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Asymptotic Expansion of the Lebesgue Constants 
Associated With Polynomial Interpolation 

By P. N. Shivakumar and R. Wong 

Abstract. An infinite asymptotic expansion is obtained for the Lebesgue constants associated 
with the polynomial interpolation at the zeros of the Chebyshev polynomials. The error due to 
truncation is shown to be bounded in absolute value by, and of the same sign as, the first 
neglected term. 

1. Introduction. Given n distinct points x1n, x2n,. ... ,xnn in an interval [a, b] and n 
real numbers f(xln), f(x2), . . .,f(xnn), it is well known that there exists one and 
only one polynomial P(x) of degree < n - 1 such that P(xkn) = f(xkn) for k = 
1,...,n; see, e.g., [2] and [9]. Furthermore, this polynomial is explicitly given by the 
Lagrange interpolation formula 

n 

P(X) E f(Xkn)Lk(X), 

k=lI 

where the polynomials Lk(x) are defined by 

Lk(x) in 

X Xkn - in 

i#k 

The Lebesgue constants defined by 
n 

An= max E ILk(x)I 
a xSb kb=l 

are closely connected with convergence and divergence properties of the Lagrange 
interpolation polynomials; see [6], [9] and [10, Section 14.9]. 

In the case of the special sequence 

Xkn = cos(2k -1) 2 
T 

k = , n .,n 

a = -1, b= +1, i.e., for the zeros of the Chebyshev polynomials, Berstein estab- 
lished in his classical work [1] that 

An -2log n, as n - o. n 7T 
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This result was later improved by Luttmann and Rivlin [5]. They proved that 

An -logn +AO + an 

where an -O 0 as n -x o and 

(1.2) Ao =-( + log-. 

In a recent paper [4], Giinttner further improved the result by showing that the error 
an in fact satisfies the estimates 

(1.3) O<a < 7T n 1L n 
72n2 

The purpose of this note is to present a complete asymptotic expansion for An. 
More specifically, we demonstrate that, as n - , 

(1.4) A ".- 2logn+A +-~ 
8 0(I+A 

s-I (2n) 

where 

2s 1-)277 B2s 
(1.5) As (225-l 2s (2s 

and the Bs's are the Bernoulli numbers. Furthermore, we prove that the error in 
stopping the series at any time has the same sign as, and is in absolute value less 
than, the first term neglected. 

2. The Euler-Maclaurin Formula. The well-known Euler-Maclaurin formula states 
that 

n n 

f (j) f 1(x) dx + 4[f(o) + f(n)] 
(2.1) 10 

+ m 2s {f(2s- 1)(n) - f (2s- I)(o)} + Rm(fn), 
s1 (2s)! 

where m and n are arbitrary positive integers, 
(2 .2) Rm(fnl) =f n B2m - B2rm(x - [x]) f (2m)(x) dx 

0(2m)! 

and B2m(x) is the Bernoulli polynomial. Furthermore, if f(2m)(x) and f(2m+2)(x) 
have the same constant sign in (0, n), then Rm(n) is bounded in absolute value by, 
and has the same sign as, the first neglected term in (2.1); see [7, p. 285]. 

Now put 

(2.3) P2m(x) B2m(x -[X), 
(2m)! 

and note that P2m(x) is a periodic function with period 1. The following observa- 
tions were made by Giinttner [4]: 

(2.4) P2m(2x) = 2 2rn[P2m(X) + P2m(X + 2)1, 

(2.5) (l)mn1[P2m(x) 
- 

P2m(2)] 
: 0, 
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n 2n n 

(2.6) E f(2j- 1)= Ef(j)- E f(2j), 
j= I j=O j=O 

(2.7) 12f ) ( dx f2|f(x) dx- f(2x) dx. 

Equation (2.4) is a special case of the multiplication theorem [7, p. 285, Ex. 1.4], and 
(2.5) follows from the fact that (-l)+1P2,(x) assumes its absolute minimum in 
[0, 1] at x 4 1; see the properties of the Bernoulli polynomials in [7, pp. 281-283]. A 
combination of the above identities gives 

n I n rn-i B2 
E f(2j-1) - 2f f(x)dx + 2 (2 (1- 22sI) 

(2.8) j=I 
2 S_ I 2s)! 

X [ f (2s- 1)(2n) - f (2s- I)(0)] + rm(n), 

where 

(2.9) rm(n) -22 nff(2)(2x)[P2m(X + 4) - P2m(2()] dx. 
0 

From (2.5) it also follows that if f(2rm)(x) and f(2mn?2)(x) have the same constant sign 
in (0, 2n), then rrn(n) is bounded in absolute value by, and has the same sign as, the 
first neglected term in (2.8); cf. the so-called error test in asymptotics [7, p. 68]. 

Example 1. Let k be a positive integer and f(x) = xk. From (2.8) (and the remark 
following it), it follows that, for any m = 1, . . , [k ] + 1, we have 

n=o 1 k _ |2 , (2s) 1 m- k I 2s-t I B2s+ (k)( 
(2.10) Y, 

(2j1+ 1) 2k+ 
I 

rn-I-2)s 
-M() 

j=0 K -__\ S (2n)s r 

where e(k)(n) 0 if m - [k] + 1 and 

(2.11) 0 < (_l)1f8(k)(n) (2k?I (k+ 2 (2 
2 1) B2 I 

nk + 1 2m I(2nl)2mn 

if m < [4k] + 1. 
Example 2. It is well known that, as n -4 oo, 

n-I 0 
(2.12) ogn+1 1 B2s 1 

where y denotes Euler's constant. Furthermore, if the expansion is truncated at the 
term s - m - 1, where m is a positive integer, then the remainder is bounded in 
absolute value by the next term and has the same sign; see [7, p. 292]. From this and 
(2.6), it follows that 

n-I 1 l1 10y B2~ (Il-22sI1) 
(2.13) 2j+ 2 log n + log2 + - E 2s (2)2s 

as n -x oc. However, the error analysis for the expansion (2.12) no longer applies to 
the expansion (2.13). (All one can conclude at the moment is that the remainder is 
bounded in absolute value by three times the first neglected term.) To obtain a 
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similar result for (2.13), we employ (2.8)-(2.9) with f(x) = l/(x + 2), which to- 
gether with (2.13) gives 

(2-14) +ln-I logrn + log2 + Y n E B2s (I -22 1) n 

j=O j 2 2 __ 2s (2n)2 

with 

(2.15) rm(n) = 22m(2m)! f P2m(X + 2) - P2rnn(2) dx. 

In view of (2.5) and the error test [7, p. 68], we have 

(2.16) 0 < (-l)`n+'8m(n) < I B2m (2 - 1) 

Example 3. Let a be any real number, not 

-1 

or a positive integer. An argument 

completely analogous to that in Example 2 yields 

n-I 

2 (2j + I)a 
- 

(1 
- 

2a)?(-a) 

(2.17) j=0 

(2n )aI- 00o (a+ 1 - 2s- ) 2 
a+1 s+0I 2s (2n)2s 

as n -x oc, where t(z) is the Riemann Zeta function. Furthermore, the remark in 

Example 2, concerning the error due to truncation, also holds here if m> I(a + 1). 

3. Proof of (1.4). In [3], Ehlich and Zeller proved the identity 

1 n-I (j+17 
(3.1) An 

- - 2 cot 
n = 4n 

see also [8]. Following Gunttner, we substitute the expansion 

1 ?? z2r-I 
(3.2) cot z -- - 22r IB2r I (I Z j< 7) 

in (3.1). Thus 

n-I 4 0 B2 2r n1I 

(3.3) An - I__ 
4 
- 

0 

IZ 2r (2j + 1)2r- 
I 

j=0 2r=+ 1 7 r1 (2r)! (2n) j + 

From (2.10) and (2.14) it now follows that 

(3.4) A 2 
logn+A + 8 m-1 

s -I (+2As + pmn), n t IT 0 7 s- (2n )2s 

where 

(3.5) A 4 
log2 + 

2 1 
00 t2r)! 

A0-og+y- 
- E 

7T 7T 7Tr1 r (2r)! 
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(-l)s?lA5 = B2 (22s - 1) 

(3.6) B2s 2251l IB2 | 2r 

(2s)! 2 r=s+l (2r - 2s)! 2r 

and 

(3.7) Pm(n) = - m(n) - 2 ( 2 ) (n2r) 

To show that (3.5) and (3.6) agree with (1.2) and (1.5), respectively, we recall the 
identities 

?? 22r- I I B2 I 2 (3.8) logsinz-logz- 2 2) (0 <IzIj< ), 
(3.8) r-l r (2r)! 

(3.9) tan z = 1I z (2r) < 7 

((3.8) is obtained from (3.2) by integration.) Replacing z by 7/2 in (3.8), we obtain 
immediately (1.2) from (3.5). Since cot(vT/2 + z) = -tan z, it follows from (3.9) that 

(3.10) cot(2r=)( ) =-22r(22r 1) IB2rI/2r. 

On the other hand, we have from (3.2) 

31 Cot(2r-) '1 2 ) (\2r (2\2r 
00 ?T 2s IB2sI (3.11) 

co(r') - (2r - 1)! (2)_(2) z v 

~2 (2r T~ ?T) s-r (2s - 2r)! 2s 

A comparison of (3.10) and (3.1 1) gives 

(3.12) J 
2j~ 2 2r -1 2 (r-1 

s=r? I 2s (2s-2r)! r (22r- 1)IB2r -(2r- 1)!, 

which implies that (3.6) and (1.5) agree. To estimate the remainder pm(n), we apply 
(2.1 1) and (2.16) to (3.7). The result is 

(3.13) 0 ? (-1)m?l m(ii) 8 (22n - 1)2 2m B2, 
(3.13) 0 I Pm n)<7 (2m)! 2 m (f)2m 

Here we have also made use of (3.12). This completes the proof of the result stated in 
Section 1. 

Remark. The methods employed in this note are applicable to a much broader 
class of problems than merely the sum (3.1). It is a trivial extension to apply the 
method to any Riemann sums of the forms 

1 n-I 2j+ I 

and 

n-I 
n= 
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as long as f(z) has a Laurent expansion of the form 
00 

f(Z) = cz 0 <| z < P, 
r=O 

p being greater than one. 
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