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The Numerical Evaluation of Very Oscillatory 
Infinite Integrals by Extrapolation 

By Avram Sidi 

Abstract. Recently the author has given two modifications of a nonlinear extrapolation 
method due to Levin and Sidi, which enable one to accurately and economically compute 
certain infinite integrals whose integrands have a simple oscillatory behavior at infinity. In 
this work these modifications are extended to cover the case of very oscillatory infinite 
integrals whose integrands have a complicated and increasingly rapid oscillatory behavior at 
infinity. The new method is applied to a number of complicated integrals, among them the 
solution to a problem in viscoelasticity. Some convergence results for this method are 
presented. 

1. Introduction. Recently Levin and Sidi [4] have given some nonlinear transfor- 
mations for accelerating the convergence of slowly converging infinite integrals and 
series, namely the D- and d-transformations, respectively, which have proved to be 
very efficient numerically. Convergence properties of these transformations, which 
are generalizations of the Richardson extrapolation process, have been analyzed in a 
series of papers by the present author, and some results, which, to a certain extent, 
explain how these transformations work, have been given, see Sidi [9], [10], [11]. 
Actually, Sidi [9], [11] deal specifically with the case of the T-transformation of 
Levin [2], which is a special case of the d-transformation, and Sidi [10] deals with the 
generalized Richardson extrapolation process, which has as special cases the D- and 
d-transformations. 

Two useful modifications of the D-transformation (the D- and D-transformations) 
that simplify the computation of oscillatory infinite integrals, with special emphasis 
on Fourier and Hankel transforms, have been given by the present author, see Sidi 
[12]. Also for this case convergence results have been proved. The methods devel- 
oped in [12] make extensive use of the simple oscillatory behavior of the integrand, 
which is merely a sine or a cosine (or a combination of both) of the integration 
variable. This is especially so for Fourier and Hankel transforms. 

In the present work we give a simple yet efficient procedure, namely the W- 
transformation, for accelerating the convergence of very oscillatory infinite integrals 
whose integrands have a complicated and increasingly rapid oscillatory behavior at 
infinity. In the remainder of this section we shall explain in detail what exactly is 
meant by the phrase "very oscillatory". 

Following Levin and Sidi [4], Sidi [10], [12], we give the definition below: 
Definition 1.1. We shall say that a function a(x), defined for x > a > 0, belongs to 

the set A(7), if it is infinitely differentiable for all x > a, and if, as x -x o, it has a 
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Poincare-type asymptotic expansion of the form 
00 

(1.1) ~~~~(x) -x7 E aj/x, 
i=o 

and all its derivatives, as x -x oo, have Poincare-type asymptotic expansions, which 
are obtained by differentiating the right-hand side of (1.1) term by term. 

Remark 1. From this definition it follows that A(7) D A(Y- I) D A(Y-2) D 

Remark 2. It can easily be verified that if a E A(7) and /3 E A("), then aA3 E A(7+"), 
and if, in addition, /3 4 A("-'), then a//3 E A(7-8). 

Remark 3. If a E A(?), then it is infinitely differentiable for all x > a up to and 
including x = oo, although not necessarily analytic at x 00. 

The integrals treated in this work are of the form: 

(1.2) I[fl f(t)dt forsomea O, 

where the integrand f(x) can be expressed as 

(1.3) f(x) = u(0(x))e"(x)h(x), 
where 

(1) u(t) denotes either cos t or sin t, 
(2) @(x) is real and 0 E A(m) for some positive integer m, 
(3) 4(x) is real and 4 E A(k) for some nonnegative integer k, and limx,. 4(x) - 

-00 if k ) 1, 

(4) h(x) is real and h E A(7) for some -y, such that f(x) is integrable at x = c. A 
simple analysis shows that when k > 1, f(x) is integrable at x = 00 for any value of 
-y, and when k = O, f(x) is integrable at x = c provided -y < m -1. 

Example 1.1. 

f(x) = sin(x3 + 2x + 4 + + 3) 

x5 + x 2 
Xexp(-x2+ 3x+2+ Vx2+x/2+ 1 ) x 

Here m = 3, k = 2,y 7/2. 
If m = 1, then f(x) oscillates at infinity like sin cx or cos cx where c is a constant. 

This is the case treated in Sidi [12]. If m > 2, however, f(x) oscillates very rapidly at 
infinity, in the sense that as - 00, the number of times f(x) changes its sign in the 
interval [t, t + At], with Al > 0 fixed, also tends to infinity; equivalently the 
distance between two consecutive zeros of f(x) tends to zero as these zeros approach 
infinity. 

Let us define 

(1.4) F(x) fJ(t) dt 

With the help of a theorem due to Levin and Sidi [4], in Section 2, we obtain an 
asymptotic expansion for I[ f ] - F(x) as x -x 00. Through this asymptotic expan- 
sion, in Section 3, the W-transformation is defined as an extrapolation process based 
on the F(xl), for a small number of carefully chosen values of xl. In Section 4 we 



EVALUATION OF VERY OSCILLATORY INFINITE INTEGRALS 519 

illustrate the W-transformation with several numerical examples. In Section 5 we 
supply some results on the convergence properties of the W-transformation. 

2. Theory. Let the function g(x) be expressible in the form 

(2.1) g(x) - eiG(x)e0(x)h(x), 
where @(x), 4(x), and h(x) are exactly as in the previous section with the same 
notation. (From (2.1) it follows that the function f(x) given in (1.3) is simply the real 
or the imaginary part of g(x).) Let us define 

I[g] =| g(t)dt and G(x) f g(t)dt 
a a 

as in (1.2) and (1.4). Our purpose now is to obtain an asymptotic expansion for 

(2.2) I[g] - G(x) = g(t) dt 

in the limit x - oo. For this we need the following result, which is a special case of a 
theorem due to Levin and Sidi [4]. 

THEOREM 2.1. Let v(x) be defined for x > a > 0, and be integrable at x =oc, and 
satisfy a linear first-order homogeneous differential equation of the form 

(2.3) v(x) = p(x)v'(x), 

where p E A(r) but p - A(r 1) such that r is an integer less than or equal to 1. Let also 

(2.4) lim p(x)v(x) = 0. 
x 00 

If for the integers l =- 1,1, 2, 3,... 

(2.5) p 
where 

(2.6) p= limx-'p(x), 
X -* 00 

then 

(2.7) fv(t) dt = xrv(x),8(x), 

such that 3 E A(?). (In the original result of Levin and Sidi [4] the right-hand side of 
(2.7) is given as xTv(x),8(x) with T being an integer less than or equal to r. But for v(x) 
as above, going through the steps of the proof of the theorem of Levin and Sidi [4], one 
can easily see that X r exactly.) O 

In the appendix at the end of the present work we shall present a new approach to 
the derivation of /3(x) from a differential equation, which is different than that given 
in the work of Levin and Sidi. 

We now apply Theorem 2.1 to the function g(x). 

THEOREM 2.2. Let g(x) be as defined in the beginning of this section. Then 
00 

(2.8) |g( t) dt = x?g(x),8(x ) 

where 
(2.9) r=min{-m+ 1,-k+ 1}, 

and 6 E A(?). 
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Proof. We shall show that all the conditions of Theorem 2.1 are satisfied by the 
function g(x). First of all g(x) satisfies the linear first-order homogeneous differen- 
tial equation g(x) = s(x)g'(x), where 

(2.10) s(x) = [iO'(x) + +'(x) + h'(x)/h(x)]f1. 
Since 0' C A(m '), E CA(k ),(h'/h) EC A( ,and m > 1,k 0,weseethat 

I/s = (iG' + o/ + h'/h) C A(P), 

but (l/s) 4 A(P- where p max{m - 1, k - 1). By Remark 2 in Section 1, we 
then see that s C A(") but s (4 A(g- 1). Since y < m - 1 when k = 0 and arbitrary 
otherwise, and s E A('), we can easily see that limO s(x)g(x) = 0, hence (2.4) is 
satisfied. (2.5) is satisfied trivially because s = lim x'- s(x) = 0 by the fact that 
s C A(') and a ? 0. Hence, Theorem 2.1 applies to g(x), consequently (2.8) holds 
with /8 E AC . This completes the proof of the theorem. O 

Now 0(x), being in A(m), has an asymptotic expansion of the form 

00 

(2.11) @(x) -xm 2 Oilx' as x x->o. 
i=O 

Hence 0(x) is of the form 0(x) = @(x) + A(x), where #(x) is a polynomial of 
degree m, and A(x) is in A(). Specifically, 

m-1 00 

(2.12) O(x) = 2 0ixm, A(x) 2 Om+i/x' as x -* oo. 
i=O i=O 

Therefore, 

(2.13) eiG(x) = ei@(x)s8(x), 

where 6(x) = e'A(x), and 8 E A(') since A CE A(). 
Similarly, 4 C A(k) implies that +(x) = +(x) + A(x), where 4(x) is a polynomial 

of degree k, and A(x) is in A(?). Hence 

(2 .14) e+(X) = e;(X)X( x), 

where X(x) = eA(x), hence X E A(C). 
Example 2.1. In Example 1.1 in the previous section we have #(x) x3 + 2x and 

<(x) -x2 + 4x. 

Substituting (2.13) and (2.14) in (2.8), and using the fact that h C A(Y), we obtain 
the following result. 

THEOREM 2.3. I[g] G(x) can be expressed in the form 

(2.15) I[g] - G(x)-xx+Y e'O(x)eO(x)f*(x) 
where 8*(x) = x-Yh(x)8(x)X(x)f8(x), hence ,8* C AM. 

Proof. We only have to show that /3* C A(?). Now since x-e is in A(-Y) and 
h CE A(7), x-h(x) is in A(?) by Remark 2 of the previous section. We have seen that 
8 C A(?) and X C A(?). Again by Remark 2 of the previous section the product of any 
number of functions in A(?) is a function in AM, hence the result follows. ri 



EVALUATION OF VERY OSCILLATORY INFINITE INTEGRALS 521 

COROLLARY. By taking the real or imaginary part of both sides of (2.15) we obtain 

(2.16) I[ f -F(x) = xa+ye4(x){cos[O(x)]b,(x) + sin[k(x)]b2(x)}, 
where 

b x Refl*(x) iff(x) = Re g(x), 
Im /*(x) iff(x) = Im g(x), 

b2W() f Im/3*(x) iff(x) = Reg(x), 
2 Re/3*(x) iff(x) = Im g(x), 

hence b, E A(?) and b2 E A(?)* ? 

Remark 1. So far we have assumed that h(x) is a real function. However, the 
result stated in Theorem 2.3 is valid also when h(x) is complex, since we have not 
made use of the assumption that h(x) is real, in any of the steps that lead to (2.15). 
From this it can easily be verified that (2.16) in the corollary to Theorem 2.3 is valid 
whenever h(x) is complex, with b, E A(?) and b2 E A(?), the only difference being 
that bl(x) and b2(x) are not given by (2.17) but by slightly more complicated 
expressions. In the next lemma we show that (2.16) is valid for functions f(x) with a 
more complicated appearance than considered so far. 

LEMMA 2.1. Let f(x) be of the form 

(2.18) fx= fi (x) 
i=lI 

where each of the fi(x) is of the form 

(2.19) fi(x) = 
uj(0j(x))e'1,(x1hj(x), 1i = ,.r, 

such that 
(1) ui(t) is either cos t or sin t (or a linear combination of both, like e 
(2) each of the Gi(x) is a real function in A(m), m being a positive integer, with the 

property that 0i(x) _ @,(x) for i =# j; 
(3) each of the (pi(x) is a realfunction in A(k), k being a nonnegative integer, with the 

property that 4i (x) = +,(x) for i #/ j; 
(4) each of the hi(x) is a (complex) function in A('Y), for some -yi with the property 

that y, - = integer for i :#-j (hence hi E A(Y) for each i, where y = max{yl,..., Yr}, 
see Remark 1 in the previous section). 

Then (2.16) holds with a as given in (2.9), y = max{yl,.. . ,yr}, and bI E A(?) and 
b2 EE A(?). 

Proof. The result follows by applying the corollary to Theorem 2.3 to each fi(x), 
and recalling Remark I above. We omit the details. r1 

Example of the Application of Lemma 2.1. Consider 

(2.20) f(x) = {y(O( )) e 4(x)h (x), 

where #(x) > 0, j(x), and h(x) are as described in the first paragraph of this section 
and J,(t) and Y,(t) are the Bessel functions of order v of the first and second kind, 
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respectively. Let v(t) denote either J,(t) or Y,(t). Then as t x 

(2.21) v(t) = cos tq1,(t) + sin tq2(01), 

where ,q E A(- 1/2) and 2 E A(- 1/2). Since 0(x) X as x , we have 

v(0(x)) = cos[0(x)],q(0(x)) + sin[0(x)]q2(0(x)) 

(2.22) = cos[0(x)]71j(x) + sin[0(x)]i-2(x), 

where it can easily be shown that G E A(-m/2) and '2 E A(-m/2). Hence we have 
shown that f(x), as given in (2.20), can be expressed in the form (2.18) with r = 2, 
ul(t) = cos t, u2(t) = sin t, 0A(x) - 02(x) -(), 1(X) =2(x) = +(x), and h1(x) 

= 1(x)h(x), h2(x) =12(x)h(x), both being in A("-m/2). (We note that these 
results will be of use in Example 4.4 in Section 4.) 

3. The W-Transformation. In this section we give an extrapolation method by 
which approximations to I[ f ], when f(x) is as in Lemma 2. 1, can be obtained as the 
solution of a system of linear equations. 

Let us start with (2.16). Let x0 be the smallest zero of sin[0(x)] (or of cos[0(x)]) 
greater than a > 0. Then x0 is the solution to the polynomial equation 0(x) q7T (or 
0(x) = (q + 1/2)7T) for some integer q. Once x0 has been found, we go on to 
determine x, < x2 < ..., the consecutive zeros of sin[O(x)] (or of cos[0(x)]) such 
that cos[0(x1)]cos[0(xl+1)] <0 (or sin[0(x,)]sin[0(xl+ )] <0). That is, xi is the 
solution to the polynomial equation #(x) = (q + 1)'n (or 0(x) = (q + / + 1/2)7r). 
It is clear that x, -* oo as 1 oo; as a matter of fact x1 = 0(11/m) as 1 -* oo. 

If we now let x = x1 in (2.16), we obtain 

(3.1) I[ f-F(x,) = (xj)b(x,), I = 0, 1, 2,..., 

where 

(3.2) Ox() { cos[#(x)] * x+e(') if xi are zeros of sin[0(x)], 

{ sin[(x)] *x+Ye0(X) if x1 are zeros of cos[0(x)], 

and 

(3.3) b(x) { b,(x) if x,are zeros of sin[H(x)], 

( b2(x) if x, are zeros of sin[0 (x)]. 

Note that 

(3.4) {x)=C-)xu +"e (X/) I = O, 1,2 ..., 

where c = cos[0(x0)] or c = sin[0(x0)], depending on whether x, are the zeros of 
sin[0(x)] or cos[#(x)], respectively. Consequently 

(3.5) 4x)i(x,+1) < 0, 1 = 0, 1, 2,.... 

This is a very important property as will be explained later. 
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Definition 3.1 (The W-Transformation). The approximation W(') to I[ f] and the 
parameters f3&, i 0, 1,... , n, are defined to be the solution to the system of n + 2 
linear equations 

(3.6) Wn() =F(xl) + '(xj) E ,i A l =j, j + 1,...,j + n + 1. 
i=O xi 

The inequality in (3.5) guarantees the existence of a unique solution to these 
equations as has been shown in Sidi [12]. 

We note that the W-transformation is a special case of the generalized Richardson 
extrapolation process treated by the author in [10]. 

Previously, the author has considered two kinds of limiting processes, see [9], [10], 

[11], [12]: 
(a) Process I; n is fixed, j 00, 

(b) Process II, j is fixed, n x0. 

The convergence properties of both of these processes is taken up briefly in 
Section 5. It turns out that Process II has very good convergence properties and is 
much more efficient than Process I. 

A recursive algorithm for the implementation of the W-transformation has been 
developed by Sidi [13], and is denoted as the W-algorithm. It turns out that the 
W-algorithm requires very little storage and very few arithmetic operations. Further- 
more, it is proved in [13] that whenever (3.5) is satisfied, the W-algorithm is stable in 
that errors in F(xl) and 4(xj) are not magnified. We now describe how the 
W-algorithm can be applied to the W-transformation defined by Eqs. (3.6): 

(1) Define 

(3.7) N S1/ip(xS), s = 0, 1,. 

(2) Let 

M k (M(s) -MMs(s ))/ (XSy 
- 

XS+k+l), 

(3.8) N(s) N(s) I N(s ) x 
- 

1s+k+l)s 5 15 ... k =. 1, 

|.Wks) =Mk(s)IN(s), 

For details see [13]. 

4. Numerical Examples. In this section we shall give four numerical examples that 
show the accuracy of the method presented in the previous section when applied to 
very oscillatory integrals. All the results have been obtained by using the W- 
transformation of Section 3, for Process II using j = 0, since Process II is the more 
efficient of the two processes. (See also Theorem 5. 1.) 

Example 4.1. fo? sin(,,Tt2/2)/dt = 1/2. For this case u(t) = sin t, #(x) 
@(x) = (7/2)x2, cp(x) = constant, and -y = 0. Hence xl, 1 = 0, 1,..., are roots of 
the equation (7"/2)x2 =(1 + 1)7, 1 0,1,..., i.e., x,= 2(1 + 1), 1 = 0,1.... 
Since m 2 and k 0 O, we have or -1. Therefore, A(x) = cos(7x2/2)/x and 

(x,) = (-1)+'/x, 1 =0, 1.... Table 4.1 contains some of the results of the 
computations for this integral. 
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TABLE 4.1 

Approximations Wn(?) for the integral J sin( rt2/2) dt 4. 

n W(? 

1 0.4997 
3 0.500002 
5 0.499999991 
7 0.50000000004 
9 0.4999999999998 

11 0.5000000000000009 

Exact 0.5 

Example 4.2. 

1 1 oo 
X(l + ~2) 1/4 tan- 

I(x,t) = +j- exp -(1 +t2F sin 

(4.1)~ ~ si{-D( + D2) -/4COS 
ta- 

)}d xtO X sin ~t - +x( 5 - xt 0. 

I(x, t) is an integral representation for the solution to a problem of wave propaga- 
tion in a viscoelastic medium, Longman [7], for which approximate solutions have 
been obtained by Longman [5], [6] by using approximate Laplace transform inver- 
sion through rational approximations, and accurate approximations have been 
obtained by Levin [3] by using a method to accelerate the convergence of Bromwich's 
integral for Laplace transform inversion, which has been shown to be a special case 
of the D-transformations of Levin and Sidi [4]. 

The integrand of the integral on the right-hand side of (4.1) is not of the form 
which suits our purposes as a simple analysis shows. However, by making the change 
of variables D z2, we can put the integral in the form foJ? f(z) dz, where 

(4.2) f(z) = eO(z)sin(O(z))h(z), 

where 4 E A(') with 'p(z) = xz/ V2, 0 E A(2) with @(z) = tZ2 - xz/ , and h(z) 
2/z hence h E A"), i.e., k = 1, m = 2, y = -1. Therefore, a = -1. Now we com- 
pute the zeros of sin(O(z)) by solving the quadratic equation tZ2 - xz/ V = q'7, q 
integer. We considered the cases for which x = 1, and t = 0.1, 0.5, 1, 100. It is easy 
to see that xq is the positive solution of the quadratic equation above for q = 0, 1,.... 
Taking then A(z) = ed(Z)cos(O(z))/z2, and using the W-transformation with the x1 
as determined above, we obtain the results given in Table 4.2. The results for x = 1, 
t = 0.1, 0.5, 1.0, are much more accurate than those given by Levin [3], although 
they have been obtained with much less labor than those of Levin. 

Example 4.3. 

If=| sin( 2cos(b2t2) 2 

(4.3) nt2a t 4+ 2a 

X [sin(2ab) + cos(2ab) + e 2ab] , a > 0, b > 0. 
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The integrand in this example has an infinite number of oscillations both as t -x cc 
and as t -- 0. Therefore we divide the range of integration into two: (0, T) and 
(T, mo). We then map the interval (0, T) to (1, oo) by the change of variable T = T/t, 
hence obtaining two infinite integrals whose integrands oscillate at infinity an 
infinite number of times. For this example we take a V, b = Vg/2 and T = 1. 
With this choice of a, b, and T we have 

00 00 
(4.4) 1= f(t) dt + f,(t) dt, 

where 

(4.5) f(x) =sin( X)cos( )x2 f,(x) = sin(7Tx2)COs( 2), 

and bothf(x) andf1(x) are very oscillatory at x = oo. 

Let us denote the W-approximations for the integrals f1 f(t) dt and f1 fi(t) dt by 
W(i)[ f ] and Wn(j)[ fi]1 respectively. In Table 4.3 we give the approximations to I 
obtained as W(0) [f] + Wn(?) [ fi ]. 

TABLE 4.3 

Approximations Wn() [ f] + Wn() I ft] to the integral 

I = fo sin( fr/t 2)cos( 7Tt 2/4) dt/t2 =(e- - 1)/ (4FU). 
f(x) andfi(x) have been defined in (4.5). 

n Wn(?)I[f] + Wn()IfII 
1 -0.16899 
3 -0.1691378 
5 -0.1691374808 
7 -0.1691374816345 
9 -0.16913748163516 

11 -0.1691374816351481 

Exact -0.1691374816351482 

Example 4.4. 

I JO O(t+22 +5) t2+9t+2Odt. 

The exact value of this integral is not known to the author. This integral can be dealt 
with by making use of the remarks at the end of Section 2. 

First of all we have 

@(X) = (X4 + 2X2 + 5)/ (X2 + 4), 

O(x) constant, and h(x) = ix2 + 9x + 20 in (2.20). Therefore, 0(x) - x2, i.e., 
m = 2, k = 0, and y = 1. Consequently, the integrand is of the form 

(4.6) f(x) = cos(x2)h,(x) + sin(x2)h2(x), 

where h1, h2 E A(?). Letting x, = ( + 1)T, I = 0, 1,. . ., we have 41(x) = 

cos(x2)/x, hence 4(x,) = (- 1)+II/x,, 1 = 0, 1,.... In Table 4.4 we give some of the 
results obtained by applying the W-algorithm to the integral I. 
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TABLE 4.4 

Approximations W,,(?) for the integral 

J&tJ0((t4 + 2t2 + 5)/ (t2 + 4)) t2+9t + 20 dt. 

n Wn(?) 

1 2.61 
3 2.6273 
5 2.627159 
7 2.627160408 
9 2.62716040106 

11 2.627160401844 

5. Convergence Properties. 

THEOREM 5.1. Let f(x), +(x), and xl, 1 = 0, 1,..., be as in Section 3. Then for 
Process I 

(5+1) |~~~II [ f ] -Wn( j)l = o(x )n a s i j-~ x 
and for Process II 

(5.2) II[ff W-(j)l= o(n-') asn-oo,foranypu>0. D 

For a proof of this result, see Sidi [12, Section 6]. We note that the inequality (3.5) 
plays an important role in the proof of this result. 

Recalling that xj = 0( jlI/) as]j x , (5.1) can be reexpressed as 

I[f] - W(j) = (j-(n / asj-* x0, 

and this indicates that Process I is inferior to Process II, which, at least numerically, 
is true. 

In [12] it is actually proved that 

(5.3) II[f] - Wn(j)I < max I4(x)I max I3(XI) -7Tn(X/)X 

where 7Tn() = 0V a,i iS the best polynomial approximation of degree n to 

f3(xj/l) on [0, 1]. Equation (5.2) follows from (5.3) by using the fact +(x) = 0(1) for 
x > xo, and that f3(xj/l) is infinitely differentiable for 0 < ? < 1, hence I f3(xj/l) - 

tn(() I1= o(n-I) as n -x o for anyu > 0. (This is a standard result in approximation 
theory.) Starting from (5.3), the general results given in (5.2) can be sharpened in 
some cases, as shown below. 

Let us go back to Example 4.1. Consider the function 

(5.4) S(x) e e d /2dt = elTdTr -b(z), 

where z = x /iS2 and b E AO), but b(z) is not analytic at z = xo. Letting ' = a/z 
for some a > 0, we map the interval a < z < xo to 0 < ' <- 1. Then b(a/l) can be 
expanded as b(a/l) = =ocCkTk*(;), where Tk*() are the shifted Chebyshev poly- 
nomials. It is shown in Miller [8] that Ck = O[exp(-ok2/3)] as k -x 00, for some 



528 AVRAM SIDI 

X > 0 that depends on a. Therefore, 
n 

(5.5) b(a/l)- 
_ 

CkTk*(O = O[exp(-wn2/3)] asn -x 00. 
k=O 

If in (5.5) the n th partial sum of the Chebyshev series is replaced by the best 
polynomial approximation of degree n to b(a/l) on [0, 1], then the right-hand side 
of (5.5) stays the same. Hence in Example 4.1 

(5.6) f3(xj/$; )- gj) = O[exp(-w'n2/3)] as n -x 0, 

consequently, 

(5.7) fsin( t2) dt- Wj() = O[exp(-'n2/3)] as n - oo, 

for some c' > 0 that depends on Xj. 
The result in (5.7) is a significant improvement upon the general result of Theorem 

5.1 in that it gives a much better bound on the rate of convergence of the WjV 
approximations to Example 4.1. 

We note that if ,8(x) is analytic for all x > xo up to and including x = xo, then 

f3(xj/l) - vn(E) = O(e- w) as n -x o for some X > 0. Hence for these cases the 
estimate for the rate of convergence is even better, specifically Jf? f(t) dt - 
W(j) = O(e- wn ) as n -x 0. 
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Appendix-Construction of ,8(x) in Theorem 2.1. Differentiating (2.7) we obtain 

(A.1) v(x) = xr13(x) V x 

Comparing (A. 1) with (2.3) we can see that 

(A.2) p() 1 +x[xr3(x)]f 

Therefore, 13(x) satisfies the linear first-order inhomogeneous differential equation 

(A.3) :'(x) + q(x)1(x) =-x-r 

where 

(A.4) q(x) =r + 1 x AX 

If r = 1, thenp- # 0, hence q(x), as x x0, has an asymptotic expansion whose first 
term is (1 + l/p)x-. From (2.5) pI # -1, therefore 1 + I/p # 0, hence q E A(- 
and q _ A( . If r 2 0, then q(x), as x -x oc, has an asymptotic expansion whose 
first term is (1/pO)x-r, where po = limx ox-rp(x) =# 0. Hence q A(-r) and 
q i A(-r-l). Thus, we have shown that q E A(-r) and q 5 A(-r- 1) for all r < 1. 
Therefore, q(x) - 0 qix-r-i as x -x 00. Let us now substitute the expansion 
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13(x) - % f1i/x' in (A.3). We can easily see that ,0= -1/q0. The coefficients 
#1 129 ... can now be determined by solving the recursion relation obtained from 
(A.3). 
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