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Analysis of Some Mixed Finite Element 
Methods Related to Reduced Integration* 

By Claes Johnson and Juhani Pitkaranta 

Abstract. We prove error estimates for the following two mixed finite element methods related 
to reduced integration: A method for Stokes' problem using rectangular elements with 
piecewise bilinear approximations for the velocities and piecewise constants for the pressure, 
and one method for a plate problem using bilinear approximations for transversal displace- 
ment and rotations and piecewise constants for the shear stress. The main idea of the proof in 
the case of Stokes' problem is to combine a weak Babuska-Brezzi type stability estimate for 
the pressure with a superapproximability property for the velocities. A similar technique is 
used in the case of the plate problem. 

1. Introduction. In certain cases a direct application of the finite element method 
gives very inaccurate results. This happens, e.g., for displacement type finite elemeni 
methods for thin plates constructed starting from a three-dimensional model of the 
plate. In this case the resulting discrete models will be much too stiff and hence the 
numerical results will be very poor. We find a similar phenomenon if we try to solve 
Stokes' equations approximately using piecewise bilinear trial functions satisfying 
the divergence zero condition exactly. The reason for failure in both cases is that in 
the discrete model some of the conditions are emphasized too much at the expense 
of other conditions, so that the model becomes "unbalanced" or "too stiff". In the 
case of Stokes' problem too much effort is spent on satisfying the divergence zero 
condition, and the approximability is seriously affected. For the plate problem too 
much emphasis is put on a compatibility condition between displacements and 
rotations. 

In order to relax such conditions to obtain a "balanced" discrete model, the 
technique of selective reduced integration (see, e.g., [1 1], [14]) has been used widely 
in practice, often with considerable success. In the Stokes problem with bilinear trial 
functions, the relaxation is achieved by requiring only the mean value over each 
element (i.e., the value at the midpoint of each element) of the divergence to be zero. 
In the case of a plate problem using bilinear trial functions for displacements and 
rotations, the compatibility condition is relaxed and is required to hold only at the 
midpoint of each element. In both cases the so modified methods perform surpris- 
ingly well (however, these methods are somewhat "delicate" in the sense that extra 
smoothness of the exact solution is required; cf. below). 
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Methods of this type can be viewed as obtained by starting from a penalty 
formulation with a penalty term for the condition to be relaxed and then using a 
low-order integration formula for this term to achieve the relaxation. This is the 
motivation for the term selective reduced integration. Alternatively, these methods 
can be viewed (cf. [1 1]) as certain mixed finite element methods. In fact, this point of 
view seems to be the more general one and is also the one adopted below in the 
analysis. 

The purpose of this note is to prove some error estimates for the two mixed 
methods related to reduced integration mentioned above. The only previous result in 
this direction, to our knowledge, was given in [15], where convergence (with no error 
estimates) for the velocities was demonstrated for a finite-difference analogue of the 
mixed method for Stokes' problem. 

The analysis follows the general lines of Babuska [1] and Brezzi [4] but contains 
some nonstandard features. As usual when analyzing a mixed method, the difficulty 
is to verify some type of Babu'ska-Brezzi stability condition in order to get control of 
the "auxiliary variable" (the pressure in the case of Stokes' problem). Here we can 
only control this variable in a weak mesh-dependent seminorm, and we compensate 
for this weak estimate by using a "superapproximation" property for the main 
variable (the velocities in Stokes' problem). In the case of Stokes' problem, we obtain 
optimal rates of convergence in L2 and H' for the velocities, i.e., C(h2) and C(h) 
where h is the mesh length, requiring relatively little extra smoothness. For the 
pressures computed in the natural way, we do not obtain any rate of convergence in 
L2. However, we prove that a simple local averaging gives pressures with L2-error of 
order C(h). For the plate problem, we obtain C(h) convergence in H' for displace- 
ments and rotations and C(h3/2) convergence in L2 for the displacements under 
considerable extra smoothness assumptions. 

For simplicity we consider two model problems. The ideas used in the analysis can 
probably be used also to analyze some other mixed methods related to reduced 
integration such as, e.g., the analogous method for Stokes' problem using bi- 
quadratic velocities and bilinear pressures, cf. [11]. 

An outline of the paper is as follows: Section 2 contains some preliminaries, in 
Section 3 we treat Stokes' problem and in Section 4 the plate problem. 

2. Preliminaries. Let us start by introducing some notation. Let xo and yo be 
positive numbers, and let Q be the rectangle {(x, y) E R2: 0 < x < xo, 0 < y < yO}. 
We introduce the usual Sobolev spaces Wk,P(i), k > 0, 1 < p < so, with norms 

k I/p 

,P =1 k, l jVrjP 
l=0 

where I 1lip denotes the seminorms 

I I I adtA) Ip I/p 

For p = 2 we set Hk(Q) = Wk,2(), I * Ik = I *Ik,2 and *k = I * "k,2 The same 
notation will be used for the corresponding (semi)norms in [Wk,P(&2)]2. The scalar 
products in L2(A) or [L2(Q)]2 will be denoted by (., .). As usual Ho(Q), k > 1, 
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denotes the completion of CO (Q) in the norm 11 * k and H-k(Q) denotes the dual 
of Hok(U) with norm 11 I -k. 

Finally, by C or Cj we denote positive constants, possibly different at different 
occurrences, which may depend on 2 but not on any other parameter to be 
introduced unless indicated explicitly. 

Let us now introduce some finite element spaces to be used below. For simplicity 
we shall consider partitions of the rectangle 2 into rectangular elements with 
uniform partitions in the x- and y-direction. Let C,h be the uniform partition 
obtained by using rectangles of size h I X h 2, i.e., 

0-{ (Kij: i = 1,... ,n,j = 1,...,m}, 

Kii = {(x, y) E RW: (i-lI)h, <x < ih,,(j- I)h2 <y < jh2}, 

where n = xo/hI and m = yoh2 are integers. We shall assume that h, and h2 
depend on the mesh parameter h _ h1 E (0, 1) in such a way that h I/h2 is bounded 
by positive constants from below and above independent of h. The finite element 
spaces to be introduced will be associated with the partition eh obtained by dividing 
each K1 C E50 into four equal subrectangles: 

Ch = {Ai: i= 1,...,2m, j = 1,...,2n} 

Aij = (x, y) E R: (i-lI)h1/2 < x < ih1/2, (j j-I)h 2/2 < y < jh 2/2}. 

Let us now define 

Sh = {V E Ho(0): vI is bilinear VA1 E ChC 

Th = (ItE L2(u): , | is constant VAi ECh}C J ) lii i ) 

These spaces will be the building blocks in the finite element methods below. 
We will need an a priori estimate for the solution of the following biharmonic 

problem: 

(2.1) {~~~Y A2=f, { u E Ho), 

wheref E H-2(Q2). We have (see [8], [10]) 

PROPOSITION 2.1. If u is the solution of (2.1), then 

IIUlIk+4 CII f IIk, -2 k < O. 

3. A Mixed Method for Stokes' Problem. 
3.1. Formulation of the Problem. Let us recall Stokes' equations for an incompressi- 

ble viscous fluid with viscosity equal to one: 

-Auu+vX=f inn2, 
div u = 0 in n, 

(3.1) u = 0 on M, 

fXdx = 0. 
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Here u = (ul, u2) is the velocity and A the pressure of the fluid. For simplicity we 
consider Dirichlet boundary conditions, and we also normalize the pressure to have 
zero mean value. In variational form (3.1) reads: Find (u, A) E [Ho( U)]2 X L2(U) 
such that 

(v u, v v) - (X, divv) = (f,v) VE 

(3.2) (M,div u) = 0 Vu E L2(Q), 

fXdx = 0. 

Let now Vh = [Sh ]2, Qh = Th, and let us formulate the following finite element 
method for Stokes' problem: Find (Uh, Ah) E1 Vh X Qh such that 

(3.3a) (Vuh, VV) - (Xh,divv) = (f, v) VvE EVh, 

(3.3b) E(Xh ,I ) + (u, div Uh) VI' EQh 

where E is a small positive parameter to be specified below. We note that (3.3) may 
be considered to be a discrete analogue of the perturbed Stokes problem: 

I-Au + V Xf in R, 
eX +divu O in 2, 
(u = O on 3E, 

corresponding to an almost incompressible fluid (cf. [3]). 
To see the connection with reduced integration in (3.3) we note that, solving for Xh 

in (3.3b), which can be done locally on each element, and eliminating Ah in (3.3a), we 
obtain an equation for Uh E Vh which can be formulated as follows: 

(3.4) (Vuh, Vv) +-(div uh, divv)* = (f, v) VvE Vh 

where (*, )* indicates that the scalar product is evaluated using the simple quadra- 
ture rule (one-point Gaussian quadrature): 

fv dx = v(M)h1h2/4, M midpoint ofA E Ch. 

The solution Uh E/ Vh of (3.4) can equivalently be characterized as the solution of the 
minimization problem 

(3.5) Min (2-(vv, vv) + 
I 

(divv, divv)* - (f, V)} . vc vh 2 E 

Now, this problem can also be viewed as being obtained by using selective reduced 
integration in the problem 

(3.6) Min( l ( V v V) + 
I 

(divv,divv)-(f,V) 
vcvh 2 2v,-~v,v,jVj 

which is a standard penalty method for Stokes' problem. Comparing (3.5) and (3.6), 
let us remark that in order to get reasonable results using (3.6) one has to tie E to the 
mesh parameter h. If E is chosen too small, the penalty becomes too dominant and 
the results will be useless. However, one has to choose e reasonably small to enforce 
the divergence zero condition approximately. Even with optimal choice of E the 
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method (3.6) will give only suboptimal rates of convergence ( (9(v) in H'-norm). On 
the other hand, we shall prove below that if only e is sufficiently small (e < Ch')5 
then the relaxed method (3.5) will be optimal in H' and L2(A) for the velocities 
((e(h) and (9(h2), respectively). In particular, this method does not become ill- 
conditioned as e gets small as is the case with (3.6). In practice a lower limit for eh is 
set by the available machine precision. For related ideas in connection with more 
conventional mixed methods see [3]. 

The existence of a unique solution of (3.3) for - > 0 follows from the stability 
estimate 

IU uh Il l + 
- 

IIXh II O C II fIIl1 

obtained by taking v = uh and U = Ah in (3.3). If - = 0, however, then Ah is not 
uniquely determined but has two undetermined degrees of freedom (cf. Remark 3.1 
below). 

3.2. A Basic Error Estimate. Let us now analyze the finite element method (3.3) 
considered as a discrete analogue of the unperturbed Stokes problem (3.2). We shall 
then need the following a priori estimate for the solution of (3.2): 

(3.7) lUllk+2 + IIXIIk+l < Cllf Ilk, k = 0, 1. 

This estimate follows from Proposition 2.1 using the stream-function-vorticity for- 
mulation of Stokes' equations. 

As a first step let us introduce a special orthogonal basis for the space Qh of 
piecewise constants, which will be of crucial importance in the subsequent analysis. 
The basis consists of the functions (ijk E Qh, i .. ,n,j 1,= . . ., m, k 19 . . .. 4, 

defined as follows: The support of each {ijkq k = 1,...,4, is contained in K E C(0 

and on Kij the functions (Ijk = 1,.... ,4, take the values ?1 on the four subrectan- 
gles of Kij according to the following pattern: 

(ijl (ij2 (ij3 (ij4 

FIGURE 1 

The values on KIJ of the basis functions {ijk, k = 1,. .. , 4 

Any p E Qh has the unique representation 

I- 
= 

Y aijktijks aijk E- R. 
i, j,k 

Here and below we sum i, j and k from 1 to n, m and 4, respectively (in Section 4 
below, k will run from 1 to 8). 

Next, let us introduce the following subspaces of Qh: 

Nh { E Qh: (,)divv) = 0v E V,) 

Nh-L = { E= Qh: (XI 10 = 0 VI' E= NO . 
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It is easy to see that Nh is a two-dimensional space (cf. proof of Theorem 3.1 below) 
with the orthogonal basis functions Pi and T2 given by 

T1(x) = 1, x E Q, 

2(x) = (- 1)i+j, xE Ai EhC 

We can then characterize the space NjL as follows: 

Nh = i i jk0ijk, 2aij = a}. 
i,j,k i,j i,j 

The presence of the "checker-board" function T2 in the nullspace Nh was noted in 
[13]. 

Remark 3.1. Clearly there exists a unique pair (Uh, Xh) E Vh X Nhj that satisfies 
(3.3) with e 0 O. Denoting by (u", kh) the solution of (3.3) with e > 0, we have by 
(3.3b) that eh E NhL and furthermore (u', Yh) -(Uh, h) as e 0. Thus, the 
problem (3.3) with e small and positive, which after elimination of the pressure 
corresponds to a positive definite linear system (cf. (3.4)), can be viewed as a 
computationally convenient form of the problem (3.3) with e = 0 and the require- 
mentXhEN- . OL 

We will supply Qh with the mesh-dependent seminorm I * Ih defined by 
3 

1 A12 112|ykl + h2a(4)' 2 I aiki' 
k=1 I i,j,k 

where 

Ik = aijk ijk k 1,...,4, 
i,j 

and 
n-i m-1 

)= (a114 ai,14) + j (jI4 ai- 4)2 
i=l j i j=i 

Clearly, I lb is a norm on Njl, and, comparing this norm with the L2-norm 1 Ilo, 
we easily see that (cf. Lemma 3.3 below) for IL E Njfh 

(3.8) CihlIIo ' Ip I C2IIMIIo, 

(3.9) b'=lhIIMUIIo ifMfA4=0. 

The proof of the basic error estimate for the method (3.3) will be based on the 
following Babuska-Brezzi (cf. [1], [4]) type stability estimate: 

LEMMA 3.1. There is a constant C such that 

sup (t, div v) >C IIh, 
VE Vh i 

for allu EE Qh such that (,i, 1) = 0. 

In the proof of this result we shall use the following easy-to-prove (cf. [6], [7], [8]) 
analogue of Lemma 3.1 obtained by replacing Qh by Qh where Qh consists of the 
functions in Qb which are constant on each Key E C2, i.e., Qh = {M1 , E QhJ 
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LEMMA 3.2. There is a constant C such that 

VE Ph 
,, 

li Ill 

for all ,u & Q' satisfying (i,u 1) = 0. 

Proof. Given y & Q' with (i, 1) = 0, there exists (cf. [8]) z & [Ho(0 )]2 such that 

div z = ft inQ0, IIZIIl -< CIIAIID- 

Let us now define zh & Vh by requiring 

zh(P) = wh(P) if P is a corner or the midpoint of Kij E Ch0 

zhd z ds if S is a side of K E &20 I SJ ii h' 

where wh e Vh satisfies (Vz - VWh, Vv) = 0 Vv & Vh. One can then verify (cf. 
[6], [8]) that zh is well defined and that 

llz 1ll <C lz 1 l,(divz* ZhIf) = (div z, ft) Vtt CQ 

Thus we have 

( i, div Zh 
C (liz di i) CI 11 ll o, 

which proves the lemma. O 
Proof of Lemma 3.1. Let A = -ijk aijk ijk = zk Itk be given with (i, 1) = 0. We 

first define two functions z = (z,, Z2) & Vh and w = (w,, w2) & Vh as follows: 

(i) { z1(P)-= ha2 ' if P is the midpoint of Kij & C, 
Z2(P) = ha h3 

(,.) w2(P) = h(aj+ 1,j4-a,j4) if P is the midpoint of the common side 

of Kij and K+ 1,j e Ch ' 

(iii) w1(P) = h(a1,j+1,4-aaij4) if P is the midpoint of the common side 

of Kij and Ki,j+1 I = h 

(iv) the remaining degrees of freedom of z and w are equal to zero. 

It is straightforward to verify from the above definitions that the following 
inequalities hold: 

IIzIIl ? C(iiIL2ii0 ? IItL31)1"/, IIwIIl + 112), 

(f, divz) = (A2 + A3, divz) - C(Oii2 ii ? i+A3 ii )' 

and 

(,u, div w) IIl()2k, div w Ch(2i(y4 
)2 
+(i 2 + 33) div w) 

2 t C a(4 )2_C20IA 2 10 +11 A3 1l0) 
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To proceed, we need a third function g = (g1, g2) & Vh satisfying 

llglll < 0111llI0, (IL, divg) 2~ C 11 1 I11 

Since (i1, 1) = (i, 1) = 0, the existence of g follows from Lemma 3.2. 
Now, let v = z + 6w + 82g, where 8 & (0, 1] will be chosen below. Then we have 

(3.10) ||IIVII < C | y h, 

and 

(y, div v) C C62 11 tt il 2 + (C - C1)(ui12 uO+ 11? i3io) 

+ C6h2a(14 )2 + 82(iG4, divg). 

To finally estimate (114,divg), let gkij = gk(ihl/2, jh2/2), i = 0,...,2n, j = 
0,... , 2m. By a straightforward computation we find that 

n-1 m 

(ft4, divg) = 1h I 2 (Oij4- oi+ lj4) 
i=1 j=1 

X (9g2,2i,2j-2- 292,2i,2j- I + 92,2i,2j ) 

(3.j11) 1 n m-1 

+ 1h22 2 (ai,j+1,4- 6ij4) 
i=1 j=1 

X(1,2i-2,2j -2g,,2i-1,2j + 91,2i,2j) 

and therefore 

(L4,divg) < ChOL4){ 2 2 2 -(gki_ gk,i+1,J) + (gkiJ gkij+ 1)]} 
i=0 j=O k (1 

I C hGL4 ) I g 11 < 2ho(ft)1 1 ll o1 0 

Thus, 

(ti,divv) 2 (C - C18)[8211I ? 11I2 +I1120 + 11110 ? 6h2a(L4j)2 

Choosing now 8 = min{ 1, C/2C }, we see that (y, div v) 2 C I j 12, which together 
with (3.10) proves the lemma. W 

Remark 3.2. From the proof of Lemma 3.1 we see that if i E Qh and v E Vh, then 
(i, div v) < C I Ih I v I. Therefore we can actually state that, for 1 C Qh with 

(y, 1) = 0, 

Cl I , Ih > SUp (t 2divv) C21 A 
VEI=Vh I11111I 

As a final preparation for the proof of the basic error estimate we note the 
following discrete Sobolev imbedding result: 

LEMMA 3.3. For 1 - q < oo, there is a positive constant C(q) such that if Y11j aij = 0, 
then 

[n-I m-1 1/2 llq 

(aij - a ) ? (a - aj C(q)h aij 
{l=1 j 1 j=1 ' 



FINITE ELEMENT METHODS AND REDUCED INTEGRATION 383 

Proof. Let C1 be another rectangular partitioning of S, the interior nodes of which 
are located at the midpoints of each Kij E CO, and let v be the continuous piecewise 
bilinear function on C2 defined by v(P) = a if P is a node of Ch contained in K1j, 
K11 E C^?. Then it is easy to see that 

v dx = h,h22aij = 0 
i,j 

and therefore, by Poincare's and Sobolev's inequalities, 

lvii > CIIvII1 > C(q)IIvIIOq, q< oo. 

Using the obvious inequalities 

IV IIO,q z Ch2lq 2 IaijIqJ 
i,j 

n-I M~~~r-I1 1/2 

lv {n-C Ya(i - ai I')2 + 2 a (a,j - ai,j+l)2} 
i=l j i j=l 

the desired estimate follows. [ 
We can now state and prove the basic error estimate for the method (3.3). 

THEOREM 3.1. Assume that the solution of (3.2) satisfies (u, X) E [W3,P(Q)]2 X 
H '() for some p > 1. Then if (Uh, Xh) is the solution of (3.3) with 0 < E < Ch2 and 
X E Nh' is the orthogonal projection of A onto Njl, we have 

Iu uhl + IAh - X h '< C(p)h(lU 12 + IU13,p + IAI1). 

Proof. Let ui E Vh be the usual interpolant of u, and let X be the orthogonal 
projection (in L2(A2)) of A onto Nh,. From (3.3) and (3.2) we have the following 
identity: 

(3.12) 6J-4Uh , Ab - V;v ,) 
= (u- , A-X ; v, )-e(A,) V(v, M) F Vh X Qh, 

where 

3i3(u, A; v, ,u) = (V u, V v) - (A, divv) + (,u, div u) + e(A, ,u). 

Since (Ah -, 1) = 0, there exists, by Lemma 3.1, z F Vh satisfying 

11 I ll l< C I Xh- l*, -(Xh-A, div z) h'hA * 

Let us now define 

(3.13) C= {Us - l h + elAbh --?IA - |o 

and let v = Uh-i + ?z and = Ah-X , where 8 F (0,1] will be chosen below. 

Then we have 

(3.14) VIIIvI + II|Ih + /lIIllo ? CXC, 
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and 

3(Uh - X - V, y) 

IUh - Uh ? SlXh -XIh ? EIIXh - Xii + 8(v(uh - u), Vz) 

(C- CIS) I Uh - 1 8 1Xh_ Xh + lh - ll o. 

Choosing now 8 min{ 1, 1/2CI}, we find that 

(3.15) 61(uh - u, Xh -A; v, y) 
; C C . 

Next, let us estimate the right-hand side of (3.12). First, using (3.14) and the 
inequality e s Ch2 together with (3.8), we see that 

(3.16) 6(U- U, X-; V, ) - E(X, )I| 

s CSC-X u-u4 11 + I (A-AX, div v) + Il (ft, div(u -uf)) + +Ch' 1 IIA ll. 

For the first term on the right-hand side we have by the well-known interpolation 
theory [5] 

(3.17) 1 u -u siI Chi U12. 

To estimate the second term, we note that if ThX is the orthogonal projection of X 
onto Qh, then 

(X,divv) = (7ThX, divv) Vv e Vh. 

Therefore, using (3.14) and again a well-known result from approximation theory [5], 
we obtain 

(3.18) (X -X,divv)I<CcX IIX- hXIIo? CCh I X 11. 

Finally, to estimate the third term on the right-hand side of (3.16), let = 

Eijk aijktijk = k Ilk Using (3.9), (3.14), and (3.17), we see that 
3 

(3.19) 2 tk, div(u i)} < C| y |hl |- U |l < Clhl U 1 2 
k=I 

To estimate the remaining term (14, div(u - 
ui)), 

we recall that 
Xh 

and 
X 

E 
Nh- 

so 
that i = Xh E- NhL . Hence a4jAa14= 0, and thus by Lemma 3.3 and (3.14) we 
have 

114 11 O,q <C(q)h- I |' h j SC,(q)YCh- , q c< o. 
Thus, using Holder's inequality, we find that 

(3.20) 1 (t4,div(u-u)) IC Crp(U)IIto1 o,q < CI(P))Ch-'Fp(u -), 

forp > 1, I/q + I/p = 1, where 

Fp(v) = h2/P-2 ij4 div v dx dy 

<Ch2/P-2{ C | divvdx dy } 
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To estimate F (u - ui) we shall use the following "superapproximation" result. Here 
and below Pk denotes the set of polynomials in x and y of degree at most k. 

LEMMA 3.4. Defining for v E H'(A),, AE Ch, 

L(v) =f (v - a( ) dx dy, 

where v3 is the bilinear function interpolating v at the corners of the rectangle A, we have 
L(v) = O for v E P2, so thatforl 1 < p< , 

I L(v) 1< Ch4-21P I VW3p(A) 
An analogous estimate holds with a/ax replaced by a/ay. 

From Lemma 3.4 we conclude that 

Fp(u- ui) ? Ch2IuI3p, 

which together with (3.19) and (3.20) shows that forp > 1 

(3.21) I(y div(u-u)) I< Ch I U 12 C(p)ChIu3. 

Estimating the right-hand side of (3.16), using (3.17), (3.18), and (3.21), and 
combining the result with (3.12) and (3.15) we find that forp > 1 

Uh -U 1 + I Xh XIh + Xh o 
< Ch(Iu12 + IA1) + C(p)hIuI3,p + ChIAIXI0. 

Using finally the triangle inequality recalling (3.17), we obtain the desired estimate 
for u - Uh II + I h- X Ih, and the proof of Theorem 3.1 is complete. O 

3.3. Smoothing of the Pressure. Since by (3.8) we only have 11 110 < Ch' I 1ty Ih for 
GE Nhl, we cannot from Theorem 3.1 conclude any convergence rate in L2(A) for 

the pressure Ah. However, by filtering out the component Ah4 by a simple smoothing 
procedure one can obtain 0(h)-convergence for the smoothed pressure. As an 
example of such a smoothing procedure we may take the L2-projection 7Th Of Qh onto 

Qh; 

4 

7T^A^(Xy) = 4 XiJk'(X, y) EE Kij EE 0h? 
k= 1 

where Xijk, k = I... ,4, denotes the value of Xh on the four subrectangles of Kij. 

COROLLARY 3.1. Under the assumptions of Theorem 3.1, we have 

X 7ThXhI IoC(p)h(IU 12 + |U 13,p + IxIii) 

Proof. Recalling (3.9), we have, by Theorem 3.1, 

i7ThXh 7ThX O1 ?IXh Ih ? Ch(I u 12 + ? U13,p + 1iXil) 

Further, since (X, 1) = 0, we have rhX = ThX. Together with the classical estimate 
1X - 7hl zX II < Ch I A, this proves the desired estimate. L 

Remark. The nonconvergence in L2(s2) of the pressures Xh has been observed in 
practice, cf. [13], where also smoothing is discussed. L 
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3.4. An L2-Estimate for the Velocities. We shall now prove an error-estimate for the 
velocities in the L2-norm. We shall not use the standard duality argument here since 
this would give a weaker estimate than that proved below but instead base the 
argument on another stability estimate related to the method (3.3). To state this 
estimate, we need some additional mesh-dependent norms; see [2]. Let 

H2,h(2) = {v E Ho(Q): VlA E H2(2), A e Ch)' 

and define on H2,h(Q) the seminorm I 12,h as follows: 

I V12 h E|V1|22Z + h-1 I av + aV 
2 

ds, 
AECeh A1,A2Ceh S122 

where vi denotes the unit normal to the common boundary S12 of A1 and A2 exterior 
to Ai. Further, we define on Ho(0) a norm 1 Il o,h by 

2IvIoh-II vIIo?h 2 
f v2ds. 

1,2 26h S12 

For vector functions v = (v, v2), we set as usual 

|Iv 12h =I |vI 12 2 12 and V 
|v11 

2 
11 V o h1 + 2 112oh 2VI,h j 2,hi ? I V2 2,h an IVI,h II1I,hi + IIV2IIO,h. 

We recall (see [2]) that I * 12,h is actually a norm on H2,h( ) and that 

(3.22) (V u, VV) U 11ll ,h I V 12,h 
u C Hol(Q) v E- H'(S) 

(3.23) 1 v 12,h Ch- I V II, V Vh9 

(3.24) IIVIIOh ChIVIlo v C Vh 

Let us now introduce the subspace Vho C Vh defined by 

Vh/ = {v C Vh; (tt,divv) O ?VY e Ql} 

The stability estimate, which we will need below, is the following 

LEMMA 3.5. There is a constant C such that 

(VusVv) 2CIIUIIo VU C Vhi. 
EvVho I V12,h 

Proof. Given u C Vho, let (z, v) C [H1(S2)]2 X L2(A2) be the solution of the 
problem 

-Az +,Av = u in t, 
divz = O in 2 
(v 1) = 0, 

and let (Zh, VP) E Vh X Ql be an approximation of (z, v) defined by 

((Zh, IVV) 
- 

(Ph Idiv v) = (u, v) Vv C Vh, 

(3.25) ( u,divz/)0 Zh V Qh 

L(Vp, 1) 
- 0. 

Then we have Zh C Vho and 

(3.26) (Vu, VZ2) liulig. 
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To estimate the error Z - Zh I' we note that by Lemma 3.2 the mixed method 
defined by (3.25) is uniformly stable in the "classical" sense (cf. [1], [4]). Recalling 
(3.7), we thus have the quasioptimal estimate 

(3.27) Z - Zhl I < Ch (I z2 +1 |v|1) < Clhllullo. 
Further, using (3.23), (3.27), and the approximation results of [2], we obtain, with 
z E Vh being the interpolant of z, 

I Zh 12,h --I Zh 1ZI2,h + I Z 2,h + ? Z 12,h 

< Ch- Zh- l + C IZ 12 < CIO Z 12 + I p I ) -c C2 11 U 11 

Together with (3.26), this proves the lemma. Ol 
We can now prove the L2-estimate for the velocities. 

THEOREM 3.2. Under the assumptions of Theorem 3.1, we have 

11u - Uh 110 < C(p)h2(I U 12 + I ? 11 111) 

Proof. Let (zh, vh) E Vh X Ql be another approximation to the solution (u, X) of 
(3.2) defined by 

(vzh, VV) - (vh,divv) = (f, v) Vv V*h, 

(3.28) (,ugdivZh) = -E(Xh9 U) h9E ^ 

L(vh, 1) = 0. 

Since (Xh, 1) = 0, it follows from Lemma 3.2 that this problem has a unique 
solution. More precisely, by the argument leading to (3.27) together with the usual 
duality argument we have with zh? being the solution of (3.28) with E 0: 

ulu-Z?O I 0?Ch2(juj2+ 1X11). 

Further, by linearity and using once again Lemma 3.2, we conclude that writing 
Wh = Zh -Zh 

IWhIII < C sup 
I e(Xh9 ) 

ClIIXh|h 
I 

C2h2(11IXIo +I Xh Xh) 

Ac l IIILII 0 

which shows that 

(3.29) IIu-zh IIO? <Ch (2 u 12 + IIi 11I + I Ah 1h) 
Next, let us combine (3.3a) and (3.2) to obtain 

(V(uh - Zh), VV) 

= (V(U Zh) VV) + (X-X divv)-(X-X divv) Vv E Vh. 

Note that, by (3.3b) and (3.28), we have Uh - Zh e Vh1. Therefore, we may apply 
Lemma 3.5 to (3.30) to obtain 

hUh - ZhIIO < C sup {(V(u - Zh), VV) + (Xh - X,divv) 

(3.31) IV12.h I 

-(X - X,divv)}. 
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Let us now estimate the right-hand side of (3.31). First we notice that if ui e Vh is the 
interpolant of u, we have, by (3.22) and (3.24), 

(V(U -Zh), VV) U - ZhIIO,h I V 12,h U (Iu UllO,h + IIZh - UllO,h) I V 12,h 

U (II l- UI O h + C I1 Zh - Ull ) I V 12,h S C1(IU - IIO,h + II U - Zh I1 O) I V 12,h' 

By [2] we have 

llU - UllO,h Ch2U12, 

and thus, recalling (3.29), we conclude that 

(3.32) (V(u-Zh), VV) Ch 2(Iu 12 + IIXII, + Ixh Xh) Iv12,h 

Next, to estimate the second term on the right side of (3.31), let us write 
4 

Xh - = aCijkijk 2 Uk 
yk k=1 

so that 
4 

(Xh-,divv) 2 (k,divv), v e V. 
k=2 

Consider now a given Kij e C5?. Let A k e Ch, k 1,. . ,4, be the four subrectangles 
of K1j and define 

2 
V jIf2h(f ) = I V IH(2 ) + hm k + M 

d( aV + ds. 

We note that if v e Vh, then j v IH2,h(K ) 0 O if and only if VIK e [PI(Kij)12. 
Together with the fact that 

J(ijkdivvdxdy=O fork=2,3,ve[P (Kj)]2, 

we conclude via a scaling argument that for k = 2, 3, v E Vh, 

I divv dx dy < Ch2 | V 2,h( k =2,3, V V, Kij eC0 

Thus, for k = 2, 3, v E Vh we have 

(tk,divv) < ChIkI{l02V H (K1)} S Ch 11Uk 1l | V 12,h- 

Finally, to estimate (U4, div v) we recall that (3.11) holds for any pu4 - ijaij4tij4 

and g e Vh. Therefore, applying the easy-to-check inequality 
2n-I 2m-1 2 

V 12 h > Ch2 ? [(Vk,-Ij - 
2vkU + Vk + 1]) 

i=I j=I k=l 

+ (Vki,j-I - 2vkij + Vki,j+1) ] 

v= (Vl, V2) E Vh, Vkij = Vk(ihl/2, jh2/2), 

we obtain 

(pU4, divv) Ch2c(14) I v 12h, v e Vh. 
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Combining now the estimates for (ik, div v), k = 2, 3, 4, we find that 

(3.33) (Xh-X,divv) ChIXh-X IhIvL2h, ve Vh. 

We finally have to estimate the term (X - X, div v). To this end we first note that 
if -rh is the orthogonal projection of L2(a) onto Qh9 then 

(divv - shdivv)IA 0 if vl, e [Ph( )], A i Ch, 

so that by a scaling argument 

lIdivv - 7h div v II L2(A) < Ch I V lH2(A) A A ECh, V E Vh. 

Thus, for v E Vh we have 

(X - div v) (X - -rhX, div v) = (X - hX, div v - h div v) 

(3.34) IIA-7ThXIIOIdivv7TdivvIIO 

ACh2IXI, ( IVIH2(A)} Ch2IXII IvI2h 
A ceh 

Combining now (3.32)-(3.34), we get 

IIUh -ZhIIO < Ch2(IUI2 + I|XI) + ChIXh -Ih. 

Recalling finally (3.29) and the estimate already proved for I h- X Ih in Theorem 
3.1, we obtain the stated estimate for 11 u - Uh 110 and the proof is complete. O 

Remark. Comparing the original problem (3.3) and the "simplified" problem 
(3.28) obtained by replacing Qh by Qh, we note that we have the same rate of 
convergence in the two cases. However, after eliminating the pressures (3.28) results 
in a positive definite matrix equation with bandwidth twice as big as that obtained 
from (3.3). Thus, the "simplified" problem may in fact be more costly to solve 
numerically. L 

4. A Mixed Method for a Plate Problem. The biharmonic problem 

(4.1) {A 2uf 

can be given the following variational formulation: 

(4.2) Inf T r(2V)+(~2 )2 + a 
2v\2dy dxddl 

v&H2() 2 1 x2 axay )X fayV2 Y fV Y| 

The solution of (4.2) satisfies (4.1) and vice versa. Introducing the auxiliary variable 

z = (i1 Iq2) = V v, we can formulate (4.2) as follows: 

(v,cp)& VX 2 ) (4.3) Inf (1VPl-fv} 
- ~~~~~(V, 4) E vx v2 

q'v 

where V Ho(Q) and 

Ivq112 = 1Ivq1II + IIvq2112, = (, P2). 
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Enforcing here the side condition p = V v approximately via a penalty term, we are 
led to the following minimization problem: 

(4.4) Inf 
( v2 {2 21- V 
(V ,) E VX V 

Below we shall consider a discrete analogue of this problem. 
Remark 4.1. The problem (4.4) corresponds in fact to the simplest model for a 

moderately thin plate with thickness 6, taking shear deformations into account. We 
clearly obtain (4.3) as limit problem from (4.4) as 6 tends to zero. In most practical 
problems 6 is not very small, and then (4.4) is a much better model for a plate than 
(4.3). Below, we shall only consider the case when - is very small and compare the 
solution of the discrete problem with the exact solution of (4.3). However, it is also 
possible to compare the discrete solution with the solution of (4.4) without extra 
complications. In fact (4.4) becomes more "well-cohditioned" from a numerical 
point of view as 6/h increases; if 6/h is (moderately) large one can apply a standard 
finite element method to (4.4), replacing V by a finite-dimensional subspace, and 
obtain good results. O 

Let us now introduce the following discrete analogue of (4.4) stated in [11]: 

(4.5) Inf {I IV(P12+ 
I 

( - vvv, vv)*-(f,v)), 
(v, ) VhX Wh E 

where Vh = Sh, Wh = Sh2 and, as above, the middle term is evaluated using one-point 
Gaussian quadrature. The corresponding discrete analogue with exact evaluation of 
this term will be a useless model if 6/h <C 1. 

The problem (4.5) can also be formulated as the following saddle-point problem: 

(4.6) Inf Sup {2Iv 2 (f,v)), 
(V,9) &VhX Wh ACQh 

where now Qh = Th2. The condition for (Uh, Oh, Xh) E Vh X Wh X Qh to be a 
saddle-point for the problem (4.6) reads 

(4.7a) f(OhI, Ve) + (Xh, ) O V e W, 

(4.7b) -(Xh, VV) = (f, v) VV E Vh, 

(4.7c) L6(Xh, I) -(h- V Uh U) = ? V E Qh 

This is the discrete problem to be analyzed below. Let us note that the continuous 
analogue of (4.7) reads 

-AO + X = 0, 

(4.8) divO =f = 

J(u,O) E VX V2. 

If we here take 6 = 0 and eliminate 0 and X, we obtain the biharmonic problem 
(4.1). Thus, the discrete model (4.7) to be studied can be considered to be a mixed 
method for the biharmonic problem obtained starting from the formulation (4.8) 
(with 6 = 0). Also, (4.8) is a model for a moderately thin plate with thickness 6 and 
u, 0 and X being the vertical displacement, rotations and shear forces, respectively. 
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Let us now analyze the method (4.7). First, we note that, taking (v, , ,u) = 

(uh, Oh, Xh) in (4.7), we obtain 

O@h I1 E||A*lh = (f 9 Uh)- 

Further, it is easy to see that (4.7c) determines uh uniquely in terms of Oh and Xh. 
Hence solutions of (4.7) are uniquely determined, and thus also existence of a 
solution of (4.7) follows. 

Next, let us introduce the orthogonal basis {'1ijk}9 i 1,... ,n, j = 1,...,m, 

k = 1 ... , 8, for the space Qh = T12 defined as follows: 

T1ij = (tIjqo)q 7ij2 = (0, (ij1)q 

71ij3 = (bNij2, ai13j), 71ij4= (-lij390)9 

hij5 = (0, (ij2) 1ij6 = (- ij49 ,)9 

71ij7 = (0, i j4T) h1ij8 = (ai j2, -bi j3), 

where (ijk e Th are the basis functions introduced in Section 3 and 

a = 2h1/(h1 + h2), b = 2h2/ (h1 + h2). 

The basis functions lijk (71ijk,19 Tijk,2) take values on Kij according to Figure 2 
and are zero outside Kij. 

k 1 2 3 4 

1 1 ~~0 0 b -b1 1 

o o 1 a -a 0 0 
1lijk,2 

00o a a 0 0 

k 5 6 7 8 

00 1 -1 0 0 a -a 
Thjk,1 0 0 -l 1 0 0 a a 

1-1 00 -1 10 b b 
71ijk,2 1X 10 0 1b -b 

x 
FIGURE 2 

The local basis functions of Qh 

Let us now introduce 

Nh = {X E Qh: (X,- v ) = O v E Vh, 9 VE Wh }, 

Nh = {X E Qh: (X,UO) = OVP e Nh}. 

It is easy to see that Nh contains the functions pi, i = 1,. . ., 2n, and wjj = 1, ... ,2m, 
where 

p1(x, Y) ={|((-1)j,o) if (x, Y) E e Ch, 
1 tj < 2m, 

(0,0 ) otherwise, 
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and 

(0, (-I)1) if (x, y) E Ai EC, I1 2n, 

(0,0 ) otherwise. 

Any A e Nh can then be represented as 

2n 2m 

aipi + 2 1jw1 + r, 
i=l j=l 

where ai, ,j E R and r = (r,, r2) satisfies 

r,(x, y) = 0 if (x, y) E- Ail Ez e^hl I< i< 2n , 

r2(x, y) = 0 if (x, y) E Ali E eh, 1j2m. 

A simple computation shows that r = C-, where C is a constant and 

- (x Y) =(( I )+j( j - I )a (- I )+j+ (i - I)b), 

(xy)E Ai ECh, 
h 

1i 2n, 1 j<2m. 

Thus, Nh is the (2n + 2m + I)-dimensional space spanned by the functions pi, w,, 

and f. Using this characterization of Nh, it is easy to verify that A = 2ij,k aijkT1ijk 

belongs to Nh' if and only if 

p,ijk=O, k=4,6, 1 Sin, 

(4.9) 
~ ~ | aijk = , k =5,7, 1 < j <m . 

and 

(4.10) 4a2 jaij6 + 4bEiaij7 + 2(a2 + b2)2 aij8 = 0. 
ij ij ij 

Let us now introduce the following mesh-dependent norm on Qh: 

3 1/2 

h4h = {h 2 (aijk) + h6 (aijk+)2 + h8 aijk)}2 

k=l i,j k =4,5,8 i,j k =6,7 i,j ) 

=U 2 aijk7li jk E Qh* 

i,j,k 

Comparing this norm with the L2-norm, we see that 

(4.11) C1h3 IttII0 I I ihtII h ChIIitII0 Vtt E Qh. 

In the proof of the error estimates below we shall use the following three lemmas: 

LEMMA 4.1. There is a positive constant C such that, for all it E Nhe L 

sup (tp-vV) C 11 I 11h 
(c)Vh XWh111 +h1v1 
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Proof. Let p =Y-i,j,k aijkIijk E Nh- be given, and define 

P k 2 Oijk7lijk, k = 1, ... ., 8, 
i,j 

A - aij8, dij8 
= 

Oij8 
- 

nm 

P80 = P iP8l 81 = P8 - 80' 
i,j 

so that in particular 

(4.12) P81 = jaij81ij8, zij8 = 0. 
i'J '.J 

Next, let us define the functions z, w E Vh and X, t E Wh as follows: 

[XI(P) = h2aijl 

(4.13a) 2(P) = h2a,12 if P is the midpoint of Kij E CO; 

Lz(P) = h'aij3 

[P(p) = h2( aI+8 - aij8) if P is the midpoint 

(4.13b) M2(P) h h2(ai+,5 - aij5) of the common side of 

w(P) = h (ai+lj7-aij7- 4b) Kij, Ki+j ?j eC; 

[?(P) h2(aij4 -ai,j+1,4) if P is the midpoint 

(4.13c) MP)2(P) h2( aij8 ai,j+ 1,8) of the common side 

w(P) = h5(aij6- aij+1,6 + 4a/3) ofiK,j Ki1+? E eh; 

(4.13d) the remaining degress of freedom of z, w, X and D are equal to zero. 

By straightforward computations we find that 
3 3 

k=1 k]=l= 

8 

(4.14b) k,;= 4+ + , ;)> Ch4(a02 + aU2), 

= -L (aj 4 - aP5?,8 + 11, (a118 2 

k=4 

and 

7 

(4.14c)~ ~ ~~~Y Ilyk + 180, V W c632 
k=4 

where 

* m-1 n-1 

GI = aij4 -ai,j+l4 + 1, 9(iSa+ 52 
i j=l = j 

m-I n-1 

a7 =2 (aij- ai,j+ ,8)2 + z (aij8 - ai+ J8)2' 
i j=l = j 
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and 
m-1 n-I 

J32 (ij)2 + (gi )2 

ij= i=I j 

where 

(4.15) {gi =aIaijf 6 -a,j+ ,6 + 4af3, 
tgij a, ? IJ7 

- ai 7- 4b1. 

We shall now estimate the seminorms ai from below using the fact that since 
I E Nhj the relations (4.9) and (4.10) hold. First, from (4.9) we conclude that 

(4.16) a?2 c(I4I112 + 12)5 ii2). 

Next, by (4.12) and Lemma 3.3 with q = 2, we have 
m-1 n-I 

=2 2 ( -ij8- + j8 -li+l,j8 

(4.17) i J= i j 

2Ch2 2(0Vj) 2 C> 1128 l 
z aiJ 

8) 11L1 
i ,J 

Finally, to estimate 03 from below, let us combine (4.15) and (4.9) and solve the 
resulting system of equations for alj6 and a,j7 to obtain 

m-1 

aj6= c cmYi + 2(2j -r- 1)af3, 
1=1 

n-I 

alj =- Cnll + 2(2i - n-)b#,I,1<i -< nI 1 sj < m, 
1 1 

where 

Cim, =-I/m, if I <j j1, 

1-I//m, if l >j-1. 

Upon substituting these expressions into (4.10), we obtain a relation of the form 

m-1 n-I 

2 cij f1j+ 2 zdl1g11 + ef = 0, 
i j=l i=l j 

where the coefficients c11, di1 and e satisfy 

I c1Cm2, Idii I< Cn2, e C(n3m+nm3). 

Since n < Ch'-, m t Ch', and IIIL80 110 = Cf, it follows that 

m-1 n-1 1/2 

IIt8,0II0 Ch{ j (ij) + - 3I 
i j=l 1=1 j 

Moreover, from (4.9) it follows easily that 
mn-I 

(4.18a) 2 (alj6 
- 

a,ij+ ,6) 2 Ch2 (aij6)2, 1 i < n, 
j=l I 
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and 
n-I 

(4.18b) 2 (aij7- ai+1,j7) > Ch22 (aij7 )2, 1 < j < m. 
i=l1 

Combining the last three inequalities and recalling the definition of 3, we finally get 
the following lower bound for 3: 

(4.19) a32 {> Ch-2I 1812 + h2 2 2(a ik)21 
k=6,7 i,j 

Now, let 8 E (0, 1] be a constant to be determined, let v = -z - 82w and 
g = X + St, and define 

{(3 ( 1/2 

SC = h2 2llYk112 + h4l + 22) + h (3J 
k 

1 
= 1 

CF 

Recalling (4.13) and (4.14), we see that 

(4.20) IgI11 + h'11 v111 C?JC, 

and 

(IL,p - Vv) > C{h2 : 1 Ilk11 + Sh4(, + 2 + + 82h6 2} 

+ (2 Ilk,8 82 W ) (81 V W). 

Using here the easy-to-check estimates 

q110l _< Ch3 or2 + a2)1/2, lvlo C5 

together with (4.17), we find that 

(IL, - v) > (C- CIS){h2 2 IItkI o + Sh4(2 + 52 ) + a 2h6 }. 

Taking now = min{ 1, C/2C C, }we obtain 

(4.21) (, '-Vv) > CJC2. 

Finally, by combining (4.16), (4.17) and (4.19) noting that IIt811 =2 110 + 
11281 IIwe see that 

(4.22) 9CIIAlIIh. 

The desired result now follows from (4.20)-(4.22) and the proof is complete. O 
In the remaining two lemmas we shall use the following mesh-dependent semi- 

norm: 
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LEMMA 4.2. There exists a positive constant C such that for all (v, T) E Vh X Wh, 

sup (it, Vv) 11 > C I V VO,h. 

Proof. Given (v, T) E Vh X Wh, let ,u E Qh be defined by the relation 

(, ) = (T - VV, ) x dE QhV 

i.e., 

#lA area(A)IiT vv)dxdy AECh. 

Then t E Nh and 

( ,U,g- V ) 
- 11 ,U 11 2= h4( hi1h )I -V 12,oh _2 Ch2 -VV 2oh 

which proves the desired result. O 

LEMMA 4.3. There is a constant C such that for (v, q)) E Vh X Wh 

l v |, s C(I T v v o,, + I |,). 

Proof. Let (v, T) = (v, Ti' TP2) E Vh X Wh be given. We denote by (xi, yj) = 
(i - l)hI/2, (j - l)h2/2 the nodes of Ch so that if Aij e C h then Aij= 
{(x, y); xi < x < xi+,? yj <y <y? +). Using the notation 

Wi j=W(Xig yj)q Wi+ 1/2,j+ 1/2 = WXi + 4 Y. 4 

we have if (xi, yj) is an interior node 

(' -aXII/21/2 =ahv (V"j - V+ li + Vi1j+l - v,??,j+l) + Ti,i+I/2,j+1/2, 

( a v \I 
2 

-aYJI?2?+/2 
= h2 (vj - vj I + 

vi+i , 
- v+ ,j+ 1) + 

T2,i+?/2,j+?/2- 

Adding these equations we find that 

(4.23) vi+ i,j+I - vij -f+ 1/2j+1/2' 

where 

f 2 [hi,, + h2P2- hi (P -ax) h2 (P2 ay)] 

Since v vanishes on the boundary of S2, we have vi_j+ , = 0 if i 2]j and thus (4.23) 
may be solved for v1j to obtain 

j_l 

Vij = fi-v+I1/2,j-v+I1/2 * 
V =1 

Therefore, sincej ] Ch-' 

< Ch-1( fi-v+3/2,j-v+I/2-Ji-v+I/2,j-P+I/2) 
V= i 
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An analogous estimate can be derived for (v1 +I - vij)2, and, combining these 
estimates and summing over i and j, we see that 

I V 12 S Cl {(V+I,J -Vij) + (Vi, Vij )2 
i,J 

Ch2 {2( (f+3/2,j+ 1/2 -i+ 1l/2,j+ 1/2) + (1+ 1/2,J+3/2 - f1+ 1/2,j+ 1/2)1 
i,j 

Further, by the definition of f we have 

(fi+312j +1/2 - + 1/2,j 1/2 
)2 

i+1 j+1 
< Chh 2, {(91,k+?1,1-91k kl) + (T2,k+1,1 

- 
92kl)2} 

k=i l=j 

+C2+(.1 aV)2 +v 
+ch2(I ax k) kf 1/2,j+ 1/2 ( 

9 
ay) k+1/2,j+1/2} 

Together with a similar inequality for (f +1/2 j+3/2-1?1/2 j? 12) this shows that 
2 

IV 112.< CE 2 {( +, ki)2+(lil ml )2} I v Jk,i+ , - TPk,ij) + (Pk11?1 - Ti 

i,j k=1 

av 
\2+ (9 - _ 

+Czj {(ml - aX ,+ 1/2,j+1/2 +j Y2 iaV J,+1/2,j+1/2} 

Cl(I T 112 + |I- V 12^ 

and the desired estimate follows. O 
We can now state and prove the main result of this section. 

THEOREM 4.1. There is a constant C such that if u E H5(Q) satisfies (4.1) and 
(tih, A,h 0h) is the solution of the discrete problem (4.7), with 0 < ? Ch2, then 

IIu - Uh IIl + IV U- OIh 11, S ChIIuII5. 

Proof. Let (ui, 0) E Vh X Wh be the usual interpolant of (u, 0), and let A be the 
orthogonal projection of X onto Nh?. By (4.7) and (4.8) (with ? = 0 in (4.8)), we have 

J(Uh - U' Oh -, X A- v, T, A) 

(4.24) = 93(U-U, - ,A-A; v. IL)- (X,) RH, 
V(V q, IL) E Vh X Wh X Qh' 

where 0 u, X = AO and 

93(u,0 , A; v, 9, L) =(v v, V)-(,0u - vU) + (X,q- vV) + E(X, IL). 

Since by (4.7c) Xh E NhL, we have Xh-A e N' and thus, by Lemma 4.1, there 
exists (z, ') E Vh X Wh such that 

(4.25) IIZIII + II1|II < CIIXh - XlIh, 

(4.26) z, Ah- 11 - h' 

Further, by Lemma 4.2 and (4.11), there exists v E NjL such that 

(4.27) II1!Ih s ChIIvIIo < Cl I h V(Uh U)o,h, 
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(4.28)~~ (PI Oh 8 V(Uh U)O> h - -V(Uh - U o,h 

Let now v = Uh - U' + 3Z, p = Oh-0 + 83 and y = Xh - + Sp, where 8 E (0, 1] 
will be chosen below. Then, by Lemma 4.3 and the fact that c s Ch2, we have 

(4.29) IIvII + 11 + lI 'IIh + /Ejly IIp o < C?C, 

where 

(= {I Oh 1 + I Oh V(Uh -i)2h 
(4.30) 

h h 

+ IXh - Xih + CIIXh - Xii}' 

Further, by (4.25)-(4.28) we have 

@J3(Uh - U, Oh - O,Xh -;v,p, ) 

>I Oh - 12I + 8I1 Oh- - V(Uh u) IO,h + 3IIXh - ih 

+EIIXh - I +(V(Oh ), V') + (Xh SPv) 

(1 - CS) I Oh - 12 + S(l - CSEh 12) Ih-- v(uh-U) I12h 

+{3IIXh - X112 + {e 112h -AXII* 

Choosing here 8 = min{ 1, 1/2C, h2/2Ce), we obtain 

(4.31) qJ(uh -u, h-d9Xh - X; v,, 9) I CX 2. 

Next, to estimate the right-hand side RH of (4.24) we first note that, by standard 
interpolation theory and (4.29), 

(4.32) I(V(O- ),CVh) ICChI 12 S C%h I U 13, 

and also by (4.29) 

(4.33) I e(X, ,u) I< CJ(PIIX I1 0 < C1)Ch I U 13. 

Further, denoting by Th2\ the orthogonal projection of X onto Qh9 we have by (4.29) 

|434 (AA p VV) 1=1 (XA-sA 'gX)- 'VV) I 

C3C IIAX - ThXII 0 CIc%h I X II CCh I u 14 

To estimate I (0 - 0 - v( u - u)) , we first note that, by the definition of the 
seminorm 1 1h and the fact that II t II h < C'C, we have 

3 

(4.35) 1 (,u, 0 - V(U - ri)) I< CCSC E rk( - # (U - u) 
k= I 

where 
- 3 I/2 

rl(X) = h [2 Yk(X)2 

r2x -3[ _yk(X)2] 
- / 

k =4,5 ,8 

IP3(X) =h-[ 
_ 
Yk(X)2] 

k =6,7 

Yk(X) 
_ 

Yijk(X)2 Yijk(X) = Xijk dx dy 
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Now, recalling Lemma 3.4, we easily find that 

Fl(6-O- v(u - )) < Ch { f(o-o-V(u-a)) dx dy 

?Ch(1612+ lU13) 

To estimate F2 and 173 we shall use the following additional superapproximation 
result, the proof of which is straightforward. 

LEMMA 4.4. Defining for (v, (p) E H'(Q) X [H'(Q)12, Q = Kij E G ' 

Lk(,TV ) (V - 
i5))m]jk dx dy 

where denotes the piecewise bilinear interpolant on the four subrectangles of K,j9 we 
have 

Lk(v,w) = O if (v, ) E P3 X [P2]2 rk4,5,8, 

LJ(V,P)) 0 if(v3p)P4X[P3]2 fork= 6,7 

so that 

I Lk(V p) I Ch4(I 6IH3(Q)+ |U1H4(Q)) fork=4,5,8, 

Lk(V, T) I Ch5(I 6 IH4(Q)+ I U IH5(Q)) for k = 6, 7. 

From this lemma we conclude that 

rJO 
- -V(U -u) Ch(O 0 13 + I U 14), 

3( - -v(u - a)) < Ch(I 14 + I U 15) 

Recalling (4.32)-(4.35) and collecting the estimates for Fi, we obtain RH < 
C?Kh II u I1 5, which combined with (4.24) and (4.31) shows that SC < Ch II u 5. To- 
gether with the usual estimates for the interpolation error this proves the stated 
estimates for II u - Uh I l and 11 -h Il l, and the proof is complete. D 

Remark. In general the solution u of (4.1) does not belong to H5(Q). The best one 
can say in general is that u E HS(E2) with s - 4.73 if f E H'(S2) (cf. [12]). Replacing 
11 * 11 h by a slightly stronger norm, which is possible since in the proof of Lemma 4.1 
Sobolev imbedding was used, one can prove that the statement of Theorem 4.1 holds 
with 11 u 115 replaced by 11 f 111. UZ 

Remark. Due to the extra smoothness required to use the superapproximability 
property, the usual duality argument does not give the optimal rate 0(h2) for 
11 U-Uh II O It is possible to prove that 11 U-Iuh ll O <Ch3/2 11 f 111 
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