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Scattered Data Interpolation: 
Tests of Some Methods* 

By Richard Franke 

Absract. This paper is concerned with the evaluation of methods for scattered data 
interpolation and some of the results of the tests when applied to a number of methods. The 
process involves evaluation of the methods in terms of timing, storage, accuracy, visual 
pleasantness of the surface, and ease of implementation. To indicate the flavor of the type of 
results obtained, we give a summary table and representative perspective plots of several 
surfaces. 

1.0. Introduction. The basic problem which is being addressed here is evaluation 
of methods for obtaining a smooth (at least continuous first partial derivatives) 
bivariate function, F(x, y), which takes on certain prescribed values, F(xk, Yk) = fk, 

k = 1, ..., N. The points (xk,yk) are not assumed to satisfy any particular 
conditions as to spacing or density, hence the term "scattered." It is usually 
convenient to think of the values fk as arising from some underlying (not neces- 
sarily known) functionf(x, y), so that fk = f(xk, Yk), k = 1, . .. , N. 

The problem of interpolation of scattered data in two or more independent 
variables has been addressed by numerous authors, as can be seen by the bibliog- 
raphy. Many of the basic ideas involved are discussed in two survey papers (both 
over a wider class of approximations than we consider here) due to Schumaker [52] 
and Barnhill [4]. A recent review of methods for contouring, which treats many of 
the same ideas from that point of view, is given by Sabin [51]. Many ideas put forth 
have not previously been explored computationally, or only to a limited extent. 
Thus, the capabilities of some plausible ideas were unexplored. In addition, most of 
the methods involve one or more ad hoc assumptions requiring a user to specify 
parameters (one or more). Generally only cursory attention has been paid to the 
appropriate choice of these parameters, and their overall effect on the interpolant 
has usually not been determined. 

Out of this situation arose a desire to attempt to answer a number of questions, 
basically all related: Which of these many methods deserve further study and 
development, and which should be discarded? Some methods require the user to 
specify an ad hoc parameter, and we have investigated the possibility of using a 
standard default value. The default value should give reasonably good results over 
a number of different sets of data, and preferably the interpolant should be rather 
stable with respect to changes in the parameter. Additionally, it is convenient for 
the user if the parameter is related to something about the data which can be easily 
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estimated. In many cases (perhaps all), subjective judgements must be made about 
these matters, although some firm information can be obtained. 

Some previous fairly extensive work had been done by McLain [41] which 
inspired a somewhat similar study of another class of ideas by the current 
investigator [16]. The initial thrust of the investigation was to compare a few 
"local" methods to determine which seem to work reasonably well. As the investi- 
gation proceeded, more ideas were supplied by colleagues and others so that in the 
end, more than a few methods are tested and compared here, including "global" 
methods. The total number of programs involved in this study is 32, some of which 
are fairly minor variations of others. 

The concept of a "global" method is easily understood. The interpolant is 
dependent on all data points, and addition or deletion of a data point, or a change 
of one of the coordinates of a data point, will propagate throughout the domain of 
definition. The idea of a "local" method is not so clear. Typically one thinks of it 
as meaning that addition or deletion of a point, or a change of one of the 
coordinates of a data point, will affect the interpolant only at nearby points, that is, 
the interpolant will be unchanged at distances greater than some given distance. 
There are some difficulties here. If the data (the (Xk, Yk) points) are "random", one 
must inspect (in some way) all the data to determine which are "nearby". Does this 
mean there is no such thing as a "local" method? (Rosemary Chang first mentioned 
this idea.) We have taken a somewhat more liberal view of "local" and take it to 
mean that the interpolant involves only "nearby" points and one or more parame- 
ters. We allow the parameters to have been globally determined as a matter of user 
convenience, even though a (successful) argument can be made that then the 
method is not local. Thus, we classify methods as local or global without regard to 
how parameters are chosen or computed. 

The use of global methods is not feasible for very large N since they often 
involve the solution of a system of O(N) equations (often exactly N) and in any 
case involve processing all points. When systems of equations must be solved, the 
systems are often full and not necessarily well conditioned. While our primary aim 
was to investigate local methods suitable for very large data sets (several hundred 
points up to some millions, say), in many instances local methods involve the use of 
global methods on smaller sets which are then "blended" together to obtain a 
locally defined global interpolant. Thus it makes sense to to test global methods on 
moderately sized sets of data. By the same token, it is not necessary to test local 
methods on sets of 10,000 points (say) by virtue of the fact that they are local. If 
very large sets of data were to be considered, it is clear that a different implementa- 
tion approach might be necessary, one which would involve a larger amount of 
preprocessing and perhaps additional storage. 

This paper is essentially a condensed version of technical report [18]. The full 
documentation consists of some 370 pages, nearly 300 pages being devoted to 
comparative tables and perspective plots obtained by applying 29 algorithms for 
solution of the scattered data interpolation problem. Each of the methods is 
described there in some detail along with discussions of its performance in the tests. 

1.1. Tested Characteristics of Methods. The characteristics on which various 
methods are to be compared, and how they are to be weighted in the final analysis, 
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are somewhat subjective. While no representation is made that the list is exhaustive 
(or even close to it), nor that everyone will be in agreement on it, the following 
items are the ones considered here. We give them and discuss them in order of 
decreasing importance. In the presentation of information in the summary (tables 
and perspective plots) each reader may weigh various aspects to suit his own needs. 

Accuracy. Accuracy in reproducing a known surface is certainly one important 
aspect of comparison. In the usual application no representation of the underlying 
surface z = f(x, y) is known; however, if the method approximates a variety of 
surface behavior faithfully, we expect it to give reasonable results in other in- 
stances. Numbers can be put on the performance of a method tested in this fashion, 
and we have used this idea extensively. 

Visual Aspects. It has developed during the course of this project that the 
appearance of the interpolant is very important. The most useful representation of 
the surface is a dynamic one, where different viewing angles can easily be obtained. 
This could be achieved by building models, as well. Neither of these capabilities is 
available to the author, and in any case, wide distribution of such representations is 
impossible. Perspective plots of 3-dimensional surfaces were available and have 
been used extensively. The resolution and viewpoint of a perspective plot could 
obscure the fact that a surface is bad, but it is doubtful any truly bad surface has 
escaped detection. 

Visual ratings are often closely related to the accuracy with which an interpolant 
reproduces test surfaces. There seems to be a closer relationship when accuracy is 
high since there is less chance for the interpolant to misbehave. At moderate 
accuracies one interpolant may be visually pleasing while another with similar 
accuracy is not. 

The visual aspect is quite subjective, and ratings by different persons will give 
somewhat different results, although probably not contradictory ones. While it is 
felt that the visual aspect is quite important, exactly how this information is 
integrated into the overall assessment of a method is also a subjective matter. 

Sensitivity to Parameters. Many of the tested methods involve the choice of one 
or more parameters. These choices have generally been converted to ones which 
are related to mean distances to nearest neighbor, although precisely that idea is 
never directly used. Here we are talking of nearest neighbor in the set of points 
{(Xk,Yk)). Sometimes the parameter takes the form of an anticipated number of 
points in the region which defines a local interpolant. 

Methods which involve parameters underwent informal testing for suitable 
values of the parameters. For fixed sets of data, the parameter was varied to find a 
suitable range for its value. Some methods were quite sensitive to the parameter 
value. Some methods were apparently sensitive to the dependent-variable values, as 
well as the (Xk, Yk) values. Thus, a parameter value giving good results for one 
function might yield poor results for a different function sampled at the same 
points. It is desirable that a method be stable with respect to perturbations in the 
parameter and that its value not be highly dependent on the function sampled. 
Such methods were found. 

Timing. The computational effort required is generally not of great interest, 
unless it is very high. In this respect, only one of the methods tested was downrated 
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for this reason. Some methods are quite efficient in terms of time required for the 
calculations. These methods have generally been found deficient in other cate- 
gories, unfortunately. For methods which involve a preprocessing phase, distinct 
from an evaluation (of the interpolant) phase, the two times for standard problems 
are given separately. Execution times were taken from the multiprogramming 
environment on the IBM 360/67 and as such may vary 10-20%o with exactly the 
same data. Thus, execution times must be viewed as a guide rather than as precise 
measurements. 

Storage Requirements. As with computational effort, storage requirements are not 
crucial, unless they are very high. For very large problems this may be altered, of 
course. We count storage requirements only in terms of additional arrays needed to 
store data beyond the (Xk, Yk, fk) points. No account is taken of simple variables or 
program length. 

Ease of Implementation. Ease of implementation is of no great concern if one 
obtains a working program. In other instances it may be of considerable impor- 
tance. The judgement is again subjective. Further, it could be different depending 
on the philosophy behind the implementation. The form of the implementation 
could involve trade-offs between timing and storage and would doubtlessly alter 
the ease of implementation. 

Implementation of programs specifically for this project generally was done with 
a lack of frills. Reasonable care was taken to assure that a grossly inefficient 
algorithm was not coded, but no doubt it is possible to improve on most of them. 
In particular, use of some preprocessing and additional storage was not used to 
increase efficiency during the evaluation phase. For a general purpose program this 
should probably be done. Some of the documented programs did use these devices. 
Ease of implementation is generally meant to take into account the complexity of 
the ideas involved in the method and the amount of code required. 

1.2. The Testing Process. The initial tests performed on a few methods eventually 
gave rise to a standard set of test problems and a set of supporting subprograms to 
generate statistics from the tests and generate perspective plots of surfaces. Due to 
the evolution of ideas as the study progressed, some aspects of the process are not 
as simple as they might have been. This is particularly true of some of the test 
functions, but this has no bearing on the validity of the tests. 

To enable testing many different methods in a consistent manner, and with a 
minimum of effort, a set of standard subprograms was developed which generate 
the test cases, compute deviation statistics for known test surfaces, obtain timing 
statistics, and generate and label perspective plots of the surfaces. With the current 
set of supporting subprograms it is generally quite easy to test a new method which 
is typically supplied as a subprogram (or several) which generates the values of the 
interpolant on a grid of x-y points. Typically all that is required is to set certain 
parameters, reserve any required workspace, and call the subroutine, all of which 
can be done with a few statements added to the prototype driver program. 

There were six different test functions selected. These exhibit a variety of 
behavior, and, when sampled over three different x-y data sets of 100, 33, and 25 
points, gave a total of 18 data sets. In addition to these, two sets of data were 
obtained from the literature (from [2] and [13]). One of these [13] was scaled in one 
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variable, which revealed something of the effects of scaling variables differently. A 
fourth x-y-z data set was a cardinal function, giving a total of 22 different data 
sets. Not all methods were tested on all sets of data; only those readily available 
methods, or those which performed well in initial test, have complete test results 
reported. 

2.0. Descriptions of Tested Methods and Some Results. For description purposes 
the methods are classed into six groups: (1) Inverse distance weighted methods, (2) 
Rectangle based blending methods, (3) Triangle based blending methods, (4) Finite 
element based methods, (5) Foley's methods and (6) Nodal basis function methods. 
While there is necessarily a blurring of distinctions across these group lines, they 
constitute fairly distinct ideas and it is convenient to group them this way. In 
addition to methods which fall into those groups, a variation of Maude's method 
[40] has been tested since [18] appeared. While it is somewhat similar to methods of 
group (1), and while Maude's method also led to the methods of group (2), it will 
be discussed separately as group (7) Modified Maude methods. 

2.1. Inverse Distance Weighted Methods. The original inverse distance weighted 
interpolation method is due to Shepard [53]. All methods of this type which we 
consider may be viewed as generalizations of Shepard's method, or variations of 
such generalizations. The basic Shepard's method is 

N N 

(1) F(x,y) = E W/(X,Y)fk / E w(XIY), 
k=1 k=1 

where wk(x, y) = dk,, and typically jt = 2, although other values may be used. Here 

dk = ((X - Xk)2 + (y - Yk)2)1 2. jt may be replaced by yk and could possibly be 
different for each k. Several authors have considered various aspects of Shepard's 
method [4], [5], [21], [52]. 

Shepard's method is a global method, and the original paper suggested a scheme 
for localizing it by piecing together a parabolic segment with dj-2 in such a way as 
to obtain a wk which is zero outside some disk, say of given radius R, centered at 
(xk, yk), and which is still C l. A simpler and more natural scheme suggested by 
Franke and Little [4, p. 112] is used in much of this work, that is, 

(2) Wk(X Y) [(R _dk)+ 12 
Shepard's method has an undesirable property for general use in that a flat spot 

occurs at each data point. Use of information about derivatives, either given or 
generated from the data, was suggested by Shepard and resulted in an approxima- 
tion of the form 

F(x, y) 
(3) _N (aff\N 

-3 = E Wk(X Y)[ fk + f XX +Y ( YYWk Yk kY 

More generally, one may consider approximations of the form 
N N 

(4) F(x, y) = I Wk(X, y) Lkf(X, y) E Wk(X, y), 
k=l k=l 
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where Lkf is an approximation to f such that Lkf(xk, Yk) = fk. This is the basis for 
several of our methods. In this context we refer to the Lk as nodal functions. 

Another way in which Shepard's method can be generalized is to view the 
method as an inverse distance weighted least squares approximation to f(x, y) by a 
constant. One can then generalize to an approximation taking the form 

(5) F(x, y) = F(a0, al, ... , an; x, y), 

where a0, ... , an are parameters chosen by taking them to minimize (for a given 
(x, y)) the expression 

N 

(6) E [ fk F (a0, al, .. * * an; Xk 5 Yk) ] 
2Wk(X5 Y). 

This approach was taken by McLain [41] in evaluating a number of methods where 
F was taken as a linear combination of low order monomials and wk(x, y) as dk or 

exp(-adk)d72. McLain also considered some approximations where f entered 
nonlinearly. We have considered one of McLain's methods and a variation of 
another. All of the methods of this class may be derived as variations of the above 
formula for F [19]. 

Some papers discussing theoretical aspects of the above generalizations of 
Shepard's method have appeared recently [34], [33]. During revision of this paper, 
the details of two papers came to the attention of the author. Each gives, at an 
earlier publication date, a method previously attributed to others. Crain and 
Bhattacharyya [8] give the simplest version of Shepard's method, while Pelto, et al. 
[48], give the inverse distance weighted quadratic method credited to McLain. 

The performance of methods in this group is very dependent on an appropriate 
weight function, wk(x, y) in (4) or (6). Wk = d, 2 is unacceptable since it allows too 
much influence by far away points, even when, for example, the LJ(x, y) in (4) are 
reasonably good local approximations. The use of polynomials of degree < 2 for 
the L,J(x, y) is inadequate to describe the local behavior of the surface. McLain's 
quadratic version of (6), with Wk = exp(-adk)d 2, performs well, but is extremely 
time consuming. Best performance in the group is achieved by a version of (4) 
using quadratic approximations for the Lk and Wk, given by (2), for an appropriate 
R. We have called this the Modified Quadratic Shepard's Method. It is developed 
from (6) in [19], and pertinent theoretical results are given in [34]. 

2.2. Rectangle Based Blending Methods. The basis for this class of methods is 
discussed in [ 16] and was inspired by a short paper by Maude [40] which 
generalized the idea of deficient quintic splines to several variables. Unfortunately, 
the original interpolation function exhibits rather poor behavior and has not even 
been included in our tests. The original idea was to represent the interpolation 
function as 

N N 

(7) F(x,y) = E Wk(X,y)Qk(X,y) E Wk(X, ), 
k=1 k=I 
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where Qk(x, y) is the quadratic polynomial interpolating f(x, y) at (Xk, Yk) and the 
five nearest neighbors to (Xk, Yk) from the set {(xj, yj)}, and 

F d 2 dL 

Wk(X,Y) = 1 ( Rk RJ) dk Rk, 

0, dk > Rk, 

where Rk is the distance between (Xk,Yk) and its fifth closest neighbor. This idea 
was generalized to include any wk(x, y) which have finite support (to make the 
method local) so long as the Qk(x, y) interpolate f(x, y) at all (xj, yj) where 
wk(xj, yj) # 0. Use of approximations Qk(x, y) in Hilbert spaces, particularly in 
Sard spaces, was suggested and implemented [17]. One of the chief advantages of 
this approach is that instead of taking wk with disks centered at the (Xk, Yk) as 
support regions, it is easy to use a smaller number of overlapping rectangles in such 
a fashion that at most four terms in the sum are nonzero, and wk(x, y) _ 1. Use of 
rectangles also simplifies the problem of determining which terms are nonzero and 
thus results in a faster algorithm. 

The set of rectangles is chosen to attempt to make each rectangle contain a given 
fixed number of points. Suppose the rectangles are defined by grid lines at x = x0, 

,...xn + and y = ;0, ;j, ... ,y,,+ Then weight functions with support 
[x-i_, i+ I] x [9j -, ;j+ ] = Rij are formed from piecewise Hermite polynomials, 
local interpolation functions Qj1 are constructed so that Qij(Xk, Yk) = fk whenever 
(Xk, Yk) E Ri1, and then the overall approximation takes the form 

(8) F(x,5y) = E wij(x, y) Qi1(x, y). 
i,j 

Any type of local interpolation function Qj1 could be used. The author previously 
suggested Sard type approximations [17]. These have some undesirable properties 
in that they depend on factors other than relative position of (Xk, Yk) points. A 
second implementation using "thin plate splines" (see Section 2.6) was also tested. 
Neither of the methods performs as well as the author expected. It would seem that 
the method should be nearly as good as the underlying local approximation, 
however, this was not quite borne out by the tests, although the version using "thin 
plate splines" performs well. 

Recently, some work due to Jancaitus, Junkins, and coworkers [30]-[32] has 
come to the investigator's attention. This work involves the idea of weighted local 
approximations in a similar fashion and was applied to the problem of terrain 
modeling. In their case the local interpolation functions were replaced by least 
squares approximations by polynomials and thus interpolation was not achieved. 

23. Triangle Based Blending Methods. These methods are conceptually the same 
as those given by Eq. (4), but a significant difference is that the weight functions 
are based on a triangulation of the convex hull of the point set {(Xk,Yk)}. Several 
such schemes have been proposed, e.g., [7], [19], [20], and [42]. One of those 
considered here is the one described in [19]. 

Assume a triangulation of the convex hull, and suppose (x, y) E Tijk' where Tijk 
is the triangle with vertices (xi, yi), (xj, yj), and (Xk, Yk). We then take 

(9) F(x,y) = wj(x,y)Q1(x,y) + wj(x,y)Qj(x,y) + wk(x,y)Qk(x,y), 
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where the weight functions are finite element "shape" functions satisfying 
wm(xn, y) = 6,, and the nodal functions Q, satisfy Qn(xn, y) = fn for m, n = 

i, j, k. In all previously referenced methods the weight functions may be viewed as 
nine-parameter cubic shape functions with a rational correction to obtain normal 
derivatives equal to zero, and hence a Cl approximation overall. There are many 
ways to obtain such correction terms, all of which appear to lead to the possibility 
of negative values being taken on by one of the weight functions if the triangle is 
very obtuse. This is probably not serious, although one has no control over the 
shape of the triangle in the sense that very obtuse angles cannot be avoided, 
especially near the boundary of the convex hull. The weight functions used here are 
obtained from a minimum norm problem [45]. Let bi, bj, bk be the barycentric 
coordinates of (x, y) in Tijk and let /j, Ij, Ik be the lengths of the sides opposite 
vertices i, j, and k, respectively. Then the weight function is given by 

wk(x,y) = bk(3 - 2bk) + 6bibjbk[akj + aki] 

with 

bkbj(l + bi) [ 12 + 12 _ 2 1 

akl (1- bi) (I - bk) 2 2i i 

and the others are obtained by a cyclic permutation of the indices. 
While the basic method is defined only on the convex hull of the point set, it is 

easily extended to a globally defined function by the following idea. The exterior of 
the convex hull is divided into semi-infinite rectangles and semi-infinite triangles 
by constructing perpendiculars to the exterior edges of the convex hull at each 
exterior vertex. The value of the interpolant at an exterior point is obtained from 
the nodal function values at one (triangular area) or two (rectangular area) nearest 
points. 

The Q, in (9) can be taken to be any function having the required property. As 
with the inverse distance weighted methods, linear functions are inadequate. Use of 
appropriate quadratic functions yields results similar to those obtained from (4) in 
that case. Certain advantages accrue here. The evaluation phase is very fast since 
only three terms appear in (9), and the algorithm for determination of which 
triangle a point lies in is fast. Disadvantages are that a large amount of auxiliary 
storage is required for the triangulation (incidentally the triangulation algorithm 
itself is very fast), and long slim triangles sometimes yield surfaces which appear to 
have discontinuities along these triangles because of very rapid changes in function 
value across the narrow part. 

2.4. Finite Element Based Methods. These methods are based on the concept of 
using C ' finite element functions on a triangulation of the convex hull of the point 
set. This requires a scheme for estimating some derivatives (which derivatives 
depends on the element used by the method) at the data points. Our test results 
indicate that accurate estimates of the derivatives are very important and have a 
pronounced effect on the visual aspects of the surface as well as the accuracy. 
Three methods of this type, each using a different element, were tested. One was 
tested with several variations in the way partial derivatives are estimated. An 
additional scheme has been tested since [18] appeared, and we mention it here as 
well. 
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Akima's method [2], [3] is readily available. It uses the C 1 18 parameter quintic 
finite element. Extrapolation outside the convex hull is provided. The element 
requires estimates of first and second partial derivatives at the data points. In 
standard form a certain average of slopes of planes through the data point and 
each pair of several nearest neighbors is used to determine first derivative esti- 
mates. Second derivatives are estimated by applying the process to the derived 
data. Two variations of this scheme (by varying the weights in the average) were 
tested, as well as a version which obtained the derivatives from a local quadratic 
approximation. Performance of the method depends greatly on the estimates of the 
derivatives. The latter version gives the best results but at a considerable time 
penalty in the preprocessing phase. The published version is by far the fastest 
algorithm tested here, but gives poor results in some instances due to poor 
derivative estimates, generally, and sometimes due to long slim triangles in the 
triangulation. The latter is unavoidable in triangle based methods and often occurs. 
It cannot be avoided without abandoning the convex hull, or adding fictitious 
points. 

Since the appearance of [18], Akima has proposed a variation in the computation 
of derivatives. Instead of using nearest neighbors in the usual sense, the neighbors 
in the triangulation are used. This scheme generally gives poorer surfaces than the 
original method, especially near the boundaries of the convex hull, where extra- 
neous bumps often occur. This version is available in edition 8 of the IMSL library 
as subroutine IQHSCV. 

Lawson's method [35] is similar in spirit to Akima's except that the Clough- 
Tocher element is used. First partial derivatives are required, and these are 
obtained from a quadratic approximation. Results are generally better than for 
Akima's method, although execution times are greater. Lawson's program does not 
extrapolate outside the convex hull. 

Nielson's minimum norm network [46] uses a cubic element with a rational 
correction to achieve a C' function. The element is the solution of a certain 
minimum norm problem [45] and requires first partial derivatives in its discretized 
form. These are obtained by assuming a cubic variation along each edge in the 
triangulation and minimizing the integral (over all edges in the triangulation) of the 
second derivative squared. This gives the best results in this class of methods. It is 
somewhat slower than the other methods, but could probably be improved consid- 
erably in the evaluation phase. The method does not provide extrapolation outside 
the convex hull, although the investigator provided Co extrapolation for the tested 
version. Nielson's method is global as opposed to Akima's and Lawson's, which are 
local. The system of equations for the partial derivatives is solved by an iterative 
process which converges rapidly. 

Since the appearance of [18], Little's method [36] has been tested and performed 
very well. It is based on the use of a cubic element with a rational correction term. 
Partial derivatives are estimated using a weighted average of the slopes of planes 
through neighboring points in the triangulation. One significant difference from 
other schemes in this group usually results in better control over long slim triangles. 
That difference is abandonment of the convex hull by extrapolating for a function 
value at some added exterior points. These points are then added to the set, which 
is retriangulated. This eliminates the usual edge effect, but, depending on the 
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extrapolated function value, can distort the surface near the edge if it is not 
representative of its behavior near the boundary of the convex hull. 

Other finite elements could be used. One which might be appropriate is the 
piecewise quadratic due to Powell and Sabin [49]. This element was designed for 
contouring, hence the desirability of a quadratic. For general application the large 
number of subtriangles involved would seem to be a detriment. The author has not 
had access to a program based on this scheme, but it is likely it would perform on 
about a par with others considered here. 

2.5. Foley's Methods. Foley's methods [14], [15] involve several ideas. The use of 
a generalized Newton type interpolant is involved in them prominently. Another 
idea which is exploited successfully is that of using one interpolant to generate a 
grid of points on which product type approximations can be constructed. The 
product approximation will not, in general, interpolate the given data. Hence a 
correction based on the original approximation is made to the error. This process is 
termed a "delta sum" by Foley, written PAQ, defined by PAQ = P ED QP, and 
implemented as (PA Q)f = P(I - QP)f + QPf. 

The idea has greater generality than considered by Foley, but the application of 
it seems to be the appropriate one. He considers cases where the product type 
approximation (taking the part of Q) is either the bivariate product Bernstein 
polynomial or the bivariate product natural bicubic spline. The first interpolant 
(taking the part of P) is taken as either the generalized Newton interpolant, or a 
form of Shepard's method. The delta sum idea is applied in iterated form for two 
methods. 

The generalized Newton interpolant takes the form 

TN(X, Y) = Eakwk (x, y), where ak = f - , 
k= I Wk(Xk Yk) 

and wk(x,y) has the property wk(xi,yi) = 0, i = 1, 2, . . . , k - 1. This function is 
dependent on the order of the points, and so Foley's scheme involves an ordering 
process. 

The best performance is provided by the iterated delta sum method using the 
generalized Newton polynomial with natural bicubic splines. The method performs 
reasonably well, but sometimes exhibits "polynomial-like" ripples in the surface, 
although it generally gives quite smooth surfaces. 

2.6. Global Basis Function Type Methods. These methods can be characterized by 
the following idea. For each (Xk,Yk) simply choose some function Gk(x,y), and 
then determine coefficients Ak so that F(x,y) = Y k AkGk(x,y) interpolates the 
data. Schemes which work are not so simple in that appropriate choices of 
functions Gk are not particularly easy to make. Even if the functions Gk have only 
local support, the methods are global and further they require solution of a system 
of N linear equations. In all instances we consider, the systems have a symmetric 
coefficient matrix (Gi(xj,yj)), but this need not be the case. Usually the Gk are 
really functions of the one variable dk. Numerous colleagues have suggested 
(among others) B-splines, Gaussian distributions, and other basis functions which 
seem to have an at best shaky mathematical justification. These schemes involve 
parameters to be specified by the user. For a Gaussian distribution function it is 
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the variance, while for rotated B-splines it is the radius at which the function 
becomes zero. These two methods are quite sensitive to the parameter, and, while 
good results are possible, the appropriate value of the parameter seems to depend 
on the function value as well as the (Xk, Yk) points, which is an undesirable 
characteristic. A potentially undesirable feature of many of these schemes is that 
they usually have no polynomial precision, e.g., not even constant functions are 
reproduced exactly. Based on practical experience, however, it is this author's 
opinion that incorporating polynomial precision does not, in itself, yield significant 
improvement. This observation has also been made elsewhere [14]. 

In terms of fitting ability and visual smoothness, the most impressive method 
included in the tests is the "multiquadric" method, due to Hardy [23]-[29]. In this 
method the Gk's are taken to be the upper sheet of a hyperboloid of revolution, 
Gk = (dk2 + r2)1/2. Here r is a parameter to be specified by the user. The method is 
quite stable with respect to this parameter and yields consistently good results, 
often giving the most accurate results of all tested methods. The surfaces are 
usually pleasing and very smooth. Results nearly as good are obtained with the 
"reciprocal multiquadric" method, Gk = (dk2 + r2)-'/2. However, here the choice of 
r is somewhat more crucial since small values of r will lead to a surface of peaks 
and dips at each data point. 

Two methods which have basis functions similar to the multiquadric method are 
due to Duchon [9]-[12] and are also treated by Meinguet [43]-[44]. Unlike Hardy's, 
which as yet has no theoretical basis, these methods have an elegant theory in a 
Hilbert space setting. In one case Gk = dk3, while in the other Gk = d 2 log dk. The 
latter minimizes the thin plate functional 

a2f 2 2f 2 2f 2 

fR2( ax2 
2 + {)dx dy 

in a certain Hilbert space and is termed a "thin plate spline". In each case the 
approximation contains a linear combination of functions in the kernel of the 
functional (that is, a linear function), along with side conditions, the geometric 
effect being to remove terms which grow faster than linear as one moves far away 
from the data. The thin plate splines had previously been discovered by Harder 
and Desmarais [22], where they are called surface splines. The two methods 
generally perform in comparable fashion, but the thin plate spline leads to 
coefficient matrices with smaller condition numbers, and hence was the more 
extensively tested of the two. The thin plate splines generally give approximations 
nearly as good as the multiquadric method, pleasant visually, and very smooth. 
This method has no parameter and, like other methods tested in this class, has the 
desirable properties of translation and rotation invariance. 

It would seem that functions Gk which diminish as one moves away from the 
point (xk, Yk) would yield better results than the ones which increase with distance. 
The reasons for thinking this is that a large value far away means a basis function 
has more influence far away than at the point with which it is associated. Also, the 
coefficient matrix for the system giving the weights is full, with its largest elements 
off the diagonal. Nonetheless, methods which performed the best have basis 
functions which are unbounded. 
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We have not directly tested any method based on the idea of "kriging", or 
"regionalized variables", due to Matheron [38], [39] and discussed by numerous 
others, e.g., [47], [1], [37], [50]. However, it appears that kriging methods are related 
to global basis function methods, and indeed are identical to them under certain 
conditions. The statistical assumptions and approach taken in Kriging make the 
method appear harder, computationally, although this viewpoint allows estimation 
of the goodness of fit. The assumptions made seem to this author to be related to 
choice of a good parameter value in global basis function methods. 

2.7. Modified Maude Methods. We briefly discussed Maude's method [40] in 
Section 2.2 and noted that it did not perform very well. This is primarily due to 
poor behavior of interpolating quadratics in two variables. Vittitow [54] has 
developed some modifications of the idea which attempt to alleviate this problem, 
as well as to overcome the possibility of "holes" appearing in the domain due to 
varying sparseness of the data. 

Poor behavior of the local interpolation functions (the Qk's in Section 2.2, Eq. 
(7)) is improved by (1) reducing the number of interpolation points, and (2) 
increasing the total number of points used to define the local interpolation 
function. This is achieved by calculating a constrained (to interpolation at a 
reduced number of points) least squares fit to a larger set of nearby points. 
Quadratic, cubic, or quartic functions can be used. 

Complete coverage of a specified domain is achieved by adaptively determining 
the disks on which wk(x, y) (in Section 2.2, Eq. (7)) is nonzero. In the process, disks 
are no longer centered at the data points and fewer than N are usually needed. The 
actual number of interpolation points varies from disk to disk, but is no greater 
than a specified number. The number of points included in the least squares 
process (in addition to the interpolation points) is also specified by the user. 

3.0. Summary. Numerous tables in [18] summarize the results of the study. In 
particular, there are tables giving 

-maximum, mean, and rms deviations of surfaces generated by data taken from 
known functions; 

-best performance in the accuracy tests among local methods, and overall; 
-effect of varying the parameter, if any; 
-times for preprocessing, interpolant evaluation, and total time; 
-a summary, giving an overall "quick look" at the results. 
The summary table is reproduced here as Table 1, including results for the three 

subsequently tested programs. We briefly describe each column in the table. 
Footnotes are referenced by small letters. Program number is a number assigned to 
the program and used to identify it in plots and tables. Description is a brief pointer 
to the person or ideas involved. Global/Local tells whether the method depends 
globally on the data (G) or locally (L). Type gives the subsections of article 2 into 
which the method falls. Continuity indicates the highest order derivatives of the 
interpolant which are all continuous. Precision refers to the highest degree poly- 
nomial which is reproduced exactly by the interpolant. Storage refers to estimated 
size of storage arrays required in addition to the given data. No account of scalar 
variables or program size is included. Domain is the domain of definition of the 
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interpolant. Sensitivity to parameters is a purely subjective score, based on informal 
testing of the scheme. Included were whether some value of the parameter worked 
well for a variety of surfaces for a given set of (x, y) points, and whether the 
interpolant was stable with respect to changes in the parameter from that value. 
Complexity simply reflects the investigator's perception as to the complexity of 
ideas involved and the ease of implementation into a computer program. Accuracy 
is again subjective and is based on the relative amount of deviation one might 
expect from the true surface for a given method. Of course, perusal of the 
deviations tables will reveal that some methods do well on some surfaces and not 
so well (relatively speaking) on others. Visual pleasantness is a subjective rating 
based on perspective plots of the interpolant. Timing is relatively well defined. The 
first letter represents the sum of the evaluation times for three cases of 100, 33, and 
25 data points. Ranges for A, B, C, D, and F, respectively, are (0, 7], (7, 21], 
(21, 30], (30, 50], and (50, ox). The second letter represents the total time for 100 
data points and 1089 evaluation points. Ranges are (0, 4], (4, 12], (12, 20], (20, 30], 
and (30, ox). The first 13 lines in the table give the results for the extensively tested 
methods. The remaining lines give results for less extensively tested methods and 
the three subsequently tested methods. 

To give the flavor of the type of visual information included in the report, two 
pages are reproduced here in Figures I and 2. Figure I gives the test surface in part 
(a) and reconstructions of it by the multiquadric method for three different data 
sets with 100, 33, and 25 points in parts (b), (c), and (d), respectively. Figure 2 
shows surfaces generated by the rectangle based blending method due to the 
author, using thin plate splines as the local approximations. Part (a) is a cardinal 
function, part (b) was generated from Akima's data, and parts (c) and (d) were 
generated from Ferguson's data. As a general rule, the best global methods seem to 
result in surfaces which are visually more pleasant than those obtained from local 
methods, as though localizing the surface loses something, which, while small, is 
still significant in that respect. Poor behavior near edges of the data set is more 
prevalent for local methods. For data sets of up to 100-200 points, global methods 
are feasible and should be considered. Nielson's minimum norm network can 
probably be used on somewhat larger sets of data since the sparse system of 
equations is solved by iteration, while other global methods generally require 
solution of a full system of N or more equations. Choice of a method for a large 
number of points is to a certain extent a personal matter, but the previously 
mentioned Modified Quadratic Shepard's Method performs well, requires mod- 
erate storage and computation time, and is relatively easy to implement. It is also 
easily extended to more independent variables. The triangle based programs, of 
which Akima's is the most readily available, require considerable machinery and 
storage for the triangulation, but in the end they are quite fast (Akima's being by 
far the fastest of all tested methods). These methods are extremely difficult (if not 
impossible) to extend to more than two independent variables and have other 
previously mentioned potential defects. 

Despite the number of ideas explored and programs written or obtained from 
authors, and tested, there are still some which were not investigated. In addition to 
the two methods from the CAGD group at Utah, which were recently obtained, 
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there are still more ideas which have arisen there. Many of these are based on 
triangulations, which the investigator feels are more suited to the design problem 
(where long slim triangles can be avoided) rather than the interpolation problem. 
Another idea which was not tested has its genesis in Briggs [6], and is available 
commercially [55]. The user's manual contains some impressive material, but no 
tests of the software have been conducted. There are no doubt more ideas worthy 
of investigation appearing in the literature. 

(a) Test surface (b) 100 point sample 

(c) 33 point sample (d) 25 point sample 

FIGURE 1 

Hardy's multiquadric method 
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(a) Cardinal function, 23 points (b) Akima's data, 50 points 

(c) Ferguson's data, 25 points (d) Ferguson's data, yx3, 25 points 

FIGURE 2 
Franke's local thin plate splines 

It,~ ~ ~ ~ ~ ~ 1/ 

In terms of the data considered here, it was for the most part rather nice data, 
even though some effort was made to include some data with varying densities. 
Real data exists which is very sparse in certain regions or lies in clumps. Some 
methods will not work in a reasonable fashion for this type of data, although we 
have not tried to determine which methods will and which will not. Methods based 
on quadratic approximations will likely misbehave for such data. In addition, local 
methods based on distance weighting may have holes in the domain of definition 
when density varies greatly or when data appears in clumps. Some additional work 
is necessary to see if there are suitable local methods for such data. 
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