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Vortex Methods. I: Convergence 
in Three Dimensions 

By J. Thomas Beale* and Andrew Majda** 

Abstract. Recently several different approaches have been developed for the simulation of 
three-dimensional incompressible fluid flows using vortex methods. Some versions use de- 
tailed tracking of vortex filament structures and often local curvatures of these filaments, 
while other methods require only crude information, such as the vortex blobs of the 
two-dimensional case. Can such "crude" algorithms accurately account for vortex stretching 
and converge? We answer this question affirmatively by constructing a new class of "crude" 
three-dimensional vortex methods and then proving that these methods are stable and 
convergent, and can even have arbitrarily high order accuracy without being more expensive 
than other "crude" versions of the vortex algorithm. 

1. Introduction. Vortex methods have provided an attractive and successful 
approach for the numerical simulation of incompressible fluid flow at high Reynolds 
number in two dimensions. They have several distinctive features: (1) the interac- 
tions of the computational vortices mimic the physical mechanisms in actual fluid 
flow; (2) vortex methods are automatically adaptive, since the vortex " blobs" 
concentrate in the regions of physical interest; and (3) there are no inherent errors 
which behave like the numerical viscosity of conventional Eulerian difference 
methods. Such diffusive errors can swamp the effects of physical viscosity in high 
Reynolds number flow similation. 

The earliest attempts to represent flows by a vortex method used point vortices, 
and thus permitted arbitrarily large local velocities (Rosenhead [20]). Chorin [3] and 
Kuwahara and Takami [24] introduced the idea of using a finite vortex core, rather 
than a point vortex, to stabilize the method. Subsequently there have been a large 
number of successful two-dimensional flow simulations using an approximation of 
this type. (See the excellent recent survey by Leonard [16].) The actual fluid can 
undergo substantial distortion, while the computational vortex blobs do not distort 
at all. Thus the theoretical analysis by Hald [10] for 2-D inviscid flows is especially 
important, since he proves that a particular class of 2-D vortex methods converge 
with second order accuracy for arbitrarily large time intervals. 

There is now considerable interest in finding an appropriate formulation of the 
vortex method for three-dimensional fluid flows which retains the computational 
features (1)-(3) described above. This problem is the main subject of this paper. The 
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design of vortex algorithms for three-dimensional flow is inherently more difficult 
than the two-dimensional case. In 2-D the vorticity is conserved along particle paths, 
whereas in 3-D the dynamics of vortex stretching is a prominent and complex 
phenomenon which must be reproduced by the method. 

Several different versions of such three-dimensional vortex methods have been 
proposed and used in 3-D flow simulations by Leonard [16], [17]. [18], Del Prete [8], 
and Chorin [4], [5]. The methods of Leonard and Del Prete require a large amount of 
detailed information since entire vortex filament structures must be located and 
tracked, and often [8], [17] local curvatures of the vortex filaments are also 
computed. On the other hand, the three-dimensional vortex blob method recently 
introduced by Chorin [4], [5] is more flexible and requires less information. Rather 
than tracking entire vortex filament structures, it instead couples a vortex blob 
method with a local segment approximation which incorporates, in an Eulerian 
fashion, the local vortex stretching. Can such a "crude" three-dimensional vortex 
algorithm accurately represent fluid flows? 

In the work presented here, we answer this question affirmatively. We formulate 
below a new class of three-dimensional vortex methods and then prove that these 
3-D vortex methods are stable and convergent with arbitrarily high order accuracy. In 
these new algorithms, we update the velocity crudely in a fashion completely 
analogous to the 3-D vortex blob method of Chorin; however, unlike the algorithm 
in [4], we incorporate the vortex stretching through a Lagrangian update. This 
modification retains the desirable computational features in (1)-(3) above while 
again requiring only crude information-no vortex filaments need to be tracked as a 
whole, and no local curvature information is explicitly used. It is somewhat surpris- 
ing that the methods introduced here are "crude", requiring roughly the same 
amount of computational labor as Chorin's algorithms, and yet are stable and highly 
accurate. Such methods can even have "infinite order" accuracy, i.e., a rate of 
convergence of order hr, r arbitrary, depending only on the smoothness of the 
underlying flow. In fact our techniques also yield stable, convergent vortex methods 
of arbitrary accuracy in 2-D and answer a variety of questions raised by Hald [10] 
and Leonard [16]. We postpone a detailed discussion of the 2-D algorithms until 
Part II of this work [1]. 

The Physical Equations and the 3-D Vortex Algorithm. We now describe the 
vorticity-stream formulation of the ideal incompressible fluid equations and intro- 
duce the class of three-dimensional vortex methods which we analyze here. Let 
Z = (Zl, Z2, Z3) denote the position, u(z, t) = (U1, U2, U3) the fluid velocity, and 
w(z, t) = (W1, W2 W3) = curl u the vorticity. The trajectory z(t; a) of a fluid particle 
starting at time 0 at the position a = (a,, a2, a3) is determined by the equation 

(11l) dt = u(z, t), z(0; a) = a. 

We denote the solution of the ordinary differential equation (1.1) by z(t; a) = t(a). 
Thus V is the transformation which describes the evolution of the fluid from time 0 
to time t. We will write Va,Ft(a) for the 3 X 3 Jacobian matrix a3(a)/aa1, 1 < i, 
j < 3. The velocity u(z, t) is determined by the vorticity w(z, t), since div u = 0 and 
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curl u = w. The expression for the velocity is the Biot-Savart law (e.g., [16, p. 307]), 

(1.2) u(z, t) = K(z - z')w(z', t) dz', 

where K is the matrix-valued kernel 

(1.3) K(z) - Z x. 

The stretching of vorticity can be described by the familiar relation 

ot + u * V = co * VU, 

but it is more convenient here to use a Lagrangian formula due to Cauchy: 

(1.4) w(Ft(a) t) = Vat(a) w(a,0). 

Thus the vorticity at the current location of a particle is the initial vorticity at the 
particle's original location, transformed by the Jacobian matrix of the flow. Deriva- 
tions of (1.4) may be found, e.g., in [7, p. 32], [25, p. 84], or [26, p. 152]. After 
differentiating (1.4) with respect to t and using (1.1), we arrive at the equation 

(1.5) d iw(it(a), t) = Vau(OFt(a), t) * coo(a). 

Here w0(a) = w(a, 0). The equations (1.1), (1.2), and (1.5) completely determine the 
motion of an inviscid incompressible fluid in three dimensions. 

To describe the class of 3-D vortex methods which we analyze here, we introduce 
the lattice of integer-valued vectors in R3 

A = f(z1~ Z2, Z3): Zi E Z,j = 1, 2, 3) 
and the discrete grid Ah= hA for h > 0. We use the notation zi(t) = Ot(ih), 
ul(t) = u(z,(t), t), xi(t) = w(zj(t), t) to denote the position, velocity, and vorticity 
at time t of a particle in the ideal flow beginning at a grid point ih E Ah. We assume 
the initial vorticity has support inside some bounded set, say 

6A ={ z:zjl<R0,j= 1,2,3). 

We denote by AMO the intersection of Ah and Of. As in [4], and in complete analogy 
to the two-dimensional vortex method, we replace K in (1.2) by a smoothed kernel 
K3, where 

(1.6) Kj(z) f K(z - z')#(z') dz' 

and #3(z') = 8-3#(z'/6). Here 4 is a scalar cutoff function satisfying f 4 dz' = 1 
and other stability and accuracy conditions which we state precisely in Section 2. 
The choice of 6 is discussed below. We will also approximate the gradient 

(a/aa,, a/aa2, a/3a3) in (1.4) by some standard consistent finite difference opera- 
tor V7h on the lattice Ah. 

We can now describe the strategy of the 3-D vortex algorithm. Given h > 0, we 
compute zl(t) and &ol(t), for ih E AMO, as solutions of the coupled nonlinear ordinary 
differential equations 

(1.7) dt, = [,h(t), fi (d) = ih, 
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( 1.8) dt V 7a Ui ( t) -xo( ih ), COO () = coo(ih ) 

The discrete velocity ah(t) is computed from z- and Co using the discrete Biot-Savart 
Law 

(1.9) cih(t) = Ka(fi(t) - j(t))C3j(t)h'. 
jh E AM 

Obviously (1.7)-(1.9) are approximations to the equations (1.1), (1.2), (1.5) of the 
ideal fluid flow. Thus (1.7) computes approximate paths for a discrete set of 
particles, and (1.8) gives the vorticity of the particles. 

In (1.8), V7h Uh(t) needs to be computed only at points ih in the support of . 
Therefore the set of points where (1.7) and (1.8) are integrated, and (1.9) is 
evaluated, need only by slightly larger than the set of points A'o n supp wo. We have 
used the full set AO only for notational convenience. 

The continuous velocity field defined by this vortex method is the natural 
interpolation of (1.9) given by 

(1.10) *h(Z, t) = Ka(z -j(t))4y(t)h 
3 

jhAho 

The most important property of this method is that ah accurately approximates the 
exact velocity field (see Theorem A below). We will denote by uh and uh the 
quantities defined as in (1.10) and (1.9) from the discrete Biot-Savart Law, but 
evaluated with the particle positions and vorticities of the actual flow: 

(1.11) uh(Z, t) = K3(z -z(t))w,(t)h3 
jh E Ah 

(1.12) Uh(t) = Kj(z,(t) - z(t))(4(t)h 3 

jh E Ah 

Statement of Convergence Results in a Special Case. The stability and accuracy of 
the three-dimensional vortex method defined in (1.7)-(1.9) above is controlled by 
the properties of the cutoff 4, the difference operator Vh, and the choice 8 = 0(hq), 
0 < q < 1. We illustrate the theory developed in Sections 2-5 by stating the results 
with specific choices which allow arbitrarily high order accuracy. The theorem stated 
below is a special case of Theorem 1 in Section 2. 

For any positive integer p, we choose for 4 the function 4(2p), which is the inverse 
Fourier transform of the generalized Gaussian, exp(-I 1 r); i.e., 

(1.13) (2p)(Z= cp Re2,i ~e_1 dt 

with cp chosen so that 41(2P) has integral 1. In practice 14(2p)(z) can be computed to 
arbitrary accuracy by one-dimensional quadrature; for a radially symmetric function 

g(z) [21, p. 155], 

g(z) = 27T I z1-1/21 g'(1 t I)JI/2(27T I z II t 1) I ( 13/2 d |(| 

where J172 is the Bessel function of order 2. (See [16] for a similar choice in 2-D. 
Smoothed cutoffs of the type used in [10] are also possible.) 
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We choose for V' the standard 2p-order accurate antisymmetric centered dif- 
ference operator 7h ,2p where v - (D h,2P D h,2p Dh,2p) and 

p 

(1.14) D h2p = yvD?(ph) 
v 

] 
1 

and 

' -2(_1) ( p!)2 

%(p + v)! (p -v)! 

(see [14]). Here D,?(l) is the usual centered difference quotient scaled to a grid of 
length 1 in thejth coordinate direction. 

We write I -1 for the continuous L2 (or HO) norm of a function and Io s for the 
norm restricted to a set S. We also use the notation I U, 10,h for the discrete Ho norm 
on A'o (or Ah) defined by 

lZO,h= lu lh3 
ih eAh 

with corresponding inner product 

(Uj V,)h- = Eu,v,h. 
ih Ah 

(It should always be clear from the context whether the norm is restricted to AMO.) 
The following theorem asserts that the vortex method introduced above is conver- 

gent with accuracy of order 2p, provided 4 =1(2P) and V7h h,2p 

THEOREM A. Assume that the velocity field u(z, t) is smooth (has sufficiently many 
derivatives in L2) for 0 < t < T and that the initial vorticity has bounded support. Let 
p > 2 be a positive integer, and let E > 0 be arbitrarily small but fixed. 

Suppose that we compute zi and o,, ih E AVo, according to the algorithm (1.7)-(1.9), 
with 8 = h17 -4 the cutoff #(2p) of (1.13), and V7h the difference operator V h,2P of 
(1.14). Then for h < h0 we have for this algorithm 

(1) Convergence of the particle paths 

max I Z(t) - Z,(t) I0,h Ch2( 

(2) Convergence of the discrete velocity 

max I [ah(t) - uh(t) lh p(l 

(3) Convergence of the continuous velocity 

maxTI uh(.,t) - u(.,t) hL2(B(R)) 
- 

for any bounded set B(R 0) {z: I z I < R0}. The constants depend on T, p, bounds for 
a finite number of derivatives of u(z, t), the radius of support of to, and Ro. (The 
dependence on Ro can be removed by a longer argument than the one below. The 
case p - 1 can be included; see the remarks in Section 2 following Theorems 1 and 
2.) 

As mathematical background, we remind the reader of the existence theory for 
solutions of the equations of ideal fluid flow in R3, as described in the work of Kato 
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[13] and Temam [22]. In [13] the existence of a classical solution of the Euler 
equations is shown for a time interval depending on the initial data. The main result 
of [22] shows that, if the initial data has a large number of derivatives in L2, the 
solution has the same number of derivatives on the time interval determined in [13]; 
the time interval is independent of the number of derivatives. It follows from these 
results that, if T in Theorem A is determined as in [13], the dependence of the 
constants on the solution reduces to dependence only on the initial data. 

The Technical Features of the Proof. We discuss briefly the proof of the conver- 
gence statements in Theorem A above and the more general Theorem 1 of Section 2. 
In outline, the proof is patterned after the work of Hald [10] for two-dimensional 
flows-we show that consistency and stability imply convergence. However, quite 
different ideas from those in [10] are needed for both the stability and the 
consistency, partly because we have to assess the error in the vorticity as well as the 
positions of the particles, but also because sharper accuracy is required beyond that 
in [10] for a convergence proof in 3-D. 

Since the discrete velocity is measured in Ho and the vorticity is a first derivative 
of the velocity, it is natural to measure the vorticity in a discrete negatively normed 
Sobolev space, H,). To define H7 1, we recall that Hh is the set of lattice functions 
{f1}, ih E Ah, with the norm 

3 

(1.15 ) j211 =If o IDJ f+ 2o (1.15) ~~~~If,1I1,h -I O,h + I l fiO0,h' 
j=1 

where D+ is the standard forward divided difference operator on the lattice Ah along 
the jth coordinate direction (see [23, Section I. 3.3]). As in the continuous case, we 
define H,' as the dual of Hh, with respect to the Hh inner product, i.e., w E Hh ' 

provided the discrete norm defined by 

(1.16) IWih SUp |(Wl, 
f 

)h I 

{f} C Hh l1,h 

is finite. Since the algorithm in (1.7) and (1.8) involves a coupling of the particle 
paths and vortex stretching, we need to assess both effects simultaneously. In fact, 
under the hypothesis of Theorem A or Theorem 1, we prove the basic estimate 

(1.17) max (I Zi 
- 

Zi IOh 
+ I Xl l-1,h) < Ch2P(1E). 

It is an essential aspect of the nonlinear stability proof that the errors are related 
more directly to integral operators than in the stability argument of [10]. As a 
consequence, we use only discrete Ll estimates for the kernels. The reader can check 
that the proof in [10], which uses both L' and L2 estimates for the kernels, could not 
be extended directly to the 3-D case because of the increased singularity of the 
kernel. Another novel feature is that we use discrete integral operators analogous to 
(1.9) as mappings from H,) to Hh to measure the errors in velocity arising from 
errors in the vorticity. 

In Section 2 we state the general convergence theorems and prove them, assuming 
the main stability and consistency estimates. The remainder of this paper is devoted 
to the proof of stability. After several technical lemmas are stated and discussed in 
Section 3, the main stability argument is given in full detail in Section 4. The lemmas 
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of Section 3 are proved in Section 5. We postpone until Part lI the detailed proof of 
the consistency lemma, used in the convergence argument of Section 2. The 
consistency uses ideas completely different from those developed here and in [10], 
and also has other applications which we treat in Part II. However, we state the 
consistency lemma in detail in Section 2, so that this paper can be read indepen- 
dently from Part II. 

"Infinite Order" Accurate Vortex Methods. Finally, to illustrate the flexibility of 
the 3-D vortex algorithms defined in (1.7)-(1.9), we end this introduction by 
describing a class of "infinite order" vortex methods, i.e., algorithms having com- 
puted solutions which converge to the exact solution at a rate O(hr) for any r > 0, 
provided the underlying fluid flow is C?. Certain spectral approximations for 
periodic flow are the only other nonlinear algorithms for fluid flow which are known 
to have this rapid rate of convergence [11], [15]. 

We define a cutoff 4'* as the inverse Fourier transform of a smooth, rapidly 
decreasing function 4??(I 4 ) which is identically one for less than some fixed 
radius. (It is easy to build such functions explicitly; e.g., see [19, pp. 1074-1075] for 
a discussion and graph of a typical 4P?.) Let p(z) be a fixed smooth function so that 
supp p C 6 and p =1 on the support of the initial vorticity wo. Also let Vh X 

denote the spectral approximation to Va, which can be implemented by the fast 
Fourier transform (see [151), where any grid function with support inside Ah' can be 
identified with a discrete periodic function. Replace the vorticity correction (1.8) 
with 

__ h 
(1.18) at =Va'h(P(ih)uh) . wo(ih), i(0) = wo(ih), ih E AMo. 

Then in analogy with Theorem A above, we have the following. 

THEOREM B. Assume that the underlying fluid flow is C? until time T. Compute Z1 
and xi by using the cutoff AX in (1.6) and the equation (1.18) in place of (1.8). Choose 
8 = hq with 0 < q < 1. Then the errors in (I)-(3) of Theorem A are estimated by Crhr 

for any r > 0 and some constant Cr, provided h ? h0. 

M. Pearlman of University of California, Berkeley is currently testing the vortex 
algorithms we have described, and the results of these numerical experiments will be 
reported elsewhere at a later date. A further discussion of the practical utility of 
these methods is given in [2]. 

2. The Main Theorems. Before stating our main theorems, we give the precise 
hypotheses on the cutoff 4 and the difference operator V7h used in the Lagrangian 
vorticity update (1.8), which are needed for our main theoretical results. We remind 
the reader that the specific choices discussed in the introduction provide examples of 
the general theory developed below. 

To describe the precise conditions on the cutoff 4, we introduce the Fourier 
transform, 

(2.1) 4W(t) = fe-2lz44(z) dz, 
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and recall that a function 4(z) is rapidly decreasing for z 1 2 1 if 4 is C? for I z 1 > 1, 
and for any integer m > 0 and multi-index /, 

(2.2) sup Iz| DmD(Z) < Cm.i 
Izl 2 1 

for some constant Cm,fi. We also make the following definition: 
Definition. We say the cutoff 4 belongs to the class FeS-M,P provided the 

following conditions are satisfied: 
(1) A(z) belongs to C2(R3), and 4(z) is rapidly decreasing for Iz 1. 
(2) f 4(z) dz = 1, f zl4(z) dz = 0, where y is any multi-index with l < I Y I< P-1. 
(3) M is some positive number, and the Fourier transform A(t) satisfies, for any 

multi-index ,8 and some constant C,>, 

sup IDr#(t)Io 17 (l ?+ 

(ER3 

The need for these conditions will be apparent in the consistency argument; see 
the introduction to Part II. The notation FeS stands for the Fourier transform of a 
symbol class. We say that 4 belongs to FeS-'?P provided 4 is rapidly decreasing, so 
that (3) is true for arbitrary M > 0, and the condition in (2) is satisfied for a given p. 
In this case, condition (1) is automatically satisfied. We say that 4 belongs to 
FeS'-? ?? provided 4 belongs to FeS-'?P for any positive integer p. The cutoffs /(2p) 

defined in (1.13) belong to FeS 2 while the cutoff described above (1.18) belongs 
to FeS-???. The cutoffs 4 belonging to FeS-M,P, M finite, are not smooth, and, as 
we shall see below, yield vortex methods with nonoptimal rates of convergence for 
smooth fluid flow when compared to cutoffs in FeS-??P. (See the remarks following 
Theorems 1 and 2 for further discussion.) 

Regarding the difference operator V we impose a mild stability condition which 
is always satisfied for any standard finite difference approximation to Va such as the 
ones defined in (1.14), and also for the spectral derivative approximation in (1.18). 

Stability for vh. The operators V7 are uniformly bounded as mappings from Ho 
to H,-'. I.e., there exists a fixed constant C so that, for h -< ho 

(2.3) 1 V jv1-1,h -CIvJloh. 

Given a multi-index 1, we let T' denote grid translation in the direction 1, i.e., 
TIWJ = Wj_l. We have the following fact: 

PROPOSITION 2.1. (1) Every difference operator having the form 

V<h: = h za-,(h )T' 
hI /I I/o 

with I a,(h) I < CO satisfies the above stability condition. 
(2) The spectral derivative approximation V h,oo satisfies the stability condition when 

acting on periodic functions. 

We postpone the simple proof of this proposition until the end of this section. Our 
second requirement on V is accuracy. 
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Definition. We say that V' is rth order accurate provided that, for any sufficiently 
smooth function w with compact support, 

a Vc WJ - VaW(jh) lo0h < Ch 

where C depends upon sufficiently many derivatives of w. 
The antisymmetric difference operators defined in (1.14) are 2 p-order accurate for 

each positive integer p. Also the spectral derivative approximation Vh 'o is "infinite 
order" accurate, i.e., for any integer r and smooth periodic function w, 

(2.4) a Va ' Wj - VaW(jh) lo,h < Crh 

This fact is well known and is proved in complete detail in Theorem 2.3 and 
Corollary 2.1 of [ 15]. 

Finally, we state our two general theorems. 

THEOREM 1 (CONVERGENCE OF FINITE ORDER METHODS). Assume that the velocity 
field u(z, t) is sufficiently smooth on the time interval 0 < t < T and that the initial 
vorticity has compact support. Also assume 

(i) the cutoff 4 belongs to FeS - M P for some M, p with 5 < M 0 cc. If M = x, then 
p 4; if M < oo, then p satisfies p(M- 1)/(p + M) > 3. 

(ii) The difference operator V' is rth order accurate and stable in the sense of (2.3), 
with r > 3. 

(iii) We choose 8 = h4, where q = I- if M = oo; otherwise 

q p + M 

In both cases -o should be small enough so that pq > 3. 
Then we have the following estimates for the quantities computed by the vortex 

algorithm (1.7)-(1.10): 

(2.5) max {| ZJ(t) - z(t) l0,h + I -) XI(t) I-,hl} < C(h + hr), 

(2.6) 0maxT| (t) j- U(t) 10,h < C(h + hr), 

(2.7) max |u( ,t) - u(, t) IL2(B(R0)) < C(h + hr) 

Here R0 > 0 is arbitrary and B(R0) {= z I< R}. The constant C depends on 
T, M, p, E, r, RO, the diameter of supp So, and bounds for a finite number of 
derivatives of the velocity field. 

THEOREM 2 (CONVERGENCE OF INFINITE ORDER METHODS). Assume further that 
4 E FeS-??'?? and V'h,, is the spectral approximation introduced in (1.18). Choose 
8 = hq, q < 1. Then the quantities computed by the vortex algorithm satisfy the error 
estimates of Theorem 1 with the right-hand side replaced by Crhr for any r > 0. 

Obviously one should choose r and p so that the respective errors balance, and we 
have done this for the algorithms defined in the Introduction. We have included the 
case M < oo since it explains the necessity of choosing 8 = h4q q < 1, when the 
vortex core is not very smooth. We shall have more to say about this in Part II, and 
our results in 2-D will be considerably sharper. The statement of Theorem 1 can be 
improved in one respect. It is possible to carry through the arguments here with L2 
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norms replaced by Ly norms, I arbitrarily large, with only slight changes. By doing 
so we can allow any choice of p, q, r so that pq > 1, r > 1, 0 < q < 1, provided M is 
large enough. Thus we could choose for 4 a function in FeS-'2, such as a Gaussian 
distribution, and obtain convergence to essentially second order. Details will be 
given in the 2-D case in Part II. 

The proofs of thse theorems are based primarily on consistency and stability 
estimates for the velocity approximation, which we now state. The Stability Lemma 
is proved in Section 4, and the Consistency Lemma is treated in detail in Part II. 

MAIN STABILITY LEMMA. Assume the hypothesis of either Theorem 1 or Theorem 2. 
Provided that 

(2.8) max I|zl -zl lo0h < h3, 

for some T* < T, we have for 0 < t < T* the estimates 

(2.9) | ul t) - i (t)0oh < C(| Zi(t) Zi(t) 10,h + I Xoi(t) X Ci(t) 1-I,h), 

l h( ,t) - Uh(. ,t) IL2(B(R0)) 
(2. 10) 

< C(| z(t) - Zi(t) lo h + i Xoi(t) 
- 

W(t) 1-1,h)- 

MAIN CONSISTENCY LEMMA. (1) Under the hypothesis of Theorem 1, for h < ho and 
any Ro > 0, we have 

(2.11) max Iu(z, t) u(z, t) < Chp 
jzj?RT 

Here uh(z, t) is defined as in (1.1 1). 
(2) Under the hypothesis of Theorem 2, the right-hand side of (2.1 1) can be replaced 

by Crhrfor any r> 0. 

The dependence of the constants in both statements is as described in Theorem 1; 
in (2.9) and (2.10), C is independent of T*. Assuming these two lemmas, it is a 
simple matter to complete the proof. We discuss only the case M = x, p < x, since 
the same argument with only minor changes applies to the other cases. All norms in 
Ho are restricted to the set AMb, where the computed quantities are defined. 
Nevertheless, it is important that i - CO l-1,h iS thought of as the norm of a 
function on all of Ah of bounded support. 

To derive (2.5) we introduce 

- z- WI = i - C- 

In analogy with [10], we will obtain a differential inequality for i e, Io,h + I W, 1-1 h. 
From the ordinary differential equations (1.7), (1.1) we have 

ei(t) = uih(t) - U(ZI, t) = [ulh(t) - Uh^(t)] + [Uh(Zi, t) - U(zl, t)], 

recalling (1. 1 1), (1.12). According to the consistency estimate (2.1 1), the second term 
on the right is O(hPq) O(6p), uniformly in i. Since hi is restricted to a fixed 
bounded set, 

u h(zi, t) - u(z1, t) Io,h 6< c.p 
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Under the assumption (2.8) we can apply the stability estimate (2.9) to the first term 
and obtain 

(2.12) 1 e'(t) |O,h : C(P + I e,(t) lo,h + I Wi(t) 1-1,h) 

for 0 < t < T*. 
Similarly we have from (1.8) and (1.5) 

w1(t) = 77hfh u.oo(ih) - Vau(Zi, t) o0(ih) 

(2.13) = V7h(flh- u(z,, t)) coo(ih) + (V - Va)u(zi, t) cojih) 

V'(t) = Vaeh co(ih) +(7h - 7a) U(Z1, t) x(ih) 

It is easy to see that multiplication by a C' function is a bounded operator on H^-. 

We use this fact and the stability condition (2.3) for V to estimate the first term: 

(2.14) | v (, co(ih) l-l,h < C l 7 l 1-l,h C CI |i lo,h- 

(Here we extend e to Ah by defining it to be 0 outside AMO. The extension does not 
affect the product, since wo(ih) has support in Aho.) Because u and wo are smooth and 
cO has bounded support, the accuracy condition on Vh implies 

i(V - Va)U(Zi, t) 
. C(ih) 10,h <_Ch. 

Combining this with (2.12)-(2.14) we have finally 

I elO l,h + j W1 1_1,h < C0(P + hr +I e, IO,h + I WI |-1,h) 

for 0 < t < T*, where T* is any time such that (2.8) holds. We also have the initial 
conditions e,(O) = 0, wi(O) = 0. It follows that 

I e1(t) lo,h + I wi(t) i-1,h l y(t) 0 < t -< T* 

wherey(t) is the solution of 

y' = Co(6P + hr + y) y(O) = o. 

(E.g., see [12, Section 1.6, Lemma 6.1 and Theorem 6.1]; the arguments given there 
for vector-valued functions apply equally well to functions with values in a Banach 
space.) Therefore 

(2.15) 1 e1(t) lo,h + I Wi(t) I-1,h < CI(6P + hr) 

as long as (2.8) holds. Here Cl depends on CO and T, but not T*. 
We can now remove the restriction (2.8). Since pq, r > 3, 

CI(P + hr) < 2h3, h < h0, 

for some ho. Thus, assuming h < h, the left-hand side of (2.15) is bounded by 1h3 
until the first time it reaches h3. But then it can never reach h3, so that (2.8) holds 
with T* T. Therefore (2.15) is true for 0 < t < T. 

The first estimate (2.5) of Theorem 1 is now verified. The remaining two estimates 
follow directly from (2.5): For (2.6), we write 

U,h(t) - u,(t) =-[u,h(t) - Uh^(t)] + [Uh(z'(t), t) - U(z,(t), t)] 

and apply the stability estimate (2.9) to the first term and the consistency estimate 
(2.1 1) to the second. Similarly 

^h(z, t) - u(z, t) = [ah(z, t) - uh(z, t)] + [uh(z, t) - u(z, t)]. 
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Using the continuous stability estimate (2.10) for the first term and the consistency 
for the second, we obtain (2.7). 

Finally, to complete this section, we give the 
Proof of Proposition 2.1. To prove (1), we observe that the i th component Dh of 

V hcan be decomposed as 
a~ ~ ~~~ 

Dah= Eb,(h)DITl 

jll All 

with bi,,(h) 1 C. We compute 

I (Da, j, gJ)h |%C |(w,Dl g)hi 

< C 2 | Tw lo h | i--g |O,h '< C I W 10,h i 9 I 1,h- 
jlj?II+1 1< C I T' 1,hI 

Now using the dual pairing of H,71 and Hh' and the definition (1.16), we obtain the 
required estimate in (1) of the proposition. Similarly, (2) follows easily once we 
verify that for all periodic scalar grid functions, 

| (Daw,j , gi)h I < Cl Wj 10,h I gj i 1,h 

where D h is the spectral derivative approximation to a/aaj, i = 1, 2, 3. (If necessary, 
we can rescale a so that the support of the initial vorticity o0(a) lies inside the unit 
cube 0 < a, < 1, i = 1, 2, 3.) To prove this estimate, without loss of generality, we 
assume (2N + I)h = 1 and use the discrete Fourier transform, computed by 

ar =(a., e J)V 

where r = (r1, r2, r3) and i rH i < N. Then 

( JDaw) = 27Tiriwr 

and, by the discrete Plancherel formula (see [15]), 

h E 2 - - E I - 17~~~ sin 7hr, 
(DalWJgi) =| 2q irlW gr Wr h 9|r 

jrIj,<N jrIj,<N 

C(2 I^ 121/2( 4 sin27hrh, 
1 

^1)/2 

C|Wj lo h I Dl gj lo h -< C I Wj 10,h I gj i I,h - 

This is the required estimate, and (2) in Proposition 2.1 now follows easily. 

3. Continuous and Discrete Integral Operators. The proof of stability will require 
estimates of integral operators on L2-spaces whose kernels are closely related to Ks 
of (1.6) and its derivatives. Both discrete and continuous norms occur, since we 
approximate continuous quantities by representative values. Two versions of the 
simplest such estimate are given in the following 
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LEMMA 3.1. (a) Suppose YJ(z, z') is a 3 X 3 matrix depending continuously on 

(z, z') E SI X S2, where S1 and S2 are bounded subsets of R3. We define the operator 
C: H?(S2; RW) - H0(SI; RW) by 

(3.1) '%tf)(Z) = | X(z, z')f(z') dz', z E SI. 

Then we have 

I SXf IJHO(Sf ) C U II If I'oUs2 

where II X 11 is the smallest number satisfying 

(3.2) Is2 (z y') I dy' I I'XII, Is X(y, z') I dy < lii 

for allzESI, z' ES2. 

(b) With SI, S2 as above, suppose JX,C is a 3 X 3 matrix defined for multi-indices 
with ih E SI, jh E S2. With Yu: Hh(S2; R3) H?(SI; R3) defined by 

(3.3) (Xf )= E ,fjh3 
jhE S2 

we have 
J 

fIHO(s,) < iiX I f IHo(S2), 

where II '( 11 is the smallest number so that 

(3.4) YE,,Ih3 X KII, Ys z I% h h3< ?IW1 
lhES2 lh ES, 

for all i,j, with ih E S, jh ( S2. (Here Hh(S) means H(Aho ns).) 

The familiar proof of this fact is reproduced in Section 5. A more general version 
may be found, e.g., in [9]. We use this lemma in conjunction with the following 
discrete-L' estimate for DOK6, /3 being a multi-index. 

LEMMA 3.2. With time t fixed and z. = z1(t), we have 

(C,,BO 3 .~ ~ ~ 3 0 
(3.5) max I DAK(z-z +yj)Ih < CIlog 8 l I3I1l, 

Vhj<R Lvjl-_<C08 (CA -I,| 2, 

for all z with I z I < R, provided h (and thus 8) is small enough. Here C depends only on 
R, CO, and bounds for the flow. 

In practice we take R large enough to contain the support of w. This statement is 
the analogue in three dimensions of Lemma 5 of [10]. It and subsequent lemmas are 
proved in Section 5. Note that the order of 8 in the estimate (3.5) is the same as in 
two dimensions; the reason is that the increase in the order of singularity of Xc is 
balanced by an additional radial factor in the volume element. 

In applying Lemma 3.2 we use a partition of the fluid domain carried forward in 
time from the grid imposed initially. With]j (jl, j2, j3) a multi-integer, let Q. be 
the cube 
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Then the collection {QJ: j E A) partitions R3, and each particle trajectory begins at 
the center of one cube. At later time t, the particles beginning in Qj have evolved to 
a cell 

BJ = V>(QJ). 

Since the flow N is a diffeomorphism, these cells have diameter uniformly of order 
h, and {BJ: j E A) again partitions R3. (We are ultimately interested only in a 
neighborhood of supp c, but it is convenient for the arguments that follow to extend 
the partition to all space.) The mapping V is volume-preserving, since the flow is 
incompressible, and thus each B. has volume h3. Further discussion of properties of 
the flow and the cells B. is given in [10, Section 2]. 

We use Lemmas 3.1 and 3.2 together in the applications. Suppose, for example, 
that a kernel ?I(z, z') defined for jI Z , I z' I< R satisfies 

I' (z, z') jCM('J) for z C B1, Z' BJ 

where 

(3.6) M,(J') max aD8K,(z -zJ + yJ )I 

1#1 =l 

We can apply Lemma 3.1(a), estimating the integrals of (3.2) uniformly over B. or B, 
and then use Lemma 3.2 to conclude that KHX1, with SI = S2 = {I Z I < R), is 
bounded by the right-hand side of (3.5). The roles of i and j are reversed in the 
second application of (3.5) to (3.2). 

The following L' estimate is closely related to Lemma 3.2. 

LEMMA 3.3. There is a universal constant C so that 

/zI K8(z) IdzCR. 

Because we measure the error in the vorticity in H` norms, we need a version of 
Lemma 3.1 for operators from H-1 to Ho, and from H,7' to H?. This is the purpose 
of the next lemma. 

LEMMA 3.4. (a) With notation as in Lemma 3.1(a), suppose S2 {z': Z' I< R + 1> 
For f E H'-(R3) with supp f C {z': I z' I < R) we have 

(3.7) 1JC|f |Ho(S,) < C(ll X ll + II DZHX II) IfIH', 

with operator norms defined as in (3.2). 
(b) With notation as in Lemma 3.1(b), suppose S2 is as above. For f C H,) with 

supp f C {z': I z' I < R), we have 

(3.8) | CfIH(S) H ?+ IID1o JCII) IJIHK' 

with norms as in (3.4); D h is the (forward) difference quotient with respect toj. 

We will also use a form of this lemma for operators from H,) to H0(S,), i.e., from 
discrete to continuous spaces. A statement similar to the above holds with obvious 
modifications. 
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The next two lemmas are concerned with properties of the discrete spaces. The 
first provides estimates of Sobolev type in these norms. 

LEMMA 3.5. (a) For f E Hho we have 

(3.9) sup I fj I < h-3/2 If 10oh. 
I 

(b) For f E Hho and g E H7 'we have 

f Kg i-l,h < Ch"12 If iO,h gI 1-lh- 

Given a function { fj)} E Hr, we can associate, for fixed time t, a function f on 
defined by 

f(z) = f, z E BJ(t). 

We will need the following boundedness property: 

LEMMA 3.6. With { fj) andf as above, 

If IH-'(R) s C I fi |H-;, 

where C depends only on bounds for the flow. 

Finally we will use two estimates for K. as a convolution kernel. They are based 
on the observation that the kernel K of the Biot-Savart Law (1.2) is closely related to 
the Green's function for the Laplacian. Denoting convolution by *, we can express 

(1.2), (1.3) as 

(3.10) K* X- >< ( A-l '). 

The following estimates are derived in Section 5 from this representation using the 
Fourier transform. 

LEMMA 3.7. For I /3 - 1, we have for allf E HO, 

I (D8K) * f10 < CIfj0. 

LEMMA 3.8. Suppose f E H'-(R3) and supp f C { I Z I < R}, with R fixed. Then 

I K8 * ftH0(jzj<R) < CIf IH-'(R3), 

where C depends only on R. 

4. The Main Stability Lemma. We are now ready to verify the stability of the 
discrete approximation to the velocity, as expressed in (2.9) and (2.10). Thus we 
estimate first the difference between 

u K8 = f -K (z ) ojh3, u h - 
K,^(zl -zj)wh h3 

J J 

in terms of ej - y- z,, wj - Coj 
- under the assumption that 

(4.1) ej IO,h --h3. 

We do not indicate the dependence on the time t since it is fixed. Also we will 
assume implicitly throughout this argument that i and j are restricted to values so 
that ih andjh are within the fixed set Ao for which and Coj are computed. 
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In applying Lemma 3.2 we will need a crude uniform bound for e.. It follows from 
(4.1) and Lemma 3.5(a) that I e h3/2. Assuming h - 1, we have h - 8 in all the 
cases of Section 2 and thus 

(4.2) max e1 . 

We can write h -uh symbolically as 

ah- uh h_ h=K8C - K8C = (KS - K8)co + KJc) _ co) 

( (K5- K,)co + K,w + K,)w 0 + v(2) + V(3) 

where R2 is evaluated at (z, - ZJ), etc. We begin with v), expanding it further to 
v(H) + V(12), where 

(4.3) V = [K(z - 2J) - K -(z z)] Jh 
J 

(4.4) V(2 = ,[K8(,Zl ,ZJ)- K8(Z -ZJ)] Jh3 
I~~~~~~~ J 

Applying the Mean Value Theorem in (4.3), we have 

VIll = E S DAK,(Z, - z. +Y1i)eij(oih3 

More precisely, we apply the Mean Value Theorem to each component along the line 
segment from (z, - ZJ) to (z, - Z,); we ignore the fact that y,J may depend on the 
component, since we can treat each separately. Similarly, we ignore the sum over ,B 
and write 

(4.5) V( I) = DK8 (z, - zJ + y,J )eco,h3. I 
J 

According to (4.2), we can assume 

(4.6) IYIJI6 

for each i, j. 
In order to have more flexibility in estimating v(l) , we regard v(l ) and e co, as step 

functions on S = U {BJ: I jh 1 R0} and (4.5) as an integral operator on such 
functions, with B. as in Section 3. Let v( 1)(z) = V(") for z E B,, and f(z') = ex.w for 
Z' E B.. Also let 

'3(z, z') = DK,(z, - zJ + y1J) z E B1 , Z' E BJ. 

Then (4.5) is equivalent to 

(4.7) v(11)(z) fX(z, z')f(z') dz', z E S. 

Moreover, since the flow is volume-preserving, 

|V 111HO(S) I V 0, Oh' If IH(S) eJoJ O,h- 

Thus an estimate for (4.7) will apply directly to (4.5). 
It is natural to rewrite SC as 

4(Z, Z') = X1(Z, Z') + '2(Z, Z'), 3(z, z') = DK8(z -z') 

X2(z, z') = DK(z - z, + yJ DK8(z - z'). 
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The YIu-term in (4.7) is just (DK8 * f )(z), and we have from Lemma 3.6 1 XCI f lo < 

C f I0, or, since wj is uniformly bounded, IC f Io < C I e1 lo h . Using the Mean Value 
Theorem again, we can estimate 

I K(Z,Z')(? M/(2)8, B,z'EBJ, 

with M as in (3.6). As remarked earlier, it follows from Lemmas 3. 1(a) and 3.2 that 

IX2f 10 lo< CS 8- |If lo < C | e. iO,h. 

We next apply the Mean Value Theorem to write (4.4) as 

v(12) e DK8(z- z +y )ojh3 

with y11 again satisfying (4.6). Since e, factors out of the sum, we will have 

10V2) I,h < C j e, Io,h provided we establish 

DK8(z, - z, +y1J)cjh < C 

for each i. With i fixed, let g(z') = wo and 'X(z') = DK8(z, - z + yIJ) for z' E BJ. 
Then the sum above is 

c 
( z) )g (z') dz'. 

Now 

DK6(z-zj + yIJ) -DK,(z-z') j M(2)8 

for z' E B. Thus if we replace cX(z') by DK6(z, - z') in the integral we commit an 
error which, according to Lemma 3.2, is bounded by 

CS * a-' * max I wI C'. 

Furthermore, in the same way we can replace g(z') by 4(z') with an error bounded 
by 

Ch log 8 maxI Dw C'. 

The integral is now replaced by 

fDK,(z, - z')w(z') dz' fK6(z, - z')Do(z') dz'. 

There are no boundary terms in the integration by parts, since X is supported in S. 
We estimate this by 

maxlDol | I K(z - z') I dz' 

which, in view of Lemma 3.3, is bounded by a constant. We have now completed the 
proof that I VI") IO,h < C I e1 O,h' 

We next consider 

v(2) = K8(z-Z) wj h3. 

I 
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The norm I vi2) 1,,, is the same as I V(2) l, where V(2)(Z) V2) z B,. If we also set 
w(z') w WJ for z' E BJ and 'X(z, z') = K6(z,- zj) for z E Bi, z' E Bj, we can write 

(4 .8) v (2(z) = | (Z( z,z')w( z') dz'. 

In order to estimate this, we expand YC as 

uC(z, z') KJ(z - z') + [K(zi - z) - K z,- z')] 

+ [K,,(z - z') - Ka(z - z')] 

-?i + Y2 + ?3. 

We denote the corresponding terms of V(2) by V(21), V(22), v(23) The first is just K, * W 
so that by Lemma 3.8, 1 v(21) 1o < C I w 1-j. Combining this with Lemma 3.6 we have 

I V(21) 10 < C I WJ 1-1 h. The term V(22) has the form 

v(22) (Z w h z ,jh3, 

i 

where 

x2ij h3f [Kh(zi - zj) - K(zi - z')] dz'. 

We will think of this as an operator from H17' to H? and estimate using Lemma 
3.4(b). Since we have to difference in j, we refrain from estimating YU2,J directly. It 
will be convenient to change the variable of integration; we set z' = V?t(a') and, with 
i fixed, F(a') = K6(z, - t(a')). Then 

2,hj =h3 [F(a1) - F(a')] da' = h -3 [F(aj) - F(aj + a')] da', 

where QO is the cube centered at the origin. We write the integrand as the integral of 
its derivative: 

F(aJ) - F(aJ + a') IVF(aJ + sa') ds * a'. 

This gives us an estimate for the kernel YL2,j: 

jF(a1J)-F(aj + a') j?hsup I DFj ICh sup I DKa(zi-z') I< ChM0j1), 
QJ z'&Bj 

by the smoothness of I, and therefore 2ij / ChM . It follows from Lemma 3.2 
that II C2ij Cl< Ch log 3 I< C, with llS2ii 1 as in (3.4). However, we must also 
estimate II I1. We have 

D1hc11 
- h-3j D h[F(aj) - F(aJ + a')] da', 

D h[F(aj) - F(aJ + a')] =- Dh[vF(aJ + sa')] ds a a'. 

Thus 

jDh[ F(aJ) -F(aj + a')] I< h sup I D2FI ChM/J2), 
Q,UQJ+l 
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where QJ+I denotes a cube adjacent to QJ, and jD'i%C211 1ChMQ,. Finally, we 
conclude from Lemma 3.2 that 11 Djh%211II s Ch * S-1 < C and therefore, from 
Lemma 3.4(b), 

I V(22) |O = | V(22 )(Z,i) 10,h < C I WJ 1-1,h - 

To estimate 

v (23) ( z) = 'X3( z,z')w( z ) dz" 

where 

'XAIf(z,) - z') - KJ(z - z'), z E Bl, 
we will treat z and z' as continuous variables. According to Lemma 3.4(a), 

(4.9) 1 V(23) 10 C I w 1 

provided we show that 11 L3 11 + 11 DzjK3 11 ? C, with notation as in (3.2). For z E B1, 
Z BJ, I XIZ3(Z, z') < hM,1) and, from Lemma 3.2, I ICX311 ChIlog 8 C. Simi- 
larly, I Dj33(z,z') < hM2) so that 11 DZ <Y3 1Ch8-' C. Thus (4.9) is estab- 
lished. Then, from Lemma 3.6, 1 v(23) 1 < C I WJ 1-l,h' 

It remains to estimate 

V(3) = efZ-J)K( Ziy)|W h3. VI~ [K8(i, -f ) - K8(z1 - w1jwh3 
I 

We will again apply Lemma 3.4(b). Substituting 

Kjz, - ij) - K8(z, - z1) = 
., 

- 
(e, - ej) 

with 

YUi vKi(z, - z. + s(e, - ej)) ds, 

we have 

V(3) - 
2 e,wjh3- Yu, e1wjh3 - V(31)- (32) I 

I j 
II J J 

For the first part, we find 

|vI3h < (max I e, 1) ' Y 3 
11w1 + 1I hYu W11) I WJ 1-1,h 

I 0,h 

using (4.2) and Lemma 3.4(b). The difference quotient goes through the s-integral, 
and I 9ClJ j? MI)), I DJhC MJ(j2)? so that, by Lemma 3.2, 

IV(3) |Oh<CS(l 10g 8 I +8-1) I Wj 1|_,h 
- 2C I Wj 1-lth 

For 1 the same kernel 9XCJ is applied to the function ejw1. We use Lemma 3.5(b) 
and (4.1): 

ejWj -1 h < Ch 3/2 j ej l0,h 1 Wj I-1,h < Ch372 | Wj 1-1,h. 

Thus 

I V(32) 1 + 11IDhY&11)11eIwJ I-Ih 

< C(I log 8 I +81)h3/2 1wj 1 I,h < C I Wj 1-1,h 
This completes the proof of (2.9). 
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The estimate (2.10) is established by a similar argument. There are fewer terms, 
since there is no error in the point z at which the velocity approximation is 
evaluated. With 

ah(z) - i K(z)-ZJ Cjh3, uh(z) = K8(z- ) h3 
i j 

we write as before 

Uh (K0- + K0w + (K-- KV)w + (2? + v(3). 

The term 

V(1)(z) = [K8(z - ) - K(z -zj)]wjh 
J 

is treated like the earlier term v(l ). We write it in the form (4.7), withf as before and 

'X(z, z') - DK0(z - z') + SC2(Z Z'), 

cC:2(Z, Z') = DK o(zz-zj + yJ)-DK8(z-Z'), Z' E Bi, 

where yJ depends on z, I Yj I 6 S. The first part of V) is again K0 * I, and the second 
part is estimated just as before. 

For v(2), we begin with the expression (4.8), where 

'X(z, z') = K(z - z) + 'C2(Z z') 

93Q2(Z, Z) K(z - 
zj) 

- K0(z - z'), z' E Bj- 

The first term in v(2) is the same as earlier; the second has the form 

V(22)(Z- Z=2 2j(z)wjh3 

with 

cJC2j(Z) = h 3 
J[Ko(z 

- 
z) 

- 
KJ(z 

- 
z')] dz'. 

We estimate this term by applying a variant of Lemma 3.4(b): 

I V(22) Io (lC2j 1 + D1 DhJ 1l) I W |,h- 

Here the operator norm is as in (3.4), except that the second sum is replaced by 
integration in z. The kernel 1C'2j can be estimated in the same way as 'X2,, in the 
previous case. 

The term v(3) takes the form 

v(3)(z) EX(z)e1wj, 9XC(z) f 1vK(z - zj- se) ds. 

We estimate as for v(32) earlier, except that the same modification of Lemma 3.4 as 
above is used. 

5. Proofs of the Lemmas. 
Proof of Lemma 3.1. Parts (a) and (b) can be regarded as different cases of a 

general statement in which the measure spaces are arbitrary; e.g., see [9, Section 
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O.C]. We include here the proof of (a) for completeness: 

| | (Z, Z )f(Z ) dz' 12 dz 

<~ ~~~~~~~C |( C(,Z) d | (Z, z') I I f(z') 12 dz') dz 

f I fJff( z')fz') z' 2 
' z 

< j]C]] 1 SC (Z, Z ) I I f(Z ) 12 dz, dz 

= Yu I (J , zz) I dz) I f(z') j2 dz' 

< iCi}12f f(Z') j2 dz' 

To prove Lemma 3.2, we need the following pointwise estimates for DYKa: 
LEMMA 5. 1. We have 

(5.1) 1 D)K,6(Z z S C-2 -1,8 all z, 

(5.2) 1 D#K,6(z) I< C I Z 1-2-1#1, I Z I) 8,-S 

Proof. For I z j 8, (5.2) will imply (5.1). We first prove (5.1) for Iz z . We write 

(5.3) D#Ka(z) - 'K(z')YAjz- ) dz' = I, + I2, 

where I, is the integral over {z Z' j< 26} and I2 over {j z' j> 268. For any p > 0, we 
can easily estimate K in L'(I z' j< p): I K(z') I is a constant times j z 1-2, and in 
spherical coordinates we have 

J 

K(z')Idz' =A r-2 .r2drAp, 
z 'I<p 0 

where A is a universal constant. Now 

(5.4) DY (z - z') = -3 i (D'6p)((z - z')/8) 

and thus 

jD'4(z -z') CS C-3 -1 

Using these two facts, we have 

I I, I< CA(28) * 8-3-1#1= C'8-2--#l. 

On the set { Iz' j> 2} we have IZ' - z, z' j -68 . Since 4 is rapidly de- 
creasing, we have I D#+(x) C I X 1-2, j XI j_ 1, and therefore, using (5.4), 

| DA+8 Z-Z) 1- CS -3 -1l8 18 2 _,1-2 <C--A lZ 8- 

We now estimate I2 using this and the relation K( z') _ 
I z' j-2: 

I2 -CS A1Jr r-2(r -8)-2r2 dr 
23 

- C-'l -V1f r-2 dr= C62l'A 

This completes (5. 1). 
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Assuming now that j z I : 8, we prove (5.2) by estimating (5.3) in two parts. Let 

?0(r) be a smooth function so that p0(r) = 0 for r < 1/4, k0(r) = 1 for r : 1/2, 
and 0 < ?o < 1. With z fixed, let p(z') = ko(l z' j/j z 1). We now denote by I, and I2 

the integrals with K replaced by FK and (1 - ')K. In the first term, the singularity 
at z' 0 has been removed, and we can write 

(5.5) Il = 4fDP[(z')K(z')] A(z- z') dz'. 

Now D j CzIjzt-3, and IDYK(z')I CIZ 1-2-yl; on the support of z, jz'j) 

I z 1/4, and therefore I DO(pK)(z') I< Cj Z j--Zflj. Since 4a is bounded in L1 inde- 
pendent of 8, we can conclude from (5.5) that j j? C j z j-2-V:i* 

It remains to show that the same holds for I2. It will be enough to establish the 
estimate 

(5.6) 
J 

K(z')DO4(z - z') dz' 
? Cj z -2-ifl . 

Iz'I < IzI/2 

On this set j z-z' I j I z 1/2 - 8/2. Again, since 4 is rapidly decreasing, we 
may assume I DA+(x) I? CN I x -N, I x I) 4, and thus, as in the previous part, 
I D:4^(z - z') I C6-3-1,61N j z I-N. Choosing N 3 + /3 jto eliminate 8, we now 
estimate the integral of (5.6) by 

Clzt-3-1#1I jK(z')j dz'= C'jzj2IZ . 
Iz'I < IzI/2 

Proof of Lemma 3.2. Given the uniform estimate of Lemma 5.1, the proof is 
virtually the same as that of Lemma 5 in [10]. The diameter of BJ is of order h, and, 
since in all cases we have h < 8, we can assume I z'-Zj 1 < CIS, z' E BJ, for some 
Cl; we might as well assume Cl - C0. With z fixed, let 

{ A = j E : ljh I< R, I Zj-Z I(3CI + 1)8), 

J2= { j A:ljhI<R,Izj-zI> (3CI + 1)8). 

Then 
U {BJ: j C Jl} C {z': z' - zj (4C1+ ?1)86. 

Since each BJ has volume h3, we may use this fact and (5.1) to estimate the part of 
the sum in (3.5) over J, by 

CS-2-1#1 {(4CI + 1)813 = C'6,I.l 

This establishes the inequality (3.5) for cells BJ withj C J,. 
ForjC J2, wehave Iz-zj+yjI>(2C1 + 1)8>8 and,forz' c BJ, 

(5.7) z - z? +yj z - z' -2C16 

and also 

(5.8) IZ- Z'I::> I z- zj z- Jz'l:> (I + 2CI)8. 

We regard the sum (3.5) over J2 as the integral of a step function with constant value 
on each BJ. Using (5.2) and (5.7) we estimate the integrand by 

max I D'K(z -zJ + yJ) I < C(IZ-Z' 2C )2 
1V11I?Co3 01 
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In view of (5.8), the region of integration is contained in {z': (1 + 2C1)3 < 
I z s- R1} for some R1 depending on R. Setting r=Iz' - z we can now 
estimate this part of (3.5) by 

f R, 
(r- 2C3 8)-2- '" r2 dr = CJR, 2C6r-2-1#1 (r + 2C1 

)2 
dr. 

(1+2C,)8 3 

But r + 2C1S < (1 + 2C,)r for r ? 8, and the integral is 
fR'-2CC8 r16lrl dr, 

which leads to the cases of (3.5). 
Proof of Lemma 3.3. This follows immediately from Lemma 5.1, applying (5.1) for 

z Is and (5.2) for z IS. 
Proof of Lemma 3.4. The two cases are similar, and we discuss only (a). Let f(z') 

be a smooth function so that = 1 for I z' I < R, 4 = 0 for I z' I 2 R + 1. In order to 
estimate I 'Cf 10, we take the inner product with an arbitrary g E H& (S ): 

(Y{f, g) - (f, X*g) = ((Pf, Y3*g) = (f, ofJ*g), 
so that 

(5.9) I (3Cf, g) ISIfI-l 4 *gf 1 

Here 

(9Y*g)(z') 
f 

Y7(z, z')g(z) dz. 

To estimate I pf(C*g f1, we apply Lemma 3.1(a), with the roles of z and z' reversed, to 
the integral operator 

g(z) H- fDPf{(z')YJC(z, z')}g(z) dz, 

where -,8 1 0 ? or 1. We conclude from Lemma 3.1 that 

I o*g I I < C(iIi Yu + IIDz,YJCI) Ig10, 

and the assertion follows from this and (5.9). 
Proof of Lemma 3.5. Part (a) follows from the crude estimate 

1 12h3 < 1 If 12h3 -IfI12 

For (b) we first estimate I fi I I for p E Hh. We have 

D (fAfO) =f4(D h ) + P,+j(Dhf,), 

where + I means (p translated in the appropriate coordinate direction. For the first 
term we use (a): 

If (Dh_) 1o,h < (sup If1) * I ID Ijo1,h 
(5.10) 1 

I4f(Dhpy) I0,h < h / 1 I0,h I (ij I1,h 

For the second we have 

I (Pi+I(Dhf f) 1h < SUP I ?X { Ifj I ,h ( suP I , 
' 

) , 
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To estimate % uniformly, we use a discrete Sobolev inequality [23, p. 181, Chapter 
11.2, Theorem 2.1] which implies that 

- t6h3- I 1/6 
j Ii6 h3 C I D h(p10h. 

Thus, as in (a), sup I Ij Ch'-2 I I 1,h. Combining this with the previous inequali- 
ties, we have 

I D (frk) Io , Ch Ch/312 If 1o,h I 1 1,h- 

We can treat I fk IO, h as in (5.10) and conclude finally that 

I f-0 I l,h 
< Ch /1 I f lo h lO I 1,h - 

Assertion (b) follows from this by duality: for arbitrary 0 e HI, 

I (fg, k)O,h I|I (g, fO)O,h I<I gI-l,h I fP I1,h 
s Ch?3/ | lo,h I g 1-1,h I + l,h 

Proof of Lemma 3.6. We have to show that, for any g C H'(W), 

(5.11) 1 (f, g)oI< Clfj-I,hIgI, 

Given g, we define 

g1 = h-3 g(z) dz. 

Then 

(f, g)O 
- 

fgdz- = fjf gdz- = f1gjh3, 

so that I ( f, g)O I < I fj - 1, h I gI 1, h. Therefore (5.11) will be established if we show 

(5 .1 2) 1 gj 11,h < C I 9 11- 

As a first step, we have 

2 

(5.13) 1 g,12 
I Ig 12h3= h-3 fg h .-3 h3 IgI2 =IgI2, 

using the Schwarz inequality. We next consider the difference quotient 

4 B+1 JB} 
where j + 1 means j incremented in some direction. For simplicity we assume that 

the difference is with respect to z,, z = (z1, Z2 Z3), and the cube Qj at time 0 was 

centered at the origin. Then 

Dhgj = h-4f [G(z, + h, z2, z3 )- G(z,, Z2, Z3)] dZ 
Q, 

with G = g o t. Writing G as the integral of DzG, we have 

Dhgj = h-4 fZ'+h DzG(p Z2, Z3) dp dz. 
JQI 
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Next we estimate, taking absolute values and increasing the p-interval to -h/2 < p 
< 3h/2. The z1-integral gives a factor of h; we combine dp with dz2dz3 to obtain 

| Dhg1 sCA!3 I DG I dz. 
Q1UQ1?1 

Using the smoothness of the flow, we can express this as 

fDhg1?iSCh3 IDgIdz. 
B1 UB1?1 

By an estimate like (5.13), this implies I Dhg10, O< C IDg to, and (5.12) is now 
verified. 

Proof of Lemma 3.7. We have 

(D3K;) * f = D'(K* 4) * f = (DYK) * (4'f ) 

so that, using (3.10), 

[(D:Ks)~~~~~~~~~ * f]()=(1it:s( -2 (2 T it) X () 

Since 4,() - 446k), we can estimate 

(5.14) I4{(t)ISI4'IL' 

and therefore, for j13 -1, 

|[(D)K8) * f]C() f< Cjf(t) I 

The lemma now follows from the isometry of the transform on HO. 
To prove Lemma 3.8, we need the following fact: 

LEMMA 5.2. Given f & H'-(R3; R) with supp f C I Z I <R}, there exist fo E 

H0(R3; R) andf1 e H0(R3; R3), both with support in {j z 1< 2R}, so that 

(5.15) f=fo+v fi, Ifo o +If, 1o<CifI-1. 

Proof. Using a cutoff function, we write f(s) - yo(() + y,(t) with -yo of bounded 
support and y1 = 0 in a neighborhood of ( = 0. Then 

Yi - 2Tri, - ((2,gi)-iY I 
f 1-2yi) -27rit * Y1 

Define go, g, by O y g, - =1. We now havef = go + v g,, with an inequality 
like (5.15) satisfied, but we still have to restrict the support. Let 4 be a cutoff 
functionwithqi = 1 for Iz I R, 45 = 0 for Iz I> 2R. Then 

f= of= pgo + 0(v . 
g,) - (0go - vp* g,) + v (og1). 

The choice 

fo = (go - 
V4*g, f1 = qsg, 

meets our requirements. 
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Proof of Lemma 3.8. Given f E H-(R3; R3), we can apply Lemma 5.2 to each 
component of f and write f 

=2181. DJf3 with If Io CIfI1 and suppf iC{IZI< 
2R}. Now K6 * (Dflf)= (DK6) * ffl, and from Lemma 3.7 we have for fI 

I K, * (Dlsf,) lo < C I: flo1 ,-c I C' |t-l 

Therefore we need only show that 

I K8 * fo IHO(IzI<R) s C fo IHO(IzI<2R)- 

According to Lemma 3.1, this inequality holds provided 

f I K6(z) dz <C, 
Jzf<3R 

and this in turn follows from Lemma 3.3. 
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