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Mesh Modification for Evolution Equations 

By Todd Dupont 

Abstract. Finite element methods for which the underlying function spaces change with time 
are studied. The error estimates produced are all in norms that are very naturally associated 
with the problems. In some cases the Galerkin solution error can be seen to be quasi-optimal. 
K. Miller's moving finite element method is studied in one space dimension; convergence is 
proved for the case of smooth solutions of parabolic problems. Most, but not all, of the 
analysis is done on linear problems. Although second order parabolic equations are em- 
phasized, there is also some work on first order hyperbolic and Sobolev equations. 

1. Introduction. Finite element methods usually fail to perform well on problems 
whose solutions are too rough to be approximated well in the space of trial 
functions. Typically, computed solutions will oscillate unacceptably near regions of 
rapid change when too coarse a mesh is used, or if sufficient dissipation is added to 
control the oscillations, then the front is smeared. 

The most straightforward solution to this difficulty is to include sufficient 
flexibility to match the solution to a reasonable level of accuracy. This approach 
works well for problems whose roughness is concentrated in a fixed small part of the 
region being studied. For many important problems the solutions are rough in a very 
small fraction of the underlying domain, but the area of roughness sweeps out a 
substantial part of the total region over the life of the problem. For fixed-mesh finite 
element methods these problems would require the use of great flexibility over 
essentially the entire domain, and this is frequently too expensive to be a useful 
approach. 

Consider the following problems as possible examples in which some form of 
time-dependent mesh might be useful. 

The displacement in a porous medium of one fluid by another that is miscible 
with it is frequently simulated using an equation of the form 

(1.1) gut + V * VU-V - DVu = O, 
where u(x, t) is the concentration of the displacing fluid, p = (x) is the porosity, 
V is the gradient with respect to the spatial variables, v = v(x, t) is an underlying 
flow field, and D is a diffusivity matrix. This equation is the simplest example of the 
many types of models that are used in petroleum engineering. For some realistic 
situations the solution u is very nearly piecewise constant; u is approximately one or 
zero over most of the region with a rather narrow transition region. The transition 
region is an area of roughness of u that sweeps out a large portion of the reservoir 
during the course of the problem. 
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Conservation laws of the form 

(1.2) ut + ((u))x-cuX O ? 

are used to model a wide variety of phenomena. For such equations one or more 
"near shocks" can develop. It is necessary when - > 0 is quite small to use a very 
fine mesh close to these near shocks or to add dissipation in some form in these 
regions. Direct application of the most elementary finite element methods without 
these precautions can give solutions that have properties that are qualitatively in 
error. 

Two phase flow in pipes is a problem that has attracted much interest lately. 
There is no consensus as yet as to the proper equations to use in describing such 
flows, but there are many sets that have been proposed. (See [23] for a recent 
survey.) Since the physical systems involved have sharp fronts that sweep out long 
lengths of pipe, a good mathematical model should have that property too. Most of 
the models proposed consist of functional relations together with first order systems 
with small dissipation terms. Thus they have some of the properties of the conserva- 
tion law (1.2). 

Another motivation for considering changing meshes for evolution equations is 
that optimal or near optimal meshes for steady state problems can be computed if 
the rules by which the mesh evolves are properly chosen. This seems particularly 
interesting for singular perturbation problems. 

In this paper I consider a combination of two fundamental techniques for mesh 
modification. The two methods can be characterized as continuous and discontinuous 
changes in the underlying space. The prototype of a continuous change is a finite 
element space in which the elements are being smoothly deformed with time. While 
in the case of purely discontinuous changes the underlying function space is held 
fixed for a period of time and then abruptly changed to another. 

There has been a considerable amount of work, both theoretical and experimental, 
on changing meshes for time-dependent problems, An early practical demonstration 
of the utility of changing the function space was given by H. S. Price and R. S. 
Varga [20]. Shortly thereafter J. Douglas and I proved in [8] that a finite number of 
mesh changes could be tolerated without loss in the rate of convergence. 

P. Jamet in [12] introduced a general class of Galerkin-like methods for parabolic 
problems. He proved optimal order convergence results under a mild constraint on 
the number of discontinuous changes in the function spaces. Jamet's work with R. 
Bonnerot on the Stefan problem [4], [5], [6] presents a chain of ideas that has 
culminated in a method that has a continuously moving mesh that tracks the fronts 
in a multiphase Stefan problem; their method also admits discontinuous mesh 
changes. They used a related approach in [7] for compressible flow calculations, and 
Jamet has analyzed a one-dimensional parabolic analog in [13]. 

K. Miller and R. Miller introduced the moving finite element method in [17] and 
K. Miller provided interesting examples of the application of this method in [18]. 
This technique gives a general principle by which nodes are to be moved and seems 
to be applicable to a very wide range of problems [2], [1 1]. 

D. R. Lynch and W. G. Gray [16] derive finite element methods for deforming 
meshes and apply these to shallow water equations. They use the flow velocity of the 
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fluid to move the knots as though they were neutral-density chips floating in the 
fluid. Their paper contains several pages of discussion of the history of moving 
meshes in the context of finite difference and finite element methods. 

In [ 19] K. O'Neill and D. R. Lynch use a moving mesh procedure for a 
convection-diffusion equation. They used the given flow to move the mesh points 
near the local roughness in their one-dimensional example. 

In [15] 0. K. Jensen and B. A. Finlayson indicate the economies that can be had 
by moving the mesh in a chemical flooding problem. They actually choose to move 
the domain of the problem across a fixed mesh that covers a larger domain. In [14] 
they apply a moving coordinate system approach (translation of the domain) to 
solve transport equations. The rate at which the coordinates change can either be a 
fixed constant or adaptively defined. 

Throughout the first six sections of this paper I use rather standard notation for 
the Sobolev spaces and their norms. For 1 < p < xo and m a nonnegative integer, 
Wm'P(Q2) will be used to denote the usual Sobolev spaces [1]. Also, Hm(Q2) is the 
same as Wm'2(Q). The norm on H?(Q) = L2(t2) will be denoted by II - II or 
11 * 11 L2(,. The space H`'(Q) is defined to be the dual to Hm(Q); this is not exactly 
the universal choice. No fractional order spaces are used in this paper. 

For functions 4 from an interval J into a norm space X, with norm 11 *1x, we use 
the notation 

IAIILP(J; X) = I IP ds) 

with the usual p oo modification. 
Section 2 treats parabolic Galerkin methods both in the case of continuous-time 

and discrete-time approximations. A theorem is proved that, for a particular norm, 
reduces the estimation of the error in the Galerkin solution to a question in 
approximation theory. The theorems in this section were constructed specifically for 
the case when the finite-dimensional function spaces are changing, but these 
particular theorems are new in the case of a fixed function space. 

Section 3 contains asymptotic error bounds that are obtained from the results of 
Section 2.2. In Section 3.2 the results of Section 2.2 are generalized to include certain 
nonlinear parabolic problems with nonlinear Neumann boundary conditions. 

Section 4 presents an example to show that mesh changes, when completely 
uncontrolled, can cause convergence to the wrong function. In Section 5 a Galerkin 
method for first order equations is examined. 

Section 6 is devoted to an analysis of K. Miller's moving finite element method 
[171. Only the continuous-time case is treated. An existence and stability result is 
given and then asymptotic error estimates are proved for smooth solutions. The 
order of convergence for this method on smooth solutions is optimal. 

Section 7 looks briefly at Sobolev equations. 

2. Basic Results for Parabolic Galerkin Methods. Let 2 be a bounded domain in 
Rd with piecewise smooth boundary. For T > 0 set Q = 2 X (0, T) and F = au X 
(0, T). This section deals primarily with the approximate solution of the following 
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parabolic problem: 

ut + bu + v Vu - V (aVu) =f on Q, 

(2.1) a au =g onF, u(x, O) = uo(x) on i2, 

where V is the spatial gradient operator and b, v, a, f, g, and uo are given smooth 
functions. The outward normal to a2 is v. Assume that the function a is uniformly 
positive on Q. Adopt the notation 

(2.2) (9,4) f9(x)4(x) dx, (KT 2 f (x)4(x) da(x), 

and let 

(2.3) B(9, 4) B(t; q, 4) f [bq+ ? (v V9)) + aV9)- VA] dx. 

The problem (2.1) can then be posed as 

(2.4) (utu O u + B(u, A ( ) + (g, . E H , o < t < T, 

u( , O) = uO . 

2.1. Continuous-Time Galerkin Approximations. Partition [0, T] using To 0 O < T, 
< .*. < TM = T, and let Jj = [TJ-1, Tj). Suppose that for each t C [0, T] 9)Th(t) is a 
finite-dimensional subspace of H'(s2). Suppose further that %1t(t) varies smoothly 
on each Jj in the following sense: for j = 1,. .. ,M, there exists {42k (*I t): k = 
1,. ..,NJ} C 6%(t) for t C Jj such that {4Jk I t): k =1,... ,NJ} is a basis for %1t(t), 
t A-). 4(k , t) is continuously differentiable as a map of Jj into L2(i2), and the 
derivative is bounded. Further suppose that there exists a constant C such that for 

(2.5i) Il[lH()<C||, gE %(t), 

(2.5ii) a C ak on J,j = 1, ... ,M. 
k=1 k~=1 

The constant C in (2.5) will not enter into the estimates below except through its 
existence. I.e., the size of C is not important, but if it were unbounded there would 
be technical complications. (When we look at the time-discrete versions of this 
process the existence of C will play no role at all.) 

Next we define a function space 9T that will contain the approximate solution. 9DT 
consists of certain functions V defined on [0, T) such that for each t E [0, T) 
V(t) E %D1(t). We suppose that VI Jj for V E 9DT is uniformly Lipschitz as a map 
into L2(s2). Further we suppose that each V E 9Th is such that the jump in V at TJ 
VIT, is orthogonal to 91t(TJ), j = 1,... ,M - 1. 

The continuous-time Galerkin approximation U of u is defined to be an element 
of 9T such that 

(U(O) - u(0), x) 0, x E% DT(0), 
(2.6) ( ) (U 

)(f, X )B 
x = f X 

h 
ga x X E AI (t0 n 0< t(, T. 
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Under the above assumptions it is easy to see that U exists and that U is C' on 

each J,. 
2.2. A Symmetric Error Estimate. For functions A: [0, T] H'(SQ) that are 

piecewise smooth let 

1 1 1L-(0?T; L2(Q)) + 11 U (0,T; H'(Q)) 

(2.7) M 
+ E 1A(t) 11 2 -IQ<t)dt, 

J=1J, 

where 

(2.8) 1 P11 H'(0,9(t)) SUP (A, x). 
11 X 11 HI= 

x ED9h(t) 

The seminorm in the sum in (2.7) makes the norm III * Ill depend on the space -. 

It would be preferable if we could use a norm that was independent of `X. At 

present, doing so seems to require an "inverse assumption" on the spaces 'T(t) and 

that is something I want to avoid here. The H-'(i2, 9DT(t)) seminorm is clearly no 

bigger than the H- '(SQ) norm, where the H- '(SQ) norm is defined by duality to all of 

H'(E2) instead of just the subspace 6k(t). 
The norm Ill 1 is naturally associated with the error involved in (2.6). In this 

norm the Galerkin process does as well as it is possible to do (up to a constant 

factor) given that the approximate solution must be in T. This fact is expressed in 

the theorem below. 

THEOREM 2.1. There is a constant C, dependent on Q and the functions a, b, and v 

but independent of u and D1, such that if u and U solve (2.1) and (2.6), respectively, 

then 

(2.9) Illu -Ull UI< Cinf{iu - Vill: V E D}. 

Proof. Let V be in G, and defineO = U-V and q = u - V. Then for t E iJ 

(2.10) (t IX) + B(,O X) = (-q, X) + B(-q, X), X E %1(t). 

Use X = O to see that for some positive constant a 

(2.11) dt 11112 + all I1H1(s2) ? C[ii1 (52 11 H2,(t)) A II H'(2) + 11211] 

Next note that forj > 1 

(2.12) 11 J_ 9_ 0)11 H(lyi)H2 > 0 

because -( T ) is the L2( 2)-projection into GD1(TJ_) of 0()TJ - .)- 
From (2.1 1) and (2.12) it follows easily that 

(2.13) 11I L(OT; L2(Q)) + H I L2(2 T; HI()) ? CtII 111 2 + 11 (0)11 2} 

Next,the fact that 

a = U- V= U-uA+u-- V= U-uA- + 

when combined with the choice of U(0) gives 

(2.14) 11(0)01 ?< II-(0)11; 
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just inner product with 0(0) in the first part of (2.6) and apply the Cauchy 
inequality. Thus (2.13) becomes 

(2.15) || H |1 L-(O,T; L2(0)) ? I H L2(0 T; H'(Q)) Gill III 

The relation (2.10) implies that 

Hat IH HI(0, iT(t)) ? C[H I 11 H'(Q) + I I I I H- W (Q,G)(t)) + 1H H'(Q)]- 

This together with (2.15) gives 

111 0111 2 < C II' r1I 2. 

Now the triangle inequality and taking the infimum over V complete the proof. D 
Most parabolic Galerkin error bounds give asymptotic rates of convergence. Such 

results almost always put a stronger norm on the solution u than on the error and 
express the difference in the strength of the two norms as h to some power, where h 
measures the size of the elements. Thus, while these asymptotic results may be 
properly balanced, they are almost never symmetric in the sense of Theorem 2.1. 

One other symmetric error estimate can be found in my work with Jim Douglas, 
Jr., [8, Theorem 3.2]. There are also some results by A. Schatz, V. Thomee and L. 
Wahlbin that are asymptotic in nature but almost capture a symmetric result [21, 
relation 0.15]. Schatz, Thomee and Wahlbin show, under appropriate hypotheses, 
that the solution of a parabolic Galerkin process approximates the solution of the 
parabolic problem as well as possible up to a certain factor in the L2 and L' norms. 
If the factor were a constant this would be a symmetric or quasi-optimal result; 
however the constant involves a logarithm of the parameter h. 

2.3. Discrete-Time Error Estimates. In some ways these discrete-time procedures 
are more elementary than the continuous-time process introduced before. There is 
however a time truncation term which makes the error estimates nonsymmetric. 

Let T {tj}>K0 with 0 to < t1 < < tK = T, be a partition of [0, T], and 
denote by A t1 the difference t- tj- 1. Assume for each j = 0,1,... ,K, that 6R is a 
finite-dimensional subspace of H'(s2). The discrete-time solutions will be sequences 

{UK}o where UJ E 6, j = 0,...,K. 
The two discrete-time procedures treated here are based on the first and second 

order correct backward difference formulas. For the first order correct backward 
difference the sequence {LUJ} will satisfy 

(Uo-u(o),x) =, X e tho, 
(2.16) (atUj, X) + B(tj; UJ, X) 

(f(., t1), x) + (g, (, t1), x), x E 9t j = I, .. .K, 

where 

(2.17) atUi = (UJ - UJ_l)/Ati 

It is immediate that for A\t. sufficiently small (2.16) has a unique solution; it 
suffices to have A tj < c0, where for 0 < t < T and A E H'(Q) 

(2.18) to (A, A) + B(t; 0, p) > 0. 
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I assume that the A tj's are all sufficiently small that (2.16) defines the sequence {Uj }. 
Adopt the notation uJ(x) = u(x, tj). Then 

(2.19) (atu1, X) + B(tj; uJ, X) 

(J-, t1) + Pi, X) + (g(, t,), x), X EE IJ, 

where 

(2.20) pj(x) = atu1(x) - au (x, t1). 

In analogy with the previous section we define a norm III for all functions 
4(x, t) defined for t1, j O,... ,K and x F Q such that 4Q, tj) 4J E H'(Q). The 
convenient definition is 

K K 

(2.21) ||| max II '11 ? + I i HI(SAtJ + J || 1ff 2 A t1. 
0 --j -< 

Kj=1 J-1 

This norm depends not only on the partition T of [0, TI, but also on the sequence 

f{Xj)} , of spaces. 
The following result gives a close analogue to Theorem 2.1 for this discrete-time 

case. 

THEOREM 2.2. There exist constants C and - > 0, dependent on Q and on the 
functions a, b, and v but independent on u, T, and (9tJ)}, such that if u and (UJ}K=o 
solve (2.1) and (2.16), respectively, then 

III U - ll T C inf{II U VI| TV V = V } 9 VF 9T } 

(2.22) + 1/2 

+ ( IIP 1lH '(S2, ) t,) | 
J=] 

provided Atj ?for j-1, . . ., K. 

Proof. Let V = {VJ}JK>O where VJ F CDJ, and define 9 = UJ- VJ and qj u u1-1V. 

Then, forj = 1,. . ., K, 

(2.23) (at4j, X) + B(tj; 4J, X) - (atqj- pj X) + B(tJ; qJ, X), X c ODXJ 

Use X = tJ in (2.23), and apply the identity 

(2.24) (at 9,4 )= 2At [l2n2- + Jat 2 

to get 

(2.25) 2 J(l 11 2) + B(4,, ?j) < C IIIat,j 
- P1IIH-'( ,) + 

? 
IT11IIHl(U)]19ijIIfI(S2). 

This relationship then gives, via the discrete Gronwall lemma, 

K 

(2.26) max II J 1it12 + 1li:j ( :)t1 ? C[jI n 11 2 + 11 11 2]. 
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Note that it is this step that gives the At. < - constraint. In (2.26) the 11 f0 l 2 term is 
treated using 1 I0 IIm to remove it from (2.26). Then (2.23) is used to get 

ai t H I I H- (uG) ? c[H ' H'(u) + Hi aX I W(Q, ( ,) 

(2.27) + 1l P1 1 H'1(0,9j) + HI ()] 

Next (2.26), with 11 40112 removed, and (2.27) imply that 

(2.28) 1 11 4 111T 2 ? C IT H- jI' ( ,t) .t] 

Finally the triangle inequality and taking the infimum over V {VJ? } complete the 
proof. OI 

The analysis of the first order correct backward difference scheme is very natural 
but the fact that the spaces are allowed to change every step restricts the types of 
argument that can be used. For example, a Crank-Nicolson difference scheme is most 
naturally treated using a test function V that is the average of elements of 9YCj and 

*this is not possible in this context. Also H'(Q)-norm estimates can be derived 
when the 9's are fixed by using a time-difference test function; this is not possible 
in general when the ?JJ 's vary. 

The second order correct backward difference method is 

(82UjI V) + B(ty; UJ, V) 

(2.29) (f(- t)v) + (g(-, t1), V), V E TXJ,j 2, 

where 

(2.30) 82uV 3L a t1 At1__ (atu - tu, I) 

For this scheme only the constant stepsize case will be considered here. Also the 
choice of U0 and U1 will not be specified. 

Note that u satisfies 

(2.31) (82U1, X) + B(t1; Uj, X) - ((., t1) + Pi, x) + (g(, t1), x), X E 9J 

where 

au 
(2.32) P(X) = 82U(X) - at (X, t1). 

For smooth functions u the time truncation PJ will be O(Atj(At1 + Atj- )). Define 
the analogue to III * IIITfor this case: 

K K 

2 ax 14 212 + 2 IlPIIIH(O)Atj + 1 1I62iP AIv(S ,)t1. 



MESH MODIFICATION FOR EVOLUTION EQUATIONS 93 

THEOREM 2.3. Suppose that L t1 = A t = T/K for j > 1. There exist constants C and 
e > 0 such that for u and {U.} solutions of (2. 1) and (2.29), respectively, 

U I-U IIT,2 <- C[inf{III U - V I1T,2 J {2 }, V3 E1Yh} 

(2.33) U - ui 2 

+ ( 1 2 IAP IH S )t + IIUo ol |U - U0 112 + II, 

j=2 

provided Ait < e. 

Proof. As before let L, = U- V. and u =u- VJ, where V. E? 6X. Note that the 
following identity is true: 

( 2 J, AJ t =2(i~ J-a -~ 0, av)- -J-2, 1v ) 

j 
2 

,1 _ _ 112 + _ - 11 2 

- 
1[lI12 - 11HJ-2l12 + 11, 

- 
2 112]. 

This can now be summed on j to give, for m > 3, 

m m 
E (82#J a1)/\t = || 9mH112 - 1 2 + :E 11 - 12 

j=2 2 

(2.34) 4H19mH2 + 1 m-i|2 - | 

m 

+ E 11 - 
H 

y-212 
2 

Since 

- A 
1 

2[111 - 
2112 

+ -], 

it follows that 

2 (82ay a1)At i m11Hm21 - 11m-1112 + 11am - am-112 
j =2 

-3H11i112 + 1H 11 O2 - 1 - 112 

Next use 

I 
21 - I ' H2 + 2I'9m - Ion-I =_ - j 1m-I 2 

to get that 
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The inequality (2.35), together with the same estimates used for Theorem 2.2, 
implies that 

K 

max j-2 

2?j?K~~~~~ 

j=2 ~ ~ ~ = 
K 

(2.36) < I1 12+ 1H112 + 111 

+EK ( 1162T H H-(QG)1) + lpjH H1I(, 2 A)) t] 

j=2 

Estimate the 82tj term exactly as the atO, was bounded, and use the triangle 
inequality to complete the proof. LI 

3. Some Applications and Extensions. The results and arguments of the previous 
section are used here to get asymptotic error estimates and give an indication of the 
situation for some nonlinear equations. Attention is restricted to the continuous-time 
case in this section. 

The results of Section 2 can be used to give asymptotic error bounds provided that 
additional structure is imposed on the finite-dimensional spaces. The constraints 
needed on the rate of change of the spaces seem quite reasonable. In the case of 
nonlinear equations with smooth solutions the results of Section 2.2 can be proved 
without major revision. A mild restriction is needed on S1 to be able to treat 
nonlinear boundary conditions. 

3.1. Some Asymptotic Error Bounds. If the function spaces used in a Galerkin 
process are changed in a very wild manner, one might guess that the approximate 
solutions could converge extremely slowly, if at all. In fact, Section 4 of this paper 
gives an example for which they converge to the wrong function as the number of 
parameters is increased. The results of the previous section allow us to make some 
positive statements about asymptotic convergence in the presence of mesh changes. 

The easiest result that follows from Theorem 2.1 is that the convergence rate due 
to a fixed underlying function space is not degraded because of the extra freedom 
that is added and/or removed from the computational spaces, no matter how 
uncontrolled these changes are. One way of expressing this is as follows: Suppose 
that 6Th is a finite-dimensional subspace of H'(Q2) and that for each t E [0, T] 
61L C 6T(t). Let W: [0, T] -4 61 be the continuous-time Galerkin approximation to 
u with 61(t) _ 65. Then 

(3.1) IIIU- ul < CIIIVW- u II, 

where U is the solution of (2.6) and C is the constant in Theorem 2.1. 
While this particular result does not show any improvement over a fixed-mesh 

Galerkin procedure, it does indicate that one can safely play with the use of 
time-varying spaces to try to improve accuracy provided a good degree of error 
control is left in a fixed subspace. 

As discussed in the introduction, one situation in which time-varying meshes seem 
useful is that in which the solution has a sharp front that propagates across the 
region. In this type of problem one reasonable rule to use is "add freedom before it 
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is needed and remove it after it is no longer needed." With this approach the spaces 
6T(t) are fixed on the intervals JJ TJ- T.); let 9T1 be the 6(t) on JJ. It seems 
fundamental to this technique that the solution at time T. can be approximated well 
in the space 6Th 9 = l n9 Th . Roughly speaking, if the spaces are chosen so that 
the extra freedom is kept slightly longer than it is really needed to approximate the 
solution by some element of the space, then the parabolic Galerkin approximation 
will be a faithful representation of the solution. 

To make the foregoing remarks more precise suppose that the approximation 
properties of the spaces- 9T1 are known to satisfy the following conditions. There are 
constants CG and r, r is a positive integer, such that for eachj 1, . . ., M, there is a 
map V.: Jj - 9Th such that 

(3.2) max [1u - VJ HIH(u) + h2|u - H-'(u, + HU, J'?;, HH'(2)] ? C1h . 

Here h should be thought of as a small parameter that measures the number of 
unknowns in the spaces rather than the maximum mesh spacing. Suppose in 
addition that 

(3.3) TJ-TJ_ I > 2h2 

and that on JJ [TJ - h2, J + h2] there is a mapping V into 9Th satisfying (3.2) on 

J. instead of J. 
Under the above assumptions the solution U of (2.6) satisfies 

(3.4) gIIIU - u II-< C2C hr, 

where C2 depends only on T and the C of Theorem 2.1. 
To verify this result one needs to construct a function V E 9T for which the ill 

norm of the error is bounded by Chr. This is easily done by going linearly from V. to 

V. on the interval [Tj- h2, TJ] and linearly from VJ to V + I on [TJ, TJ + h2]. Since for 
each time V(t) is either a 1/(t) or a convex combination of a V1(t) and a Vk(t), both 
of which approximate u well, it is clear that the L2( 1) and H l(S) parts of 11u - Vili 
are bounded by Chr. The time-derivative part of Illu - V is only slightly more 
complicated. On [T. -h 2, TJ], for example, 

11 ut - Vt 11 H-1(&2,6 ) ? 1 Iut - 11 H- (&) 

(3.5) < max{ H ut 
- 

vjtH-H(&)' 
H Ut 

- H 
tH-'(2)} + h2 11VJ - 11 H- (Q) 

< Chr. 

The result (3.4) is very much like P. Jamet's result in [12], but (3.4) is derived 
under somewhat different hypotheses. 

The special case of piecewise linear functions might seem not to be allowed for by 
(3.2) since the interpolant does not get H-1(S) accuracy that is of a better order 
than its L2( 1) accuracy. This apparent difficulty can be overcome by constructing 
the functions V. on macro elements in which one (interior) degree of freedom is used 
to match the average value over the macro. Then, provided the mesh is locally 
quasi-uniform, (3.2) is reasonable. 

3.2. Nonlinear Equations. The error estimates of Section 2.2 can be carried over to 
the context of certain nonlinear equations with smooth solutions in very much the 
same way they were proved in [8]. 
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Suppose that (2.1) is replaced by 

(3.6) ut + V * (a(x, t, u)Vu) = f(x, t, u, Vu), a(x, t, u) -- = g(x, t, u), 

where a, f, and g are smooth functions of their arguments. Suppose that a is 
uniformly bounded above and below by positive constants and that a, f, and g are 
uniformly Lipschitz with respect to u. Also suppose that f is uniformly Lipschitz 
with respect to V u. Let 

(3.7) B(t, ; v>, () fa(x, t, )v4,* Vt dx. 

For this problem the continuous-time Galerkin solution is defined to be U E 91 
satisfying 

(u(0) - U(), x) 0, X e (o) 

(3.8) (Ut, X) + B(t, U; U, X) 
= (f(., t, U, VU), X) + (g(., t, U), x), X E 6T(t). 

The space 'T is the space introduced in Section 2.1. 
In order to treat the nonlinearity on the boundary, the argument below uses a 

trace inequality. Suppose that S2 is such that for each E > 0 there is a C(,e) such that 
for 4 E& H'(Q) 

(3.9) 2 
1122 < elI 4,11 1 + C(2)II 4 2 

We assume that a32 is locally Lipschitz and that S is bounded; this implies (3.9). 
The analogue of Theorem 2.1 holds in this case provided we restrict the infimum 

to V's in 9T that have bounded gradients. 
Forp 2> 2 and L 2 0 let 

(3.10) P L = { V E < 11 V(t)II WI P(2) 
- L, O s tT 

THEOREM 3.1. Suppose that, for some p > d (recall that Q C Rd) with p 2 2, each 
9T(t) is a subspace of W' P(Q). Let L > 0 be given. Then there exists a constant C 
such that 

(3.11) IIIu - UIII s Cinf{lU- VuiII: V 6Thp,L}I 

Proof. Let V be in 6TXp L, and define = U-V and -= u-V. Then the 
analogue of (2.10) is 

(0, X) + B(t, U; 4, X) 

(3.12) =(t, X) + B(t, u; 71, X) + [B(t, u; V, X) - B(t, U; V, X)] 
+ (f(., t, U, vU) - f( t, u, Vu), X) 
+ (g(-, t, U) - g(., t, u), x), X E '%(t). 

As before use X = 4. The first two terms on the right-hand side of (3.12) are 
bounded as in the proof of Theorem 2.1. The difference of the f 's is treated easily 
using the Lipschitz continuity of f to get 

(3.13) (f(., t, U, VU) - t, u, Vu), <) e eIl49112 + C[c[iH91I2 + llI I1] . 
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The boundary term in (3.12) is bounded using the trace inequality (3.9) to get 

(34 g, t, U) - , t, u ), C ) CH II HI L2(ai) + H1 H 11 L2(ao)] H0 1I L2(ao) 

(3.14) ? |lal1 
2 

+ C[110 112 + 11 
ni 

2,(2)] 

Let q be defined by 

1 +1 1 
p q 2 

Then 

(3.15) q2p>2 
(3.15) ~~~~~q 2 p 2 d- 

Hence for e > 0 there is C(e) such that for 4 Ez H&(S) 

(3.16) H11 + 1Lq(2) -11 4 11 HH(2) + C(e)HiPH. 

Now use the Lipschitz continuity of a(x, t, u) with respect to u to get that 

B(t, u; V, O) - B(t,U; V, ) ? C u - U1L7(2) 1VII WI.P(2) Hi #HHI 

< 21lH H + C(e, L)[|| 1112 + 11 j] 

The inequalities (3.13), (3.14), and (3.17) used with (3.12) with X = a then give 
(for suitable choices of e) the inequality (2.1 1). The remainder of the proof is almost 
exactly like that of Theorem 2.1. LI 

4. A Counterexample. To illustrate that changing the mesh in a completely 
uncontrolled way can cause convergence to the wrong answer a single example 
suffices. 

For simplicity this counterexample is constructed for a periodic problem in one 
space dimension. The first-order-correct backward-difference formulation will be 
used but the same result can be demonstrated for the continuous-time Galerkin 
process. 

Let u(x, t) for t > 0 be the solution of the problem 

au a2u= x&R,t>0, 

(4.1) 
-u(x,O) = sin3(297x x E R, 

u(., t) l-periodic in R. 

For j = 0, l, 2,..., let 6XY be the l-periodic piecewise linear functions over the mesh 
x, (i + 21)A\x, i = O, +1, +2,. .. ., where A x I 1/N. Let t. = jA t for A t > O given. 
Let U. E 1X be such that 

(4.2) (atuj X) + ax Ui Iax)= 
EJ~ 

where the inner product is taken over (0, 1), say. Just as in Section 2.3, take UO to be 
the L2(Q)-projection of the initial data. 

First note that the average value of each U. is zero since X lis a possible test 
function and (UO, 1) = 0. With X = UJ (4.2) gives that 

2At [ILJH2 - IIb5_II2] + 2L t 
J _I 

- 
I 

+ 
a U 2 0, 



98 TODD DUPONT 

where the L2 norm is taken over (0, 1). This gives that 

(4 3) ~~~~~~IIUjll2 - IIU_l2+IU- U_ l (4.3) 11512-I_>11+Ib5U1112?0 

If XJ is the space of possibly discontinuous 1-periodic piecewise linear functions 
over the same mesh as the space 6XJ, then 

(4.4) II1Uj - UIj1I > Il) u j- III, 

where WJ -I is the L2-projection of Uj into 9Th1 1. For the points xi in the mesh for 

9XJ let 

aX2UJ(X)= (AX)-2(U(X1 + AX) - 2U(x,) + U(x, - Ax)). 
A computation shows that 

(4.5) IIU - I 11 |i2 192(Ax) E (ax J(x,)) Ax. 

Because UJ has average value zero and is l-periodic, another calculation shows 
that 

(4.6) iiyi 768 E (ax uj(xJ))2x. 

Thus, 

(4.7) IlLUJ - WjI 112 4(x)4 U 11 2. 

This relation, (4.4), and (4.3) imply that 

(4.8) 1 + 4(1x) 

Hence 

(4.9) IUI < 1[1 + 4( AX)4]J 

Now fix any t > 0. Then 

(4.10) max IljLI2 ? 2[l + 4(LAx)4] 

If At and l\x tend to zero in such a way that (Ax)4/LAt __ o, then for any t > 0 

(4.11) max IIUL112 __0. 
jAt>t 

This scheme for changing the mesh is clearly not a good one to use. It does point 
out that changing meshes results in dissipation. In this case the mesh change seems 
to look something like the operator 

((AX)4/lA t)(a 

5. First Order Equations. For an equation of the form 

(5.1) ut + v(x, t)ux + b(x, t)u = f(x, t), 0 <x <1, t <0, 

where v(x, t) > 0, with initial-boundary conditions 
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there is a natural Galerkin method (and several that are less than natural). The 
purpose of this section is to indicate that the corresponding natural method based on 
changing function spaces has the same types of properties as its fixed function space 
prototype. 

Let the problem (5.1)-(5.2) be transformed so that go 0; this will in general 
involve changing f and the meaning of u. Now suppose that (5.1)-(5.2) has a weak 
formulation as follows: Find u: [0, T] -S DC, where SC is the subspace of H'(O, 1) 
consisting of all A(x) with A(O), such that 

(5.3) (ut, X) + B(u, X) (f X), X E , t > O, u(-, t) = uo. 

Here 

B(u, X) f'[vu,x + buX] dx. 

There are two important properties of the bilinear form B: 

(5.4a) B(9, ) CI11I112, & ED , 

(5.4b) B(c9, 4) ? CII9H( 11HO)I411, p E H'(0, 1), 4 E L2(O, 1). 

With these two properties the analysis for changing function spaces is very much like 
that expounded by B. Swartz and B. Wendroff [22]. 

Suppose now that S1 C Rd is a domain and that SC is a given subspace of H'(Q). 
Suppose that u: [0, T] -S DC is continuously differentiable. (This is more than 
minimal but we cannot get useful convergence results for minimally smooth func- 
tions here.) And suppose that B(t; *, *) is a bilinear form on SC X SC such that (5.4a) 
and (5.4b) hold for each t E [0, T] and the constant C can be taken to be 
independent of t. Suppose that u satisfies 

(5.5) (ut, X) + B(u, X) = (I' X), X E SC, 
wheref is a continuous map of [0, T] into L2( S). Let 

(5 .6) uo(x ) = u(x, O), x E S1. 

Now suppose that the spaces 6T(t) of Section (2.1) are subspaces of SC. Define 
U E Xby 

(5.7) (Ut, X) + B(U, X) =(,X), X Ez 6X(t), t Ez [O, T], 
(5.7) (U(0) - u0, X) =O, X E 6Th(0). 

In this case we get an error estimate that is analogous to Theorem 2.1 but which is 
not symmetric; at this level of generality this is as it should be [9]. Let, for all 
sufficiently regular maps 4 of [0, T] into H'(Q), 

(5.8) [[4]] = t1 L'(O,T; L2(2)) + 11 4 11 L'(O,T; H'(2)) 

THEOREM 5.1. There exists a constant C such that for u and U solutions of (5.5) and 
(5.7), respectively, 

(5-9) 11 u- U 11 L?(O,T; L2(Q)) ?<Cinft [[u - V]]: V E 6T}. 

Proof. Take V E 6X, and letO = U-V and q = u - V. Then 

(5.10) (t, X) + B(0, X) = (-nt X) + B(q, x), X E 6T(t), 0 < t < T. 
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Take x = O to see that 

( dti11)iio11 ? -B(, + (mt ) + B(q, ) 

< C[ll II1 + II -t II + II n 1H 1(Q)]L19HI 

Hence for 1 II H# 0 

(5.11) dtH 11?1< c[Il9 + qHt -I + 1Iq71 H()]. 

Integrate this over eachJj, use (2.12), (2.15), and Gronwall's lemma to get 

(5.12) 1 I 11 L??(O,T; L2(Q2)) < C[[ ]] - 

The conclusion now follows from the triangle inequality and the fact that 

I I I L-(O, T; L2(S2)) < CI [q [ n] - 

6. A Moving Finite Element. K. Miller has defined a class of methods for 
systematically moving the mesh associated with a finite element function space. 
These procedures, which he calls MFE's or moving finite element methods, seem 
experimentally to be quite effective for problems with sharp fronts [ 17], [18], [11], [2]. 

This section presents some preliminary steps toward understanding these tech- 
niques. In particular, the results of this section are concerned with the one space-di- 
mensional problem in which the underlying function space consists of piecewise 
polynomial functions. 

6.1. One-Dimensional Description. Take S1 to be the interval (0, 1). Suppose for 
simplicity that a(x, t) of (2.1) does not depend on t. The space DT(t) will be all 
continuous piecewise polynomial functions of degree at most r defined over a mesh 

{s,(t)}N 0, where 

(6.1) si(t ) = S(ih, t) 

and h = 1/N. The function S(y, t) will be defined as part of the MFE, but it will be 
a continuous piecewise linear function over a mesh { ih }) =. 

Let ,B be a continuously differentiable function from R+ (the positive reals) to 
R . Suppose that 

(6.2) lim /(x) + c0. 
x-~O 

The function /B is a penalty term used to control the mesh, and for the sake of 
generality we only give the assumptions we use in the proof. 

The formal motivation for the MFE method treated here is to choose the time 
derivatives of the approximate solution U(t) EE 6T(t) and S so as to minimize 

IIUt + EU-f112 + 1Sy + I'(Sy)H2 
at each time. Here e is the spatial operator associated with (2.1). This must be purely 
formal because of the fact that EU is not usually in L2(Q) when U is a continuous 
piecewise polynomial function. The function /B' is, of course, the derivative of /3 with 
respect to its argument. 

For each t E [0, T] 

S(y, t) = y + S(y, t), 
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where S(, t) E 6h0. The space 6T0 is the collection of all continuous piecewise 
linear functions over the uniform partition {ih} which vanish at y = 0 and y = 1. 
For each t for which S(-, t) is one-to-one, S` will denote the inverse of S as map of 
[0, 1] to R. 

The bilinear form B(t; , ) from Section 2 is to be extended to functions that are 
only piecewise smooth. For such functions q9 and A take 

N S 
(6.3) B(t; 9, 4) = f (aqg,,C + vpX, + bqp4) dx. 

The notation used earlier for the jump in a function 

(6.4) Is, = 4(SJ + 0) - 4(s - 0) 

will be used in this section too. 
The initial conditions for U and S will be 

(6.5) (U(0) - u(0),I X) = ?, X E (0), S(y, 0) = y, y E [0, 1]. 

(The particular choice of S(*, 0) being the identity is convenient, but any "tame" 
strictly monotone increasing map of [0, 1] onto [0, 1] would do as well.) 

The evolution of U and S is governed by the following set of orthogonalities: 

(6.6a) (Ut, 4) + B(t; U, ) = (f(., t), 4) + (g(, t), ,), 4, E (t), 
N-1 

(Ut,-UxA) + B(t; U, -Uxs)- 1 N a(sI)(UX)2 s1X(SJ) 

(6.6b) J 

+ (syt + f(Sy), xy) = (f(, t), -LuxJ), X E 6XT, 

where X(Y) - k(S(y, t)). 
One way to motivate (6.6) is to note that in the case of a fixed mesh, say 

S(y, t) _y, the usual Galerkin orthogonalities are expressed by (6.6a). (K. Miller 
was, to my knowledge, the first to observe that these can be formally derived from a 
minimization at each time.) The use of the Syt-terms in the minimization is to 
prevent singularity of the evolution equations in certain cases. If the approximate 
solution is a single polynomial of degree < r on two adjacent subintervals, then the 
solution is not changed if the interior boundary between the two subintervals is 
moved; this would give singular equations without the Syt + f3'(Sy)-term. The 
Syt-term is called a viscosity term by Miller and Miller since it keeps the adjacent 
knots moving at about the same speed. The f3'(Sy)-term is called a spring-force-term 
and it keeps the knots from coalescing. 

6.2. A Fundamental Stability Result. It is easily seen that the relations (6.6) are 
equivalent to a system of ordinary differential equations that has a solution locally 
in time, but it is not obvious that a solution exists for all t E [0, T]. 

THEOREM 6.1. The solution (U, S) of (6.6) exists for all t E [0, T], and, at each t, 
S(-, t) is a strictly monotone map of [0, 1] onto [0, 1]. Further there is a constant C such 
that 

(6.7) HU(, t)1H(Y) + jf(Sy(y, t)) dy < C, 0 < t < T, 

and 

(6.8) Sl y 2(o,T; L2(2)) + t H L2(02T; L2(Q)) < C. 
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Proof. Suppose that S(, t) is a strictly monotone increasing function of [0, 1] onto 
[0, 1] for t E [0, tI]. Then either tI = T or the system (6.6) has a solution that exists 
on some interval [0, t2), where t2 > tl, and if t2 is taken sufficiently close to tl, the 
mapping S(*, t) will be strictly monotone for t < t2. 

Forj= ,...,N and k =0,... ,r, let 

UJ k U(sj-.(t) + (sj(t) - sj-1(t))k/r, t). 

Take ULv E 9(t) to have the values Uj'k at the points Sjk = Sj-I + (sj - s-j)k/r. 
Set 

(6.9) Ut = Ut V+ UtH 

Then it is an easy exercise to see that on each interval (sj1 I, SJ) 

(6.10) Ut (x, t) = -Ux(X, t)st(s '(X, t), t). 

Take x in (6.6a) to be Utv and take X in (6.6b) to be St. Then add these two 
relations to get that 

IN-1I2ljS,+( (Ut, Ut) + B(t; U, Ut) - - 
2 a(sj)(Ux)2 ISJS + (sit + /3'(Sy) Sy ) (6.11)2 = 

- (f., t), ut) + (g(,t),LJt)- 

Now write 

(6.12) B(t; 9, Bj) =B(, 4) + Bo(t; , 4), 

where 
N 

(6.13) B1(qq)- E Bl J(9,) 
j=1 

and 

(6.14) B f a(x)(qqx4x + p4,) dx. 

Note that 

Ild 
_( 2 BI1(U, U) = BI1(U, Ut) + a(s, )(Ux(s))2sJ + (U(s ))2sy 

(6.15) -?(1)u(1)2y 

-a (s,- l (x(Sj_ l))2SJ_l -2 1US-l))2Sj'_ 1- 

Hence, 
Ild I N-I 

(6.16) - -dB1(U, U) B1(U U) - 2 a(s, 1 )2 U ,. 

Thus it follows that 

IIt LJI2 + IIsyt I2 + dt[2BI(U, U) + (i(SY), 1)] 

(6.17) ( f(, t), ut) + (g(( t), Ut )-Bo(t; U, Ut) 

I 1 UJ12 + C[i + IUii2] + d(g(*, t), U). 

In deriving (6.17) we used the fact that gt and f are bounded. 
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The inequality (6.17) together with Gronwall's lemma and the fact that a(x) > a 
> 0 imply there is a constant C such that on any interval [0, t2] for which the 
solution exists 

max (fl(S,), 1) < C. 

This implies that on no subinterval ((j - I)h, jh) is Sy equal to zero. Hence, since SY 
varies continuously in time on each subinterval, we see that Sy is, in fact, uniformly 
positive. This then implies that if t2 < T, the interval of definition of (U, S) can be 
extended. The bounds claimed also follow from the estimate that showed that SY 
stays positive. O 

The primary reason for allowing the mesh to change with time is to cluster much 
of the flexibility of the space 9%(t) in those areas where u is rough. Thus it is 
desirable for Sy(- t) to be quite small in a part of its domain if the solution is very 
sharply changing. Hence to allow for this possibility ,B should probably be chosen so 
that it is small until Sy becomes extremely small. 

The penalty term Syt + I3'(SY) has been included to give a nondegenerate prob- 
lem, but it can also be used to control the movement of the mesh. 

Suppose now that, instead of being defined on R+, /3 is only defined on an 
interval (/3, /3), where /3 P 0. Take /3 to be a continuously differentiable nonnegative 
function on (/3, /3) that goes to + oo as its argument goes to /3 or to /3. Then, we 
need to have /3 < 1 and / > 1 so that the initial value of (/3(SY), 1) is finite. 

For the remainder of this section the conditions that 

(6.18) lim/3(x) = + co, lim rB(x) = + co, 
x- xf 

will be assumed to hold. Under these new conditions on /3 Theorem 6.1 remains 
valid. Note that for /3 as above sj - sj I? h/3. If, for example, 3 = 2, then one half 
the points sj can be tightly grouped about a single area of roughness while the 
longest subinterval is no more than twice that of a uniform fixed mesh. 

6.3. Application of the Basic Results. The stability result, Theorem 6.1, tells us 
enough about the mesh {sj} that we can derive asymptotic error bounds. The order 
of convergence is what one would expect from a fixed-mesh procedure. 

THEOREM 6.2. Suppose that u, the solution of (2. 1), is sufficiently smooth. Then 

(6.19) IIIU - UIil < Chr. 

Proof. The estimation of the L?(O, T; L2( 0)) and L2(0, T; H1(Q)) norms is 
routine, but the calculation of the time-derivative error is not so trivial. 

Let sjk(t) = S((j - 1 + k/r)h, t), for k = 0,... ,r. Take W(x, t) EE 6X(t) to be 
the interpolant of u based on the points Sjk. Define 

(6.20) Wjk(t) = W(Sjk(t), t) = U(Sjk(t), t). 

Then 

(6.21) Wj'k(t) Ut(sjk(t), t) + UX(sjk(t), t)sJk(t) 

= ut(sjk(t), t) + UX(sjk(t), t)St(S'(sjk(t), t), t). 
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Just as for U, we can decompose W, as follows 

(6.22) t t +W 

where Wt' EE 6%(t) has the values Wj'h at each Sjk. Then, as before, the H-component 
is in general discontinuous and is given by 

(6.23) WtH(x, t) = -WX(X, 0)St(S I(X, t), t). 

Letting 4 denote the subinterval by subinterval interpolation operator we see that 

(6.24) Wt = J(ut) + -(uxSt(S- )) -(u))St(S-) = (ut) +p. 

At the points Sjk the polynomial p satisfies 

(6.25) p - Sr(S'I)[uX-(JUM. 

Hence, if u E L??(O, T; Hr+ I(s)), we see that 

(6.26) II P II L2(0,T; L2(2)) ( Ch . 

Of course the J(ut) term in (6.24) is easily compared to ut, and the result follows. 
Eli 

The smoothness required on u is not minimal in the above argument. One should 
probably use an Hl-type projection of u instead of the interpolant, but that would 
complicate the argument. 

6.4. Some Remarks on Moving Finite Element Methods. The estimates of the 
previous subsection indicate that the MFE method would work as well as a 
fixed-grid method on a smooth problem, but they do not indicate why the procedure 
is as effective as it seems to be on sharp front problems. 

The function space 910 can be replaced by one that has fewer parameters than 
N -1 for manipulating the mesh. For example, we could move every second 
meshpoint using the given evolution law and move the other points by an affine 
relation to their neighbors; this corresponds exactly to replacing %0 by the space of 
piecewise linear functions on a mesh {2ih})2 if N is even. 

For problems with an underlying flow, the boundary conditions that say the 
transformation S takes the boundary to itself seem wrong. This is a point that I 
expect to study and report on later. 

7. Sobolev Equations. Evolution equations that have a second order elliptic 
operator applied to the time derivative and some other second order operator 
applied in the spatial variables are frequently called Sobolev equations. Such 
equations have been studied as models for various important physical phenomena, 
from unidirectional water waves [3] to flow in a fractured oil reservoir [10]. 

The mesh modification error estimates of Section 2 carry over in part to the 
context of Sobolev equations. This will be illustrated by looking at an abstract 
continuous-time Galerkin method and then specializing it to a particular Sobolev 
equation. 

For simplicity this section deals only with linear equations, but this analysis can 
be extended, as in Section 3.2, to nonlinear problems that are sufficiently general to 
include the equations such as the so-called BBM equation presented in [3]. Such 
equations can have solitary-wave solutions that move without changing shape (each 
at a speed that is related to its size). Since these "elementary" solutions are of 



MESH MODIFICATION FOR EVOLUTION EQUATIONS 105 

significant interest, moving-mesh solution techniques seem to be very natural for 
these equations. Although the analysis of this section is an easy extension of that 
done for the parabolic case, it seems useful to have it as a basis for using methods of 
the type treated here on the scientifically important problems referred to above. 

Let B and B1 be continuous bilinear forms on a Hilbert space H. Denote by (,.) 
and I I the inner product and norm on H. Suppose that the form B1 is coercive 
and symmetric, and that u: [0, T] -* H is a C' function satisfying 

(7.1) Bj(ut, X) + B(u, X) = (f, X), X E H, 

where f is a continuous map of [0, T] into H. 
As in Section 2, let 0 = TO < T, < ... < TM= T partition [0, T], and take 

JJ = [ TJ- 1, T1). Suppose that, for each t, 9Th(t) is a finite-dimensional subspace of H. 
In addition assume that for j = 1,... ,M there are Lipschitz continuous maps J 1,: 

JJ -* H, 1 = L,. . . ,NJ such that the set {4 I(t)}7 is a basis for 9T(t) when t E JJ 
and such that the matrix (B,(4j,l, 4jk)) = (b/k), when continuously extended to JJ, is 
nonsingular for each t c JJ. In analogy with Section 2 define 9T to be the space of all 
maps V: [0, T) H such that 

(7.2a) V(t) E 9Th(t), 0 < t < T, 

(7.2b) Vis Lipschitz on]), j 1,...,M, 

(7.2c) VVT= V(Tj) - V(TJ - 0) satisfies B 1(V IT x) 0, 

X c- 9(TJ),j= 1,..M1 

The Galerkin solution is U c 9T such that 

(7.3) BI(U,, X) + B(U, X) = ( f, X), X E 9R(t), 0 < t < T, 
(7.3) BJ(U(0) - u(0), X) = 0, x C 9(0), 

where the time derivatives in (7.3) are one-sided at t = TJ. It is straightforward that 
U exists. Define for all A E H 

[4A] - B,(42, A2)1/2 

and 

[]f' = sup B,(4, X)/ [X], 
o C%9(t) 

where the subscript f is to remind us that the seminorm is defined by duality with 
respect to the finite-dimensional space 9Y(t). Then define for all sufficiently regular 

A: [0, T) -* H 

(7.4) 11142111 = SUP [42] + JT[At]ftdt. 
0O?t<T 

THEOREM 7.1. There exists a constant C such that if u solves (7.1) and U solves (7.3), 
then 

(7.5) III1U -uIII < C inf{lV -u III: V E- 9). 

Proof. Take V E 9T. Let t?= U- Vandq =u - V. Then 

(7.6) B,(t, X) + B(4, X) = Bl(-qt X) + B(q, X)~ X C 9(t). 
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Take x = t to get 

[f dt-[] -B(4, 4) + Bl(1qt, t) + B(-q, 3) 
(7.7) dt 

C[P]{[4] + [?1I + [t1If,t}. 
The relation (7.7) and the fact that 

(7.8) [P(TA) -<[4(TJ O )] 
give the inequality 

(7.9) max [ ft} dt + [( {(0)] . 

But then (7.6) implies that 

(7.10) iii O< CJ {[ -] + [ -tI f,t dt. 

The triangle inequality then completes the proof. DH 
Now take 2 to be Rn. Let 

B1(q), 42) f| (q94 + al(x)vp. v V+) dx, 
(7.11) 

B(q, 42) f |(a(x)v.p. VA + v(x). Vqq) + b(x)q)4) dx. 

Let H= H'(2), and assume that al(x) is bounded above and below by positive 
constants. Also assume that a, v, and b are bounded. 

Now suppose that u: [0, T] -* H'(R') satisfies 

(7.12) [1-V alVIut-V aVu + v Vu + bu = 0 

in the sense that 

(7.13) B1(ut, X) + B(u, X) =0 for X E H'(Rn), t E [0, T). 
Then Theorem 7.1 says that if the space 9T contains anything close to u, then U is 

close to u. 
Note that in this example the L2( 2)-projection at the points TJ was replaced by 

projection with respect to a bilinear form that behaves like the H1(2)-inner product. 
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