so, even if 
our algorithm took n steps, the total cost compares favorably with the 2wn2 
operations required by techniques based on similarity transformations. Compari- 
sons of this algorithm and the accelerated power method are given in Section 6. 

3. Computing the Largest Eigenvalue of Tj. Computing the largest eigenvalue of a 
tridiagonal matrix is neither a new nor a difficult task, and we could have used one 
of the standard routines from EISPACK or any other similar package. As 11 Tjll. is 
easily computed, a bisection algorithm on the interval (4j_,, 1)Tj) would have 
been the obvious choice. 

In the special situation which we are considering here there is extra information 
on hand at each Lanczos step. We have tried to develop an elegant procedure 
which takes full advantage of the situation and converges quickly. A related 
algorithm based on the simple recursion formula (3.1) is discussed in [3]. 

Let LDLT be the triangular factorization of Tj - xI. It turns out that 3j(x) = 

D11, called the bottom pivot, is computed from the simple recurrence: 

31(x) =a1-x, x # a1 

( 6k(X) ak X - Pk I /5k-I(X) k = 2,3,... ,j. 
1 if Sk(x) = 0 then change x slightly and start again J 

The function Sj(x) is a (j, j - 1) rational function, whose j zeros are the eigenval- 
ues of T7 and whose j - 1 poles are the eigenvalues of Tj -. Between its poles d>(x) 
is monotonically decreasing with a slope less than - I provided (3.2) holds. 

From the previous step we have a satisfactory approximation to X = 4>_, the 
largest pole of 5j(x). Our algorithm is based on the following notion: On the 
interval (4j -, oo) the function 6j(x) can be adequately approximated by (2.1) 
rationals of the form 

(3.2) ( - x)(- x) ( < < 
T- x) 
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where D and ,u are free parameters. Since we know T, the pole, accurately we are 
simply using a quadratic for the function (T - x)j(x). There is more discussion of 
this model in [3], and we content ourselves with a picture. The model also has slope 
< -1 (provided (3.2) holds). 

5- 

812(x) i - - - 

-5- 

0 5 10 1 5 20 
x 

FIGURE 1 

The function 612(x) for a typical example 

We use the model in an iterative scheme based on the algorithm zeroin of 
Dekker. Given an interval (x,, xu), with ij E (x,, xu), and a pair of distinct points 
Xk_, xk E (x,, xu) along with Sj(xi), i = k - 1, k, we interpolate d>(x) by (3.2) at 
xk- I and xk in order to find D and y (It < ,). Then we set 

(3.3) 
f ( if D E (x, + tol/2, xu - tol/2), 

xk+ - 
" 

(xU + x,)/2 otherwise, 

and then 

(3.4) xu l if 
6j(xk+ X) < O, 

X, -Xk+l if 6j(xk+ ,) > O 

We keep iterating until xu - x1 < tol. The last value of D is used as v7 at the next 
step. The number of iterations at each step depends on tol = poi, where p is the 
required relative accuracy. For p = 10' (p = 106), the average number of itera- 
tions is approximately 1.5 (4). 
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It should be mentioned that in certain cases this iteration need not be invoked at 
all. Suppose we had stopped the iteration at the j - 1st Lanczos step with the 
interval [x,,xj. Then, obviously, if after updating d =_xj(x) we still have d. < 0, 
then this interval also contains A>, and no further computations are necessary at the 
jth Lanczos step. If this is the case, we call such an interval stagnant. A stagnant 
interval does not indicate convergence. 

4. Computing a Bound on li -Al. Bounds on the Rayleigh-Ritz approximations 
to the eigenvalues of A from a subspace are discussed in [2, Chapter 11]. As we do 
not have any information on the gaps in the spectrum of A, we have to content 
ourselves with the simple bound 

(4.1) oj-Al < IlAy-yOjl 
IIyII 

There is at least one eigenvalue A of A, which satisfies (4.1). Here y = V)s, and s is 
a normalized eigenvector of T1 corresponding to A>. Fortunately we do not have to 
compute y explicitly, because using y = V)s, Tjs = ijs, and (2.2), the bound (4.1) 
becomes 

(4.2) -Al < j 

We may assume that Ilyll > 0.9 (see [2] for justification). As we know,8j from the 
Lanczos process, we only have to compute aj efTs, the bottom element of the 
normalized eigenvector s. This can be done by setting (j = 1 and then solving 
(Tj - j)x = 0 for x = (, 2 ... , j)T from bottom to top, except that the top 
equation is not satisfied: instead we have (al - OAl + /8242 = i. There is no need 
to store the 4i; instead we accumulate their squares in r and set aj = 1/ Vi. 
Moreover, the residual norm I,l/ V is available as a check; it should be small. 
The vector x will be a satisfactory approximation to s provided that the starting 
vector for Lanczos is not almost orthogonal to A's eigenvector. 

The bound 1.1,fj3j can be used in a twofold way: it enables us to monitor the 
convergence of the Ritz values A>, and it provides a useful starting point for the 
iteration in Section 3. 

5. Starting the Iteration for A>. Suppose that the interval [x,(' '), x(' 1)] was not 
stagnant at the j - 1 st Lanczos step, so we have to find a new interval and two 
starting points for the iteration. (An upper index (j) refers here to quantities 
computed at the jth Lanczos step.) But if [x(J- '), x(J ')] is not stagnant, then we 
have Sj(x('- )) > 0. Hence we can set 

(5.1) x/)=x('- ). 

It is tempting to use x(') in starting the iteration since its 6-value is available. 
However, when high accuracy is required, xO' is occasionally too close to the pole 
to be useful. We can get a first starting point using the bound from Section 4: 

(5.2) x ) = v7 + / . 

As the quantity /j 1aj indicates roughly how far we are away from some A at the 
j - 1st Lanczos step, (5.2) is a natural choice. 
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Then we compute x(4) by 

(5.3) x2= (x4) + x4))/2. 

Although we could have used something more sophisticated than bisection (e.g., 
interpolating at x, and oo), our computational experience has shown that this 
additional work does not reduce the number of iterations significantly. Therefore 
we chose the simple formula (5.3). 

Finally we took as an upper bound 

(5.4) x4) = max { x/), aj ) + /8j. 

This was motivated by the fact that only in exact arithmetic is x?('A an upper bound 
for A>, whereas (5.4) is always safe. 

At the second Lanczos step, when no previous values for x", x1 are available, we 
compute ~2 directly as the largest eigenvalue of T2 and then set X(2) = - + tol, 

X()= - tol. In this way we can begin our new iteration at the third Lanczos 
step in the manner described above. 

6. Misconvergence. Both the power method and the Lanczos algorithm sample 
the effect of the matrix A at a limited number of vectors, and both can suffer from 
misconvergence. The simplest, but extreme, case is when the starting vector is 
orthogonal to the dominant eigenvector and (as happens in exact arithmetic) to all 
subsequent vectors as well. Then our algorithm will quietly deliver A, -1 instead of 
An without warning of failure. 

In practice, if the starting vector is somewhat orthogonal to the dominant 
eigenvector, and the separation of An and ?"-I is poor, then it can take many 
iterations before any Ritz value 0i exceeds A7 -. In such cases the 4i may well 
settle down very close to A_ - for perhaps 10 (or even 100) consecutive iterations 
before some 4i exceeds j- 1 + tol. Such situations are not at all pathological, as 
our examples show. 

Some quantitative insight into the duration of these false stagnations can be 
gleaned from an error bound which can be found in [2, Chapter 12, p. 247]. Let {Pi 
be the angle between the starting vector and A\'s eigenvector, and let Cj denote the 
jth Chebyshev polynomial. Then 

(6.1) Kn -( tan jn 
An-Al l n -x xn-2 

-Yn Cjl 1 +2 
'n -2 -v 1 

where 

(6.2) Yi= ;AI 

We are not interested in how long it takes to compute An but in m, the smallest 
value of j such that i9 > An -1(I + p), where p is the relative accuracy required. To 
be specific we estimate m by taking equality in (6.1), and, after making some slight 
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simplifications, we get 

(6.3) Cm_ 1(l + 2yyn + 2y,,-i) - Y3/2 tan 4n. 
Next we look for k, the first value of j for which I i-An- Xj < pXn_ 1 This value 
may be approximated by ignoring A, in the standard error estimate to get 

(6.4) A, 
-I 

- [ 2an -1) 

We compute k by taking equality in (6.4), 

(6.5) Ck(l + 2yn-1) = p / tan 4n 

The fundamental assumption underlying this section is that cos 4n <<?cos 4n -I 
(= 1/ v?, its expected value). The stagnation time which must be endured is 
mr-k. 

There are still too many unknowns in (6.3) and (6.5), so let us consider a difficult 
but not unreasonable case, namely yn = 2p, yn-I = 8p. (For example, p = 0.05, 

An = 1 .0, An - I - O 91 n - 2 - 0.5, XI t ? ) 
The Chebyshev polynomials can be approximated by exponentials: whenjV-y > 

1 then, for small y, 

(6.6) Cj(l + 2y) - 2 e2ivY . 

Using (6.6) in (6.3) and (6.6) yields 

(6.7) m-l=In tan 4n-321n -Yn In n + 2 In co-3(In p + In 2) 

2 /Yn+yn-I 4 lOp 

where we have written tan 4,n = co tan 4n -I = co VH . Also 

ln n-lnp ln n-ln p k= 
4 8p 4 Op 

These crude approximations give 
2 lnco - 'n p -In 2 

(6.8) mr-k- - 
4 lOp 

In Table 1 we give the predicted and computed values of m- k - 1 for interesting 
values of p and co. As m and k become comparable with n, the use of the 
Chebyshev polynomial is not warranted, and the predictions become too large, 
otherwise they are good guides. The point to notice is that misconvergence can 
occur when cos An drops below only 0.1 of its expected value, i.e. X = 10. 

TABLE 1 

Predicted and computed values of m - k - 

(computed values in parentheses) 

= 10' 102 13 

2*p = 10- 2(0) 3(2) 5(5) 

2*p = 10-2 7(6) 12(12) 17(18) 

2*p = 10-3 26(17) 42(17) 59(17) 

2*p= 10 95(16) 147(19) 198(17) 
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The brief discussion is meant to demonstrate how frustrating it is to have to 
choose an expression for the number of steps to wait before accepting a stagnant 
interval as containing the largest eigenvalue. 

There is a way out which is elegant and also sensitive to each matrix. Accept the 
approximation from a stagnant interval as A as soon as a second Ritz value appears 
in that interval. 

The appearance of superfluous copies of Ritz values is entirely due to roundoff 
error. A full explanation of this phenomenon is given in [2, Chapter 13] and we do 
not wish to repeat that material here. Suffice it to say that immediately a Ritz value 
stagnates at an eigenvalue A, at step k say, then the algorithm proceeds as though 
the kth Lanczos vector had a tiny component of A's eigenvector x. It takes a certain 
number of extra steps for the component of x in the subsequent Lanczos vectors to 
grow. When it is dominant another copy of the eigenvalue appears, suddenly, in the 
form of a new Ritz value hovering at X. 

We know of no cases where a second copy of An1 has appeared before some 
Ritz value exceeds A -I(I + p). The number of extra Lanczos steps is tolerable in 
the easy cases but much larger in the difficult cases-as it should be (see Table 5). 
Nevertheless, this apparent tripling of the number of Lanczos steps was sufficient 
to deter us, perhaps wrongly. The criterion in Section 2 is slightly more susceptible 
to misconvergence but keeps the number of steps closer to the minimum. 

7. Some Extensions of the Algorithm. 
1. The leftmost eigenvalue of T1, say cj, converges to A1 in the same fashion as . 

converges to A,. The precise rates depend on the eigenvalue distributions. Thus T 
contains increasingly good approximations to cond(A), the condition number of A 
for linear equations. Several lines of code must be added to compute cj at the same 
time as 4I. 

It is wasteful, but feasible, to use our program as it stands on -A. We avoided 
using 11 Tjll in the inner iteration to compute A>, so that this device would be valid. If 
the output is negated, it will approximate X1. 

2. If the ai and A/ are designated as output parameters and if the Lanczos vectors 
are put into secondary storage in the course of the Lanczos iteration, then it is easy 
to compute an approximation to A,'s eigenvector. The algorithm is: 

1. Call (2.4) to compute y A.&. 
2. Call a subroutine to compute the eigenvector s of T belonging to t, s= 

(al, a2, . . ., a,)T. 

3. Set z = 0. Recall the Lanczos vectors vi from storage, one by one, and 
accumulate z = z + viai. 

4. Normalize z. 
Since the elements ai should dwindle to small values for i close toj, it would be of 
some slight advantage to recall the Lanczos vectors in reverse order so that the 
small contributions have a chance to accumulate to significant proportions rather 
than having their lower order digits lost in the act of adding them to a vector which 
is already of norm close to one. 

3. Our program can be used to find An for the pencil (K - XM)x = 0 if M can 
be factored as LL T and the matrix A is interpreted as L-'KL-T. Of course A is kept 
in this factored form. 
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8. Numerical Results. In all our numerical tests** the algorithm described in (2.4) 
produced the correct answer within the desired accuracy. 

In a first series of numerical tests we compared the convergence properties of our 
algorithm with the power method and Aitken extrapolation applied to the power 
method. We considered several eigenvalue distributions of matrices of order 
n = 500. Because of the invariance properties of the Lanczos method, there is no 
loss of generality in considering only diagonal matrices A = diag(d,, d2, . .. , dn). 
We chose di = i, di = i2, di = I/i, and di = cos((i - 1)7/n). In order to give a fair 
comparison between the different methods, we list in the following table first the 
number of steps which each method must take in order to achieve the correct result 
within the desired accuracy. The second number, in parentheses, indicates the 
number of steps taken when the corresponding algorithm is stopped as soon as the 
increment is < 2p&. The discrepancy between the two number. shows how 
unreliable the old-fashioned stopping criterion can be. The power method does not 
seem to lend itself to a satisfactory alternative criterion whereas Lanczos does. This 
is a significant difference. 

TABLE 2 

Comparison between Lanczos algorithm and power method 

(meaning of the numbers is given above the first tableau) 

p - rel. accuracy 10-' 

Eigenvalue distr. l cos((i-1) n- I n 

Power 5(4) 5(4) 5(5) 6(4) 

Power + Aitken 4(3) 3(4) 3(5) 5(3) 

Lanczos 4(5) 4(5) 4(5) 5(5) 

p - rel. accuracy 10-3 

Eigenvalue distr. i2 cos( - 1)-) 

Power 95(33) 89(31) 8(9) 490(23) 

Power + Aitken 51(22) 44(26) 6(7) 138(19) 

Lanczos 23(20) 16(16) 6(6) 48(15) 

p = rel. accuracy 10- 

Eigenvalue distr. T cos(i - 1)21) 
In 

Power 1169(497) 583(341) 13(14) > 2500(691) 

Power + Aitken 467(81) 209(404) 10(11) > 2500(797) 

Lanczos 60(48) 43(43) 7(8) 501(117) 

From this table we can draw several conclusions. Considering the required 
accuracy, it seems that it does not pay to use Lanczos if only one digit is wanted. 
But this conclusion is premature. A quick glance in Table 4 reveals that there are 

** All results were obtained at the D.E.C. VAX-1 1/780 of the Computer Science Division, Electrical 

Engineering Computer Science Department, University of California, Berkeley. 
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examples where even for this modest accuracy requirement the power method 
cannot deliver the correct result. For the sake of reliability, it therefore pays to use 
the Lanczos algorithm even in these cases. 

However, already for three digits accuracy the considerable savings in the 
number of iteration steps provided by the Lanczos algorithm becomes obvious. 
This advantage of our algorithm is even more dramatic, if one wants six digits 
accuracy. 

The examples which we have chosen can be regarded as typical for three classes 
of eigenvalue distributions: easy distributions with the largest eigenvalue well 
separated from the rest of the spectrum (di = l/i), intermediate distributions with 
all the eigenvalues quite evenly spread out (di = i, di = i2), and difficult distribu- 
tions with the eigenvalues clustered near the end of the spectrum (di = 

cos((i - I)-7/n)). Using this classification, one could condense the information 
from Table 2 in the statement: The more difficult the distribution of the eigenval- 
ues and the higher the desired accuracy is, the more efficient is the Lanczos 
algorithm. 

On the other hand, the numbers in parentheses illustrate quite well that for all 
three algorithms the most difficult decision is when to stop. Clearly the tolerance 
'Xp is too big. 

One might be tempted to use therefore something like lpA But, as pointed out 
in Section 6, such criteria cannot handle misconvergence properly. In the following 
table this is illustrated with the example from Section 6. We consider a diagonal 
matrix of order 100 with A, = 1000, XI = 10, Al, and k,-2 determined from 
Yn = 2p, yn-I = 8p, and the other eigenvalues evenly distributed in [xA, I - 2] We 
chose a random starting vector, but set its component in direction of AX,'s eigenvec- 
tor to - and normalized it afterwards. For varying values of p and - we obtained the 
following table. Here the first number indicates the number of steps which were 
necessary to obtain the correct result, the number in parentheses indicates the 
number of steps our algorithm stagnated at A, - , 

TABLE 3 
The Lanczos algorithm (2.4) for the contrived example 

(stagnation time in paretheses) 

e= 100 10- 10-2 

2*p= 10-1 5(0) 8(0) 9(0) 

2*p= 10-2 13(0) 24(0) 28(6) 

2*p = 10-3 36(0) 55(4) 59(14) 

2*p= 104 52(0) 68(12) 71(14) 

It should be noted that in all the cases in Table 3 our algorithm was capable of 
handling misconvergence, i.e., the bound /8jaj did not become less than 'pXn for 
Ritz values near Al, 

The advantages of the Lanczos algorithm together with our stopping criterion 
will become apparent from the next table. 
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TABLE 4 

Comparison of Lanczos with the power methodfor the contrived example 

Number of Steps 2p 

10-1 1o-2 1O-3 104 io-5 

Lanczos (correct result) 9 28 59 71 91 

Power method (increment < pA/2) 5 3 3 3 4 

Aitken extrapol. (-'-) 7 6 4 4 4 

Here we have contrasted the results of our algorithm from the last column of 
Table 3 with the corresponding results of the power method and Aitken extrapola- 
tion. The latter two methods did not produce the correct results. The increments of 
these two methods became small as indicated in the table, but both misconverged 
very soon at -, for at least 150 steps. However, if we chose 1 = 10-3 (instead of 
10-2), then also our algorithm suffered from misconvergence. 

Nevertheless, it is important to stress that this is only due to the stopping 
criterion we chose. In principle we could have also waited for the appearance of a 
second copy of a stagnant Ritz value in order to be on the safe side (see Section 6). 
As this resulted in many cases in a very high number of Lanczos steps, we chose 
the above error bound stopping criterion as a compromise between reliability and 
efficiency: It can handle difficult cases in which the power method suffers from 
misconvergence, and it requires not too many additional Lanczos steps. This is 
shown in Table 5, where we have listed the number of steps our algorithm took for 
the matrices from Table 2. In parentheses is the minimum number of steps needed 
for the given accuracy. 

TABLE 5 
Results for the Lanczos algorithm (2.4) 

(minimum number of steps needed in parentheses) 

Eigenvalue distr. cos((i- 1) 7 ) 

p= lo-1 6(4) 7(4) 5(4) 8(5) 

p - 1o-3 46(23) 36(16) 7(6) 140(138) 

p = 10- 105(60) 76(43) 9(7) 501(501) 

Stopping crit. from Section 6 143 120 20 > 1000 

p =-10 
-6 

At first glance it might appear that our algorithm (2.4) is taking too many 
unnecessary steps, but after the preceding discussion of misconvergence it should 
be clear that this precaution is absolutely necessary. The price one has to pay in 
order to obtain absolute reliable results is much higher. In the last row we have 
listed the number of Lanczos steps before a second copy of the dominant Ritz 
value appeared in a stagnant interval. This waiting time, which seems to guarantee 
that we do not suffer from misconvergence, costs about 50-100%o more Lanczos 
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steps than our present algorithm. In a sense which deserves to be made more 
precise we therefore believe that our algorithm is for practical purposes a useful 
compromise between reliability and efficiency. 
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