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On Effective Computation of Fundamental Units. I 

By Michael Pohst* and Hans Zassenhaus 

Abstact. The new method for efficient computation of the fundamental units of an algebraic 
number field developed by the authors in an earlier paper is considerably improved with 
respect to (Section 1) utilization to best advantage of the element of choice inherent in the 
method and the mastery of the linear programming techniques involved, (Section 2) ideal 
factorization, and (Section 3) the determination of sharper upper bounds for the index of Ue 
in UF. 

Introduction. In [3] the authors devised a new method for efficient computatior 
of the fundamental units of an algebraic number field. However, a few questionm 
regarding the ensuing algorithm were left unanswered. We therefore announcec 
further investigations. In the last four years we obtained much more computationai 
experience with our method, and we discovered that some of the procedures could 
be considerably improved. The results of the theoretical analysis are contained in 
this paper, numerical examples and a description of the computer program wil] 
follow subsequently. 

In Sections 1-3 we discuss the essential points of the computation of fundamen- 
tal units in number fields, in accordance with the usual procedure. Sections 1 and 2 
contain the determination of a maximal system of independent units, and in 
Section 3 we obtain an upper bound for the index of the group generated by the 
computed units in the full unit group. Then the latter can be computed without 
further theoretical difficulties as outlined in [3]. We use the following notation. F is 
an algebraic number field of degree n > 2 over Q with discriminant dF. The ring of 
integers of F is denoted by OF, its unit group by UF. We assume that F has r1 real 
and 2r2 complex conjugates, so that UF contains r = r, + r2 - 1 independent units 
according to the Dirichlet theorem. 

In Section 1 we study the generation of arbitrarily many integers of F of 
bounded norm. We obtain several important improvements over [3] concerning the 
choice of a basis of OF, the choice of w for transforming the fundamental 
parallelotope and especially the determination of the lattice points in the trans- 
formed parallelotope. 

In Section 2 we give a new method for the construction of units based on a 
sufficiently large number of algebraic integers of bounded nornm For real quadratic 
fields it was already discussed in [4]. 

By application of Sections 1 and 2 often enough we will obtain r independent 
units -1, . . . , -r and thus a system of generators of a subgroup Ue of finite index in 
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UF. We do not deal here with the computation of a generating element of the 
torsion subgroup TUF of UF (for this see [3]). In order to determine a system of 
fundamental units derived from ,,... , ,, we need an estimate of (UF: UC) and a 
method of extracting roots from suitable power products c' E"r (mi E Z). 

Improved upper bounds for the index of U, in UF will be given in Section 3. 
Besides making use of conventional lower bounds for the regulator RF of F we 
develop new lower estimates derived from Minkowski's Theorem on Successive 
Minima. Though this method was already outlined in [3], we present it anew with 
substantially stronger results. 

The computation of UF from U,-provided that an upper bound for (UF: Ue) is 
known-was completely described in [3]. 

Part II contains a description of the corresponding computer program as well as 
an extensive list of numerical results obtained so far. They cover all fields of 
degrees < 6 and small absolute discriminant. 

1. Construction of Integers of Small Nonms. For any integral basis Wo, ... ., n of 
the given algebraic number field F there is a 1-1 correspondence between OF and Zn 
by means of the mapping 

(1.1) p: F -*Qn: X1 1+I + 
xn,n___ (X}, X 

* n). 

Therefore we can compute integers of F of bounded norms as lattice points in the 
parallelotope 

(1.2) X := {((xI,**, Xn Zn I _I < xi < 1,i=1 ,n} 

respectively, in suitable linear transforms of X of equal volume. This procedure was 
described in detail in [3]. 

However, we did not discuss the effect which a particular choice of the basis 
w15 ... , wn has on our method. To compute units from the integers of F obtained 
by the algorithm we would like their norms to be as small as possible. An upper 
bound is easily derived from (1.2). For 

(1.3) UB := max{ t ( EX,@/)) -< xi < 1, i = 1,..,n 

where the product is taken over all conjugates, obviously 

(1.4) 1 N(() I < UB 
holds for every integer ( of F which we obtain by our method. Therefore the 
integral basis X,, . .. , wn should be chosen so as to make UB as small as possible. 
Unfortunately the computation of such a basis is at least as difficult as the 
computation of units. For example, in real quadratic fields the corresponding 
extremal value problem would involve a solution of Pell's equation. Nevertheless, it 
is advisable to carefully consider the choice of w., ..., wn to make UB desirably 
small. A first step is, of course, the choice of basis elements of small norm. Since 
our method provides such elements at each step, a change of basis after a few steps 
is highly recommendable. 

Example: n = 2, F = Q(V6/ ), OF = Z + V6/Z . For 1, V6 as basis elements we 
obtain UB = 6. If we choose 1, 2 + \6_ instead, we get UB = 5. Moreover, 7T then 
contains a lattice point corresponding to 3 + V6. After we change the basis to 
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= 2 + V6, W2 = 3 + 6, we obtain firstly UB = 3, and then also the funda- 
mental unit e = w, + W2 of F as a lattice point of 7T. Hence we can compute the 
fundamental unit in that case without transforming 7T at all. 

In most cases, however, w-transformations of 7T cannot be avoided. For w G 
oF\Z we compute the right regular representation matrix M,, by means of 

(1.5) w(wi1 * * * 5 Wn) = (W15 * * * 5 Wn)M.- 

Then the matrix IN(w)j-L"nM,, yields a linear transformation of determinant ?1. 
Denote the transformed parallelotope by 7T(w): 

(1.6) 7T(w) = {IN(w)I-"ln(x, . .. ., xn)Mt I -1 _I < 1, i = 1, . . .x, n}. 

From this presentation it is easily seen that the bound UB of (1.3) remains 
unaltered for 7T(w). 

An optimal choice for w is still an unsolved problem. We propose to call w 
"good", if v(w) contains many lattice points different from those of 7T. Unfor- 
tunately we do not know how to make the best choice of w to that effect. So far we 
can only give rules of thumb derived from our experience with extensive calcula- 
tions. New lattice points rarely occurred if we chose w at random or if we made one 
coefficient in the representation of w by 1,, . . ., wn large and the other coefficients 
small. Substantially better results were obtained by using a number X of small 
norm and continuing by using a few consecutive powers of that same number. 
Apart from those improved results we gained also the following advantages. Firstly, 
numbers of small norms are already derived from the lattice points in 7T, they are 
always at hand. So we do not need an extra routine for the generation of W, we can 
simply choose the element of smallest norm in storage which was not yet used for 
this purpose. Secondly, we must compute M,, only once, compare the remarks to 
Step (A) below. Further simplifications can occur in the process of determining 
lattice points of v(w). We shortly recall the main steps from [3]. 

(A) By the elementary divisor theorem a unimodular matrix U and its inverse are 
computed such that MU =: N is a lower triangular matrix. 

(B) A lower triangular matrix B E Znxn is recursively computed from NB - 

JN(w)JI,, In denoting the n X n unit matrix. 

(C) The integral solutions x E Zn of the system of inequalities 

(1.7) -I N(w lg(n-')ln(I5 1)' < xB < jN(w)j(n 1)1n (1,..., 1) 

can easily be calculated, since in the ith inequality only xn, .. . ., x occur (i =n 

n - 1,.. . , 1). 

(D) Every lattice point y of v(w) is obtained from a solution x of (C) by means of 
y = xU-'. 

In the sequel we investigate steps (A) and (C) for further improvements. 
Step (A). When we transform ir by successive powers of an integer W of F, we can 

avoid computing M,,, = (M,,)' (v = 2, 3, ... ) at each step. For the determination 
of the lattice points of the transformed parallelotope we do not actually need M,, 
but only the lower triangular matrix N,,, obtained from it by column operations 
and multiplication by the corresponding unimodular matrices U,, and U,, respec- 
tively. We therefore compute those for consecutive powers of w in the following 
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way. Because of M,, = N,,U,,)' and M,, = MM,,-, = (MN,,N ,)U-,', for v = 

2, 3, . . ., we calculate for each v > 2 the matrix M,N,,-, which cuts down the 
work by nearly one half, since N,^,-i is already a lower triangular matrix. There- 
after MN,,-, is transformed into a lower triangular matrix N,,, and at each step 
u,,-, is transformed analogously yielding M,, = N,, u,,!. Moreover, we can give 
N,, (N,, respectively) a canonically reduced form by column operations demanding 
for its entries nii: 

(1.8) nii > O, -'nii < ni < -ni (i = 2, ... ., n; j = l, ... ., i-) 

Step (C). Solving the system of linear inequalities in the proposed way is 
recommendable only in case JN(w)J( -1)/n is small compared with the entry b,,, of 
B. Usually bnn will be one. So, if I N(w)l becomes large, for example, when X is a 
power of some integer of F, we would have to consider the remaining n - 1 
inequalities for a huge number of values xn, most of which would not yield a 
solution of the system. We therefore proceed in either of two ways. 

Method 1. We compute w := max{b11nN(&)ll'n)/' Ij = 1, ..., n) and choose i 
maximal with the property bii N(-)J( -n)/n w. Then we eliminate 
xn, xn_ -, ,xi, from the ith inequality by adding suitable multiples of the 
inequalities n, n -, . . . , i + 1 to it. This yields a much smaller number of 
possibilities for xi and consecutively we determine all solutions (xi, . .. , x") for the 
inequalities i, i + 1, . . . , n. In order not to obtain superfluous solutions we must 
store all inequalities which occur during the elimination. Fortunately the size 
of the problems we considered so far allowed this without difficulties. For the 
(n - i + I)-tuples (xi, ... , xJ) obtained in that way we then compute xi_ ,... , 

(if existing) as suggested in (C). 
Method 2. This method should be applied in case the matrix B computed from 

canonically reduced N's is sparse below the diagonal. For example, if IN(o)I is a 
prime number, B only contains entries different from zero in the last row and-of 
course-in the diagonal. Hence, only the variables xi, xn occur in the ith inequality 
of (1.7), and instead of (1.7) we obtain 

(1.9) -IN(cJ)I'n-"'n < b11x1 + binxn < IN(,)I(n 1)/n 

1 < xn < JN(@)1(n-1)1n1b 

(i = 1, .. ., n - 1). We substitute xn by xn - 1, divide the first inequality by 
gcd(bii, bin), and replace xn by IN(w)I(n-1))!n/bnn - 1 - xn in case bin < 0. Then it 
suffices to determine the lattice points of a parallelogram given by 

(1.10) j < ax + by < k, 0 < y < I(j e Z,k,l,a,b EN;x,y E Z>0). 

This can be done very efficiently by a linear program: 

(1.11) max(ax+by)subjecttoax+by k, O<y<l,x>0. 

The solution of (1.1 1) will be a lattice point (xo, yo) satisfying j < axo + byo < k, 
because we know from Minkowski's Convex Body Theorem that there is at least 
one lattice point different from (0, 0). In order to obtain further lattice points 
satisfying (1.10) we replace k by Axo + Byo - 1 in (1.11). This procedure can be 
carried out as long as the optimal solution of (1.1 1) yields a value which is greater 
or equal toj. 
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In general it takes only a few steps to solve (1.11). From ax + by < k we derive 
y < min{[k/b], 1). In case k/b < 1, we can drop the condition y < I and go to 
(1.13) setting m = 0. In the other case: k/b > I we decompose the pointset 
{(X, y) E (R )2 1 ax + by < k, y < I) into a rectangle {(x, y) E (R>)2 1 0 < y < 
1, 0 < x < (k - bl)/a) and a rectangular triangle with vertices ((k - bl)/a, 0), 
((k - bl)/a, 1), (k/a, 0). The optimal value of ax + by on the rectangle is ob- 
tained for x = [(k - bl)/a], y = 1. It remains to discuss the lattice points of the 
triangle. We set 

(1.12) m { ~~~(k - bl)/a if it is in Z, 
(1.12) ( [(k- bl)/a] + I else, 

and substitute x - m for x. This yields 

(1.13) max(ax + by + am) subject to ax + by < k-am =: k, x > 0,y > 0. 
Without loss of generality we can assume a > b > 0. For an optimal solution of 
(1.13) we must necessarily have y > [(k - ax)/b]. Hence we can lessen the 
pointset under consideration by applying Euclid's algorithm [1]. Let q, r E Z such 
thata = qb + r and0 < r Kb. Then 

k [a b a k [] ( a k 

and x < [k/a]. For [k/a] = 0 we are done with x = 0, y = [k/b] as an optimal 
solution. Else we substitutey - ([k/a] - x)q fory and obtain 

max((a - bq)x + by + am +[- q]b) subject to 

(1.4) (a- bq)x + by < k[ a ]qb, O < x < [a ] > 0. 

It is easily seen that (1.13) and (1.14) are equivalent in the sense that their optimal 
solutions coincide. On the other hand (1.14) is a problem of the same form as (1.1 1) 
but with much smaller values instead of a, k, 1. After a few transformations of this 
kind the process comes to a halt because of either one of the numbers a, b, k, I 
being zero or a > k or b > k. For an estimate of the number of necessary steps see 
[1]. We only mention that the solution is obtained in a polynomial number of steps 
depending on the size of a, b. 

Method 2 can be strongly recommended if we can either assume that there are 
not too many lattice points, or if we only want to determine a few of them. 

2. On the Factorization of Nonzero Principal oF-Ideals. 
Introduction. Given a finite number of nonzero elements a,, a2,.. ., am of oF, we 

want to factorize the principal ideals aioF into power products 

(2.1) a'oF = fi II 'vk(a,,aj*) (1 < i < m) 
j-1 k-i 

of mutually prime ideals of the form 

(2.2a) ajk:= ajOF + akOF (1 < k < Tj, 1 < <) 
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of OF that are distinct from OF such that 

(2.2b) t, T1 T23, - *, Tr , al, . . . , a, 

are natural numbers and 

(2.2c) gcd(ai, ak) = I (I < i < k <t), 

the elements aJk are contained in OF and the exponents v(aj, ajk) are nonnegative 
rational integers. 

I. Contents. In order to solve the task stated in the introduction, we introduce the 
content concept. For the purpose of computing contents, it is convenient to avail 
oneself of a minimal basis of F, i.e., of a Z-basis ,, .. . , co Of OF' 

Definition (2.3). The (rational) content of an element 
n 

(2.4) ei wi (ei E Q, 1i n) 
i = 1 

of F is defined as the greatest common divisor of the coefficients e,, . . ., en: 
n 

(2.5) C(y) := gcd(e, . . . , en), 0 < C(y) E Q, C(y)Z = 2 e1Z. 
i= 1 

For example the content of a rational number e is lel. 

LEMMA (2.6). For any element y of F the fractional OF-ideal C(Y)OF generated by 
the content of y is the intersection of the fractional Z-ideals XZ satisfying the condition 

(2.7) XOF 3 Y. 

Proof. (2.4), (2.5) imply that 

ei = C(y)xi (xi E Z, 1 < i < n), 

and therefore 
n 

Y = C(y) E Xii Ee C(Y)OF = (C(Y)Z)OF. 

Conversely, let XZ be a fractional Z-ideal satisfying (2.7). Then we have ei E XZ 
and C(y)Z 

n 
I eiZ c XZ. 

LEMMA (2.8). For any nonzero element y of F the content of y is derived from the 
coefficients of the minimal polynomial P(t) = Ry(t) 

n- 

P(t) = t', + E aitnz-i 
(2.9) i=1 

P(y) = O (ny E Z>0; ai E Q, I < i < nY; an' : ?) 

as the largest rational number x satisfying 

(2.10) a, E xiZ (I < i < n.). 

Proof. According to (2.4), (2.5), we have y = C(y)o with X in OF. Hence the 
minimal polynomial of w is 

n- 

P,(t) = tIn + EaiC(Y)-itn,-i 
i = I 
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Moreover, the coefficients of P<,(t) are rational integers. Hence 

ae E C(y)'Z (I < i < ny). 

Conversely, let x be a rational number satisfying (2.10). It follows that x =# 0 and 
that x-'y belongs to OF, hence y C XOF. Now Lemma (2.6) yields that x belongs to 
C(y)Z, hence Lemma (2.8). 

LEMMA (2.1 1). For any element y of F and for any rational number x, we have 

(2.12) C(xy) = lxlC(y). 

LEMMA (2.13). For any two elements yl, Y2 of F, we have 

(2.14a) C(y, + Y2) C C(y1)Z + C(Y2)Z, 

(2.14b) C(, - C(Y)C(-Y2)Z- 

The proofs of Lemmas (2.11), (2.13) are trivial. 
As a consequence of (2.14) and the definition (2.6), we have 

(2.15) C(,B-')-'Z = Q n /oF (? 0 3 E F). 
Finally we generalize our content concept to 
Definition (2.16). Let F be a commutative unital ring with subring R satisfying 

the conditions 

(a) IF C R, 
(b) any nonzero divisor of R is a nonzero divisor of F. 
Furthermore let S be an overring of R in F such that F is the quotient ring of S. 
It follows that F contains the quotient ring Q = Q(R) of R. The S/R-content 

ideal of a fractional S-ideal y contained in F is defined as the intersection CS/R(Y) 
of all fractional R-ideals a of Q satisfying y C aS. 

THEOREM (2.17). In the situation of Definition (2.16) we have 

(2.18) CS/R(XS) = xR (x E Q); 

(2.19) CS/R(XY) = XCS/R(Y) (x any unit of Q); 

(2.20) CS/R(YI + Y2) C CS/R(YI) + CS/R(Y2); 

(2.21) CS/R(YIY2) C CS/R(YI)CS/R(Y2) 

(Y 1 Y2 any two fractional S-ideals of F); 

if F is an integral domain and if R is integrally closed relative 
to Q, then for any algebraic element y of S with minimal 

(2.22) polynomial (2.9) with a, in Q (instead of Q) for i= 

1, 2, ... ., n., the S/R-content of yS is the intersection of the 

fractional R-ideals a of Q satisfying ai C c' (I < i < ny); 

(2.23) if y is an invertible fractional S-ideal of F and R is a Dedekind 

domain, then CS/R(Y-1)-1 = -Y n Q. 

Proof. Generalize the proofs of Lemmas (2.6), (2.8), (2.11), (2.13), and the proof 
of (2.15). 
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Returning to the initial situation we describe the connection between the content 
of an element y of OF and the F/Q norm of y as follows. 

Since C(y) is a rational integer dividing y in OF it follows that C(y)' I N(y), 
where N(y) = NF/Q(y) is the principal norm of y over Q. On the other hand let 

yn + ay n-' + . . . + (-_)nN(y) = 0 

be the principal equation of y over Q, so that -a, = tr(y) = trF/Q(y) is the 
principal trace of y over Q and a,, a2 .. . an = (-1)nN(y) are rational integers. If 
N(y) = 0, then y = C(y) = N(y) = 0. If N(y) # 0, then we use the equation 

Y = N(y), = (_Il)n+l(Yn-l + a,yn-2 + . . .an 

which implies the divisibility 

C(y-')-' I N(y)( gcd(C(y) C( a,, ... a-1) 

so that both C(y)n and C(y-')-' are divisors of N(y). 
II. Normal Ideal Presentations. 
Definition (2.24). Given a fractional OF-ideal a. Any presentation of a of the form 

(2.25a) a = 8(aoF + aOF) 

with 

(2.25b) a&Z> 0,a E OF, 0 C8eQ, 

such that either 

a # 0, C(a'-)a = I&', , e E Z, COFZ(a') = a8Z 
(2.25c) 

=aZ 

gcd(Q, c) = gcd(a, c) = I 

or 

(2.25d) a = 0, a = SaoF 

is said to be a norinal presentation of a. 

LEMMA (2.26). For any fractional oF-ideal a there is a normal presentation. 

Proof. If a = 0, then we obtain a fractional presentation (2.25a) upon setting 
8 = I, a = 0, a = 0. 

Now let a =# 0. Then 

(2.27a) C (n-')-'= a8Z 

with a, 8 satisfying (2.25b) and 

(2.27b) 8-' E Z>0, gcd(a, 8-') = 1. 

Furthermore, we have ad c a, therefore a E 8 -'a C OF. But by a well-known 
lemma of ideal theory there is an element a of a for which 6 = aoF + aoF; 
hence (2.25a) is satisfied. We gather from (2.27a) that CF/z(8a-')-1 = aZ; hence 
(2.25c) is satisfied in case a =# 0. Otherwise we have (2.25d). 

Let us observe that there is the counterpart of (2.27a) 

(2.27c) COF/Z(a) = 8 gcd(a, C(a))Z 

valid for every normal presentation (2.25a) of a. 
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Example. For any nonzero principal ideal aoF of OF there holds the normal 
presentation (2.25a) with 8 = 1, a = C(Qa-)- and (2.25c). This normal presentation 
of aoF is said to be the a-normal presentation. 

Definition (2.28). The normal presentation (2.25a) is straightened out upon transi- 
tion to the normal presentation: 

(2.29a) a = 8'(a'oF + a OF), 

where 

(2.29b) a'Z = aCOF/Z(aoF + aoF)', 

(2.29c) a'Z = aCoF/z(aoF + aOF), 

(2.29d) 8'Z = COFl/Z(aoF + aOF), 

in case (2.25c). But in case a 7# 0, a = 0 we straighten out (2.25a) to 
(2.29e) a = 6'OF 

where (2.29d) obtains again. 
We observe that in either case 

(2.29f) a' a, a' I a, COF/Z(a'oF +a OF)= 

(2.29g) COF/z(at') = 8'Z, 

and we note that 

(2.29h) CO /z(aoF + aoF) = gcd(a, C(a))Z. 

The computational advantage of straightening out a normal presentation lies in the 
reduction of the size of the numbers a, a. The proof of Lemma (2.26) yields a 
straightened out normal presentation of a. 

We observe that a = OF precisely if 8' = 1, a' = 1. 

LEMMA (2.30). A normal presentation of the inverse of the ideal a =# 0 normally 
presented according to (2.25a-d) is given by 

(2.3 1a) a- = 8- gcd(a, C(a'-)-')'(aoF +C(a-')-'a- IF), 

in case (2.25c), but 

(2.3 lb) a-' = 8 -'a-2(aoF + OoF), 

in case (2.25d). 

Proof. The verification is straightforward. 

LEMMA (2.32). If a, a' are two fractional oF-ideals, both of which are normally 
presented, say a by (2.25a) and a' by 

(2.33a) n' = 8'(a'oF + a OF) 

with 

(2.33b) a' eZ>O, a' EOF, 0?#8' eQ, 
such that either 

(2.33c) a' # 0, C(a'')a' = F'c'', D', e' E Z, COFZ(aC'-)I = a'6'Z, 

gcd(t', c') = gcd(a', c') = I 
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or 

(2.33d) a' = 0, a' = 8'a'oF, 

and that, moreover, 

(2.33e) the natural numbers a, a' share every prime divisor in case 
a =#0, a' =# 0, 

then we obtain the normal presentation 

(2.34a) act' = 68'(aa'oF + aa'oF) 

of the product ideal if a # 0, a' =# 0. But if a = 0, then we have instead 

(2.34b) act' = 68'(aa'oF + aauOF), 

and if a' = 0, then we take 

(2.34c) act' = 68'(aa'oF + aa'oF) 

as normal presentation of the product ideal. 

Proof. The cases (2.34b-c) are trivial. Now let us deal with the case that a # 0, 
a' # 0. Then we assume 8 = 8' = 1 without loss of generality, so that we have to 
show that 

(2.34d) aa' = aa'oF + aaOF 

and that this presentation of the product ideal is normal. 
The equation (2.34d) is a consequence of (2.25b-c), (2.33b-c). The normality of 

the presentation (2.34d) follows from (2.33e). 
If a, a' are two nonzero ideals with straightened out normal presentation (2.25a), 

(2.33a), respectively, then the equality of a, a' is tantamount to 6 = 8', a = a' and 
a-Ia'= o 

Moreover, the inclusion 

(2.35a) a I a' 

implies the necessary conditions 

(2.35b) CO/Z(a) ID C,,/Z(a), 

(2.35c) CO0/Z(a-') C COF/Z((Q )') 

that are equivalent to the divisibilities 

(2.35d) 6 I 8', 

(2.35e) 8aI6'a', 
respectively. 

In case a = 0, they imply a' = 0 and thus (2.35a). 
But if a # 0, then (2.35a) is equivalent to 

(2.35f) OF D a-la'. 

Suppose the two necessary conditions (2.35d), (2.35e) are fulfilled already; then 
(2.35f) is equivalent to the divisibility 

8' 
(2.35g) a -| C(a'), 

in case a = 0. 
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But in case a # 0 we have 

(2.35h) gcd(a, C(a-')-') = a, 

(2.35i) c-r = 8-1(OF + a-'C(a) a OF) 

and then (2.35f) is equivalent to 

(2.35j) a | C(a'C(a-l)-'a) 

Thus we obtain a test for each of the five relations 

a=a', ala', a'3a, aDa', Q'DQ, 

which is computationally feasible. Using this remark and Lemma 2.32 we are able 
to refine any nontrivial ideal factorization so long until any two factors either are 
equal or they are mutually prime. 

Now we will provide two ways of factoring given ideals into a product of proper 
divisors. Firstly, given a normal presentation 

(2.36a) a = aoF + aoF 

and a factorization 

(2.36b) a = a,a2 

of the natural number a into the product of two mutually prime natural numbers 
greater than 1: 

(2.36c) a, E Z>', a2 E Z>', gcd(a,, a2) = 1, 

then we have the ideal factorization 

(2.36d) a = aCa2, acl = aloF + aOF, Q2 = a2OF + aoF 

of a into the product of two mutually prime normally presented ideals a,, a2. 
In case the normal presentation of a is straightened out, it follows that also the 

normal presentations of a,, a2 are straightened out and that both a1, a2 are properly 
contained in OF. 

Though it is computationally difficult to factorize a given nonzero fractional 
OF-ideal a into a power product of prime ideals of OF, for theoretical purposes that 
factorization is of inestimable value. The possibility of such a factorization is the 
defining earmark of a Dedekind domain (like OF). The uniqueness of the factoriza- 
tion can be shown to be a consequence of its universal existence. 

Let us analyze the concepts of the content of a # 0 and derived concepts in the 
light of the prime ideal factorization of a which we present in the form 

a 

(2.37a) C z(a)= II P(ap)Z 
i=I 

(2.37b) PiOF 
- pfiJp, IV ) 

k= I 

a Bt 

(2.37c) a = II H P4(0a,k) 

i=1 k=1 
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wherep, P2i ..2. ,Pa are distinct prime numbers, a is a nonnegative rational integer, 
the prime ideals Pik (1 < k < gi) are the distinct prime ideal divisors of pi in oF (gi 

a natural number < n) and furthermore 

(2.37d) Z 3 v(8a,pi) =# 0 (I < i < a); 

(2.37e) V(Pi, Tik) F Z>0 (1 < k < gi), 

(2.37f) ^(za,P,) = 
^ 

- 
Pi 

= min [-V(, Pik)/X(Pi' Tik)] (1 < i < a) 
I <k g, 

(C'F1Z(C)'P) = min [V(a, tik)/I(Pi Tik)] 

(2.37g) I<k <g, 

= min(v(6a,pi), v(C(Sa),pi)) (I < k < gi, I < i < a); 
a B, 

(2.37h) h= ft fJ aAi) 
i=l k=l 

(2.37i) (Ch, Pik) = hv(a, Pik) (1 < k < g,, I < i < a, h e Z). 

The numbers a, 8 used in (2.37d), (2.37f), (2.37g) refer to a straightened out normal 
presentation (2.29a) of a. 

The formulae (2.37a-i) freely used certain divisibility exponents of the type v(a, b) 
where a is any nonzero fractional oF-ideal and b is an ideal of oF properly 
contained in oF. 

In general we define v(a, b) under the same conditions in the obvious manner as 
the rational integer satisfying 

(2.38a) bV(a,b) I bV(a,b) + I a 

i.e. 

(2.38b) bV(a.b) D n V(ab) a. 

Note that for the Dedekind domain oF there holds 
00 

(2.38c) n bIv = 0 
V0 

as a consequence of 

(2.38d) b c oF 

so that v(a, b) is uniquely defined. 
We have learned already how to calculate v(a, b) in case both a, b are normally 

presented and straightened out. 
For any two nonzero ideals a, a' of oF, we have 

(2.38e) u(aa', b) > ut(a, b) + u'(a', b), 

(2.38f) ut(a + a', b) > min(v(a, b), u'(a', b)), 

'2.38g) v(at n a', b) > max(v(at, b), v(at', b)). 
Furthermore, we have 

(2.38h) V(OF, b) = 0. 

We define for any nonzero element a of oF 

(2.38i) v(a, b) = v(aoF, b), 
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so that the b-divisibility exponent of a depends only on its equivalence class. 
Similarly, we define for any nonzero element /3 of OF that is not a unit the 
/3-divisibility exponent of the nonzero ideal a of OF according to 

(2.38j) v(a, Q13) = v(a, /o8F), 

so that it only depends on the equivalence class of /l. 
For any two nonzero ideals b, b' of OF that are both distinct from OF, we have 

(2.38k) vz(a, bb') > min(v(a, b), vz(a, b')), 

(2.381) vz(a, b n b') < min(vz(a, b), vz(a, b')), 

(2.38m) v(a, b + b') > max(vz(a, b), vz(a, b')) provided b + b' c OF. 

Finally, let us mention that, for any two rational integers a, b satisfying a =# 0, 
b 7# 0, ?1, the divisibility exponent v(a, b) is defined by 

(2.38n) b P(ab) a, bP(a,b) + l a. 

After the preceding excursion on prime ideal factorizations and divisibility 
exponents, let us discuss the second way of factoring a given ideal a in normal 
presentation (2.36a) which arises in case a presentation 

(2.39a) a = by" ( y E Z>', b E Z>0) 

of a as the ,uth power of a natural number b is given where ,I > 1. In that case we 
obtain the normal presentation 

(2.39b) b = boF + aOF 

of an ideal of OF such that either a nontrivial refinement of the ideal factorization 
a = b * b-'a is possible, or else 

(2.39c) a = b, 

as follows easily by factorization of a, b into products of prime ideal powers. Using 
the methods of II we succeed in factorizing any finite set of normally presented 
ideals a,, a2, ... I, am of OF into power products 

I ', 

(2.40) ai = I I a,aJk) 
j=l k=I 

of mutually prime ideals of OF of the normally presented form (2.2a) distinct from 

OF such that (2.2b) are natural numbers subject to (2.2c) and that the exponents 
z(aQ, ajk) are nonnegative rational integers. 

III. The Case n = 2. Here we have 

(2.41a) F = Q(d) 
where d is a rational integer such that either d 1 (mod 4), d # 1 and d is square 
free or d -0 (mod 4), d # 0 and d/4 is square free. In any case 

(2.41b) OF = ZWI + Zo2 (WI = 1 W2= (d + Vd )/2) 
and the rational content of 

y = e1o + e2o2 (e1 e2 E Z) 

is given by 

(2.41c) C(y) := gcd(e,, e2). 
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The automorphism group of F is of order 2 with 

(2.4 1d) a: F-- F, G(e1co + e2CO2) = (es + e2d)w, - e2W2 (e,, e2 E Q) 

the generating automorphism. For any normal presentation (2.25a) of a fractional 
OF-ideal a of OF, one obtains the normal presentation 

o(a) = 8(aoF + a(a)OF) 

of the conjugate ideal o(a). For the norm of a one obtains the normal presentation 

N(a)oF = Co(n) = 82 (a2OF + N(a)OF), 

where N(a) = ao(a) E Q; in other words 

(2.41e) N(a) = 82 gcd(a2, N(a)). 

Hence 

(2.41f) a-' = 

in case a # 0. Due to (2.41e, f) the content calculus becomes particularly simple for 
quadratic number fields. It is desirable only to employ ideals a of OF with normal 
presentation (2.36a) such that either 

(2.41g) a I d, hence a(a) = a 

or 

(2.4 1h) gcd(a, d) = 1, hence a + a(a) = OF. 

3. Index Estimates. Let us assume that we have already determined units 

El ... , .e generating a subgroup of finite index in the full unit group UF of F. By 
TUF we denote the torsion subgroup of UF. We set U, = TUF X <1, ... , er>. 

According to [3] we can assume that Ue contains all units of UF which already lie in 
proper subfields of F. 

In this section we will give an upper bound for (IUF: UC). This is done usually by 
means of a lower bound for the regulator RF of F using the relation 

(3.1) (UF: Ue) = R 
RF 

where R, denotes the regulator computable from the independent units e1, . .. , 
of U by 

(3.2) Rt : abs(det(cj log|e()l)) i j= 1,.. ., r; C' = { 
f oj 1 ) 

Lower bounds for RF are given in [5], [2]. The first type of estimates depends only 
on the field degree n but is very good for small values of ldFl. Those estimates were 
derived by analytic methods. The second type of estimates depends on n and IdFl. 
They are, generally speaking, not as sharp; they were obtained by number geomet- 
ric methods. In [2] only totally real number fields were considered. Fortunately by 
the same arguments analogous results are obtained for all signatures. 

THEOREM (3.1). If F is primitive, the regulator RF of F satisfies the lower estimate 

(3.3) RF > [( lo ln 
1n- )n(n + 1) - 6r2 2]!r 
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Here and in the following -y,' denotes Hermite's constant for positive definite 
quadratic forms. This result can still be improved by solving a minimization 
problem analogous to (B) in [2]. For imprimitive fields one proceeds as in Satz XII 
of [2]. 

In case these estimates are not good enough for our purposes, we derive a new 
lower bound for RF by using successive minima of the integers of F. 

The mapping 

(3.4) IP: OF e- n W-- (x) (),(1 (an)) 

provides a Z-lattice in the complex space Cn with basis %(w), ... I, 4'(AQ), where 
... , .A,n is an arbitrary integral basis of F. By decomposing the complex 

conjugates into their real and imaginary parts we can also consider this lattice as a 
subset of the n-dimensional Euclidean space Rn. On %P(OF) we introduce the 
distance function 

(3.5) =144w)II (E ) - ( ) 4(w) )/ 

According to Minkowski we define n successive minima on 4p(OF). 

M1 := min{lxIl x Ez {E(OF), x # O} = 11Y11 and 

(3.6) Mk+l = min{IIxl I x E 14(oF); x, Y1,..., Yk lin.ind.} = IIYk+ll 

(k= l.,n-1) 
with the properties 

(3.7) ml < M2 < .. * Mn 

and 

(3.8) M *In6 

Obviously, we can assume Ml = Vn, Y1 = 41(1), since every nonzero lattice 
vector has length at least V\ according to the inequality between arithmetic and 
geometric means and the fact that the product of its coordinates is the norm of an 
integer of F and therefore of absolute value at least one. This argument also proves 

(3.9) 11 41(t) I = V- -# E TUF. 

For - E UF\ UL any n consecutive powers, for example, -1 +[n/2J-n, ... ., e1 
0, I, . .. , e [n1/2 are linearly independent over Q. Hence the vectors 

14E4c) (v = 1 +[n/2] - n, . . . , 0, . . ., [n/2]) 

are linearly independent in 4'(oF). We order them according to the size of their 
lengths and obtain a bijection T: { 1, . . . , n} < { 1 + [n/2] - n, . . . , [n/2]} such 

that 114(Ec"())II < . . . I<I(c")II. Again we can choose ?T(l) = 0. From the 
definition of the successive minima we know that 

mi < II1. A(,-f(i)) 11 I(i = 1, . .., n). 

LEMMA (3.1). 114,(ck)III 114,(ck+1)II for all k E N. 

This is easily seen by the Lagrange multiplier method using IN(-)I = 1. 
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Since we can consider c- instead of -, the worst possible estimates occur for 
114(?)11 < 114'(E)II < II4'(E-')II < . . . ; that is, we obtain 

M2k+l { max{114/(ck)II 114,(&-k)11} for k = 1, 2, . .. , [n] 

Hence, for every e E UF\ U,e or its inverse, we have 

(3.10) 11 4(E)II > max{{M21',k! |k = 1, ... , [n/2]- 1) U M1n/2 =: M. 

For the next lemma we would like to have 114{c)II > V7i. Unfortunately this can be 
guaranteed only in case the successive minima of the lattice are not obtained from 
torsion elements of UF. If the latter is the case, we must use the results from [5], [2] 
at the beginning of this section. 

LEMMA (3.2). In case M 2 > n, the minimum of yn 1(loglc('Il)2 for E E UF\ Ue is at 
least 

n[log( + ( 1)) = m 

Proof. We set xi := 1l"01 and apply the Lagrange multiplier method to 
n n n 

E (log xj)2 subject to E log xj = 0 and E x>M2. 
j=1 j=1 j=1 

The side conditions correspond to IN(-)I = 1 and (3.10), where we need not make a 
difference between - and c- any longer. (Obviously we must have equality in the 
second side condition for a minimum.) It is easily seen that there are at most two 
different values, say xl = . = xs = x and xs, =I = xn = y for an optimal 
solution. Another extremal value problem yields s = n/2** and thus the result of 
the lemma. 

The index estimates we are looking for can now be easily derived as in [3]. 
Namely, representing - by a system of r fundamental units, > 1j(logl cQ)i)2 turns 

out to be a positive definite quadratic form in r variables. Its determinant is easily 
calculated as 2-r2nR,2, and Minkowski's theorem on successive minima yields 

(3.11) mr yf'2- 2nRF 

hence a lower bound for the regulator of the field from which an upper bound for 
the index (UF: Ue) follows. In case intermediary subfields occur this bound must 
be slightly changed as was outlined already in [3]. 
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** This was suggested to the first author by H. W. Lenstra, Jr., abridging lengthy computations which 
were needed in [2J for a slightly stronger result. 
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