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Some Optimal Error Estimates for Piecewise 
Linear Finite Element Approximations 

By Rolf Rannacher and Ridgway Scott 

Abstract. It is shown that the Ritz projection onto spaces of piecewise linear finite elements is 
bounded in the Sobolev space, Wl, for 2 - p < oc. This implies that for functions in 
wf n W2 the error in approximation behaves like 0(h) in Wp, for 2 ? p < oo, and like 
0(h2) in Lp, for 2 - p < oo. In all these cases the additional logarithmic factor previously 
included in error estimates for linear finite elements does not occur. 

1. Introduction and Results. Let 2 be a convex polygonal domain in 12, and let 
Th = {K}, 0 < h - h0 < 1, be finite triangulations of 5 such that the usual regular- 
ity condition is satisfied: 

(T) The triangles K EE 7h meet only in entire common sides or in vertices. Each 
triangle K E Th contains a circle of radius clh and is contained in a circle of radius c2h, 
where the constants cl > 0 and c2 < oo do not depend on K or h. 

Corresponding to Th, we define the finite dimensional subspace Sh C W4 by 

Sh V{h W OO: Vhis linearon eachK E ah), 

and the Ritz projection Rh: WJ47-j - Sh by 

(1.1) (vRhU, V(h) = (VU, V(h) VTh E Sh. 

Here Lp and Wpm, 1 - p < oo, m E N, are the Lebesgue and Sobolev spaces on Q 
provided with the usual norms 11 lip and 11 *1 m,p, respectively. W42 is the subspace 
of those functions in W.pI which vanish on the boundary in the generalized sense. The 
inner product of L2 is denoted by (.,.). Finally, by c we mean a generic positive 
constant which may vary with the context but is always independent of h. 

Under assumption (T), we have the well-known mean-square-error estimates 

(1.2) llu - RhuIk,2 < ch 2kIIUI22, k = 0, 1, 

and the uniform-error estimates (see [4], [8], [6], [1], [7]) 

(1.3) Iu - RhU IIk o ch'in h1 U 112,o,, k O, 1. 

From (1.2) and (1.3) one may conclude, by an interpolation argument, that for 
2 < p < o the Lp error behaves like (see [8]) 

1 1 -21p 
(1.4) llu - RhUllp < ch2 Inh - 1U112,p 
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It has been considered as a challenge from the beginning to remove the logarithmic 
factors in (1.3) and (1.4). This, in particular, since one can show that for higher than 
second order finite elements these estimates hold without the logarithm; see [5], [8]. 
Also, for any function u E Wfl nW2, 1 Sp S o, the natural piecewise linear 
interpolant Ihu E Sh is well defined and satisfies 

(1.5) IIuIhUIIkp s ch2 iIuII2p, k = O, 1. 

For the case of linear finite elements, Fried [2] has recently published an example* 
based on radial symmetry which indicates that (in two and three dimensions) at least 
the pointwise estimate 

(1.6) Iu - Rhu ch 2In 
I 

11 2,. 

may be of optimal order. However, this leaves the question open whether the Lp 
estimate (1.4) is optimal. In the present paper we shall give an answer to this 
question for the model situation considered here which is based on the following 
stability result: 

THEOREM. Under assumption (T) the Ritz projection Rh is stable in WI for 
2 s p s oo, namely 

(1.7) IRhUll s, <C 11U 11 Ip. 

The proof of the theorem will be given in the next two sections. One of its 
consequences is the following 

COROLLARY. Under assumption (T), for any function u E WPl n 2 there holds 

(1.8) IIu - RhuII,P S chIIu 12,p 2 Sp < 00, 

(1.9) IIu - Rhu 1P S cph2IIUII22,p 2 <p < 00. 

Proof. We apply (1.7) for u - Ihu and observe that Rh id on Sh to obtain 
| hU -IhU 111 IP Cll1 U -IhU 11 I,P SPSX 

Then, the approximation estimate (1.5) implies (1.8). 
To prove (1.9), we use a duality argument. Let p E [ 2, X), so that q p/( p - 1) 

E (1,2]. On the convex polygonal domain 5, the Laplacian is a homeomorphism 
from WIl n w2 onto Lq, 1 < q S 2; see [3]. Hence there is a v E- ' Ifl W2 Wq q q qW 
satisfying 

-Avv =sgn(u-Rhu) |u-RhU -IP in Q, 

and 
(1.10) 1V 112,q s clIvIIq= cilu - RhUII'P- 

Using now (1.1), Holder's inequality, (1.5), (1.8), and (1.10), we find 

Iu - Rhul = (V(u - Rhu), V((V IhV)) 

(1.11) s IIu - RhuIII,pII v- IhVI I,q s IIu - RhuIl, p1chIIvI2,q 

S ch2IuIl2,pIIvlv12q ? ch2luIIl24uC-hRhu I-R -I Q.E.D. 

* This example had already appeared in Jespersen [9], however. 
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We remark on some extensions of our results. The proof of the theorem and to a 
large extent also that of its corollary make use of the fact that the Laplacian 
considered as a mapping 

(1.12) A: WI n _ -*- Lp 

is a homeomorphism for p E (1,2 + a], where a is some arbitrarily small but 
positive number. This is certainly true on a domain with smooth boundary, say 
au E C2, for all a > 0, and it is known also for convex polygonal domains (see [3]) 
where a depends on the size of the maximum inner angle, X < 7. Our results extend 
to more general second order elliptic operators as long as the corresponding 
mapping (1.12) is a homeomorphism. In the case of a curved boundary the proofs 
become more involved due to the approximation of i2 by polygonal domains Oh' In 
the case that auA is smooth one can show that for all p E (1, oo] the following refined 
estimate holds: 

(1.13) IIRh UIIl,p, C{IIUII|,P;ah + h/PIIUIIlp;P\a }u 

From that estimate one can again draw the conclusions (1.8) and (1.9), now valid for 
all p E (1, oo] and p E (1, oo), respectively. The results for 1 < p < 2 are proved via 
a duality argument that makes use of elliptic regularity results that are not generally 
valid for nonsmooth boundaries. 

2. Proof of the Theorem. Notation and techniques are similar to those used in [1]. 
However, the key difference is in the type of Green's function employed. The basic 
technique used in several papers is to reduce to the problem of estimating the error 
g - Rhg in approximating the solution of 

-Ag=6 in 2, 

where 8 is the Dirac 8-function or some approximation to it. The difficulty is that, 
with piecewise linear approximation, the error g - Rhg contains a logarithmic factor. 
For example, it was noted in [8] that 0 < c-l ? h-'(ln h-')'Ig - Rhg III', ? c as 
h -* 0. The reason is that the smoothness of g is such that piecewise linears fail to 
afford optimal approximation (whereas higher degree piecewise polynomials would 
yield an approximation rate devoid of the logarithmic factor). The remedy here is to 
consider instead a "derivative" Green's function, satisfying 

-Ag - in 2 
axi 

(for each i = 1,2). Now g is more singular, and piecewise linears afford optimal 
approximation, albeit at a slower rate. We now turn to the details. 

Let u E 1 W4, 2 - p - oo, be given. We pick any point z E U2 contained in the 
interior of some triangle K, E 7Th, and denote by a any of the operators a/axi, 
i = 1, 2. Because of assumption (T), there is a function , E- C( (K,) such that 

(2.1) f8zdx=1, IvkzIch-2-k, k= 0,1,..., 

where the constant c does not depend on z or h. Here Vk8z denotes the tensor of 
derivatives of 8z of order k. Then, by construction, 

(2.2) 4Th(z) = (aTh 8z) VTh E Sh 
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Correspondingly, we define g, e W2 by 

(2.3) (v gz ,V) = (3z,3 aT) VTe W22 

Clearly, gz is a regularized derivative of the Green's function of the Laplacian on U2. 
Using this notation, we have 

aRhu(z) = (vRhU, Vgz) = (vu,v Rhgz) 
(2.4) =(u, az) - (V u, V(gz - Rhgz)) 

We introduce the weight function 

(2.5) az(X) = (I x - Z 12 + K 2h2), K > 1, 

where the parameter K will be chosen appropriately large, K > K* 1, but indepen- 
dent of h! We note that from now on the generic constant c is also independent of K 

and z e i2, and of the parameter a e (0, 1] introduced below. 
Suppose temporarily that p < oo. Applying H61der's inequality to the terms in 

(2.4), we obtain for any a e (0, 1] that 

I (Vu,V(gZ - Rhgz)) I 

(f I vuIdx)f dx) I /p ( p-2)/2I p ( dx) 1/2 

? c(ah`a)(P 2)/2PMh(faZ V U dx 

where 

Mh= max (fU2+a v(g-R g)2dx) 

Furthermore, 

) /P (P- )/P 

I(au 9s z) I au IP dx I |z 8|P(P- 1) dx 

I /p 

cIh-21p (KI vulPdx)~ 
Kz 

We apply the above estimates with (2.4), raise to the pth power and integrate with 
respect to z e i2 to obtain 

l/P 

IIaRhUIIp ( C h-2ff I vulPdxdz 

+c(a-1h`a)(P-2)/2PMh (ffaz-2 V u [ dx dz ) 

Thus, by interchanging integration, we find 

(2.6) 1I aRhuIIp c< C 11v U 11 p(1 + ,-1/2h-al2Mh 

where the constant c is obviously independent of p. Estimate (2.6) is also easily seen 
to hold for p = oo using the above techniques. Now, to prove the assertion of the 
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theorem, we have to show that 

(2.7) Mh max (a+a I V(gz - 
Rhgz) 12 dx) 1 h/2 

for a proper choice of a E (0, 1]. 
To prove (2.7), we need some preparations. From now on, we drop the subscript z 

and simply write a, g for az, gz. The weight function a satisfies 

(2.8) IVka |sca' k S c(Kh) k, k = 0, 1, 2,.... 

Here Vka denotes the tensor of k th order derivatives of a. Moreover, for K > K, 

sufficiently large, one has that (see [5]) 

(2.9) max [maxa(x)/minKa(x)] S?c 

holds uniformly for z E U2. For any function v E-V W2 n (11 Ke, W22(K)l the natural 
piecewise linear interpolant IhV E Sh is well defined and satisfies 

(2.10) IIV(V-IhV)112;K ? ChlIV2VI12;K, K E 7Jh. 

Combining (2.10) and (2.9), one easily sees that the following holds: 

(2.11) falI V(v-Ihv) 12dx ch2fl VIv2v12dx, 

where the abbreviation used is 

| dx ...| dx. 
K K 7Th 

To prove (2.7), we set a = u2+a(g - Rhg) and we use (1.1) to obtain 

o2+ lv(g - Rhg) 12 dx 

fv(g-Rh9g)v( - I ) dx + f A2+a(g - Rhg)2 dx. 

Thus, 

12+ lv(g-Rhg) 12 dx 

(2.12) 
-c| v2-a - Jh- ) 12 dx + c a(g-Rhg)2 dx. 

From (2.1 1), we get by a simple calculation that 

2a I V( -Ih#) 12 dx < ch2fa2+a I v2g 12 dx 

+CK-2(la2+a I v(g - Rhg) 12 dx + fa(g - Rhg)2 dx). 

We insert this estimate into (2.12) and find that, for K > K2 sufficiently large, 

(2.13) fa2+aI V(g- Rhg) 12 dx ? ch2T2+a 1 v2g 12 dx + cfa(g- Rhg)2 dx. 
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To handle the second term on the right side of (2.13), we employ a duality argument 
in weighted norms. For fixed h, let v E W2' be the solution of the auxiliary problem 

(2.14) -Qv = ao(g- Rhg) in U. 

Since i2 is convex, it is guaranteed that v E W22. Moreover, in Section 3 we shall 
show that the following weighted a priori estimate holds for all v E W21(i2) such that 
Av E W2'(0): 

(2.15) fl2aI V2vl2dx -c-a-(Kh)-2fa2-aI VVl2dX. 

Consequently, 

fa-2-a V2v 12 dx 
(2.16) 

s ca( h)-2f{u2+ I v(g - Rhg) 12 + ua(g - Rhg)2} dx 

Using (2.14), we have 

fua(g-Rhg)2 dx v(g-Rhg)* V(V-4IhV) dx 

< ( 2+a |I v(g - Rhg) 12 dx) ((af-2-a I V(v - IhV) 12 dx) 

Then, by (2.11) and (2.16), choosing K > K3 sufficiently large yields 

(2.17) fa(g - Rhg)2 dx ? c(aK) Yf2+a I v(g - Rhg) 12 dx. 

We insert (2.17) into (2.13) and choose again K > K4(a) sufficiently large to obtain 

(2.18) fa2+a I v(g - Rhg) 12 dx? ch2fa2+aI v2g12 dx. 

Thus, we have reduced the proof of (2.7) to an a priori estimate of the form 

(2.19) fa2+a 1 v2g 12 dx s c,, ha 2. 

This estimate, however, is an obvious consequence of the a priori estimate 

(2.20) fU2+a I Vg 12 dx s cfU2+a(a)2 dx + ca(Kh)2 U2+a8 dx, 

which will be proven in Section 3, for 0 < a s au sufficiently small. 

3. Some Weighted A Priori Estimates. Let functions f E lk2' and b E [( 12 be 
given, and let v E TV2' be such that 

(3.1) -Av=f+divb ing. 

If a = (I X - Z 12 + D2)1/2 is the weight function introduced in Section 2, then we 
have the following 

LEMMA. For any convex polygonal domain S1, there exists an au E (0, 1] such that 
for all parameter values a E (0, au I the following a priori estimates hold, 

(i) iff_ 0: 

(3.2) fa2+I V2v 2dx ?cf a2+aIdivbI2dx + c&I ?2fa2+ IbI2dx, 
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(ii) if b-=0: 

(3.3) fa-2a I V2V 12 dx 1c-2fa2-a f V f 1 dx. 

Proof. (i) To prove (3.2), we estimate 

fa2+a I V2V 12 dx <f i V2[1 I+a/2V ] 12 dx + cf {a I V V 12 + aa-2v2) dx. 

Since 2 is convex, we have the standard L2 a priori estimate 

11 W 112,2 < C 11AWi 1 2 w G 2' n w22. 

Applying this to ci+a/2V, we find by a simple calculation that 

(3.4 |2+a VV12 dx G C2+a dvb12 dx c{, I V V 12 + 0,-2V2) x (3.4) fc2 1 'v2VI2dxcfc2aIdivbI2dx+cf (GlvI+i2 dx. 

Furthermore, 

fia I VV12 dx = V V(caV) dx + fA ciaV2 dx, 

and hence, using (3.1), 

(3.5) fi9ai vva2dx cfc2?aldivbl2dx + cfcia2v2dx. 

Combining (3.5) with (3.4), we arrive at 

(3.6) f2+a I V2V 12dx - cf2+aI divbl2dx + cfia-2v2 dx. 

Next, we apply H61der's inequality to obtain 

(2 -<)/(2 +a) 
( a-2 2 dx G (Jc2-a dx )()2 V 11 2G) a 

< C(a1-,a)(2a)/(2?a) II V 11 2 

We have already noted that the Laplacian is a homeomorphism from J'1 nW2 Wq q 

onto Lq for all q E (1, 2 ]. Hence, there is a w E fl +,)/2n W(2J+4)/2 satisfying 

-Aw = sgn(v) I v 12/a in Q, 

and 

(3.8) 11 I 2,(2+a)/2 < C 11 AW 11 (2+a)/2 

Then, we have via Holder's inequality, Sobolev's inequality, and (3.8) that 

VII(2+a) = (V, V w) = (b, V w) < 11 b 11 (4+2a)/(2+3a) 11 W 11 1,(4+2a)/(2-a) 

G c li b II (4+2a)/(2+3a) 11 W II 2,(2+a)/2 < C li b II (4+2a)/(2+3a) 1 V 11 (2I+a)/a 

Thus, we obtain 

(3.9) II V 11 (2+a)/a < C 1l b 11 (4+2a)/(2+3a) 
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Now, again by Holder's inequality, 

~ lb 2 dx) 1/2(f[2a12/2d)a/(2?a) 11b II (4+2a)/(2+3a) < (a2+a I b 12 dX ) 
- 

(1f[2+a]/2a dx) 

(3. 10)1/ 
(0 cd (4+a2)/(4+2a) (f2+a lb 12 dx / 

Combining the estimates (3.10)-(3.7), we obtain that for a E (0, 1] 

(3.11) fGa-22 dx < ca1l-2fa2+a lb 12 dX. 

This together with (3.6) proves the estimate (3.2) for the choice au = 1. 
(ii) To prove (3.3), we apply Holder's inequality as follows: 

(3.12) V2V ~~~~~~~~~~~~II V2v I 2/(1-a) (3.12) f-2-a IV2v 12 dx G 
(f10(2+a)/a dx ) VV1 (-a 

- 
Da2 11V 1122 2/(1-I 

Above, we have noted that the Laplacian is a homeomorphism from nl 
WP2 /(I_) onto L2/(l-) for a E (0, a 1j, where 1 > au > 0 is determined by the 
maximum inner angle of U. Thus, for a E (0, aj ], we have that 

(3.13) 11v112 2/(1a) < C IIAV I2/(1-) 

By Sobolev's inequality combined with Poincare's inequality (notice that Av E 

(3.14) AV 11 2/(1-a) < C li V 11 2/(2-a) 

We apply again Holder's inequality to obtain 

i AV 11 2/(2-a) fG( -(2-a)/(l -a) dx ) /(fG2-a V?AV 2 dx / 

(3.15) 
1 ca 1/2t a/2(fG2a I AV 12 dx) 

Combining the estimates (3.15)-(3.12), we finally reach the desired estimate 

fG2aI V2vl2dx < ca1-2fG2-a vAvI2dx 

valid for a E (0, ag ]. Q.E.D. 
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