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On Euler Lehmer Pseudoprimes and Strong Lehmer 
Pseudoprimes With Parameters L, Q 

in Arithmetic Progressions 

By A. Rotkiewicz 

Abstract. Let U,, = (a' - /')/(a /-3) for n odd and Un = (a" - /")/(a2 - 2) for even n, 
where a and /3 are distinct roots of the trinomial f(z) = - L Z + Q and L > 0 and Q are 
rational integers. Un is the n th Lehmer number connected with f(z ). 

Let [ = (a + /3X)/(a ? /3) for n odd, and [ an + /31 for n even denote the nith term 
of the associated recurring sequence. An odd composite number n is a strong Lehmner 
pseudoprime with parameters L, Q (or slepsp(L, Q)) if (n, DQ) = 1, where D = L - 4Q * 0, 
and with 8(n) = n - (DL/n) d 2S, d odd, where (DL/n) is the Jacobi symbol, we have 
either Ud 0 (mod n) or kd 2' 0 (mod n), for some r with 0 < r < s. 

Let D L - 4Q > 0. Then every arithmetic progression ax + b, where a, b are relatively 
prime integers, contains an infinite number of odd (composite) strong Lehmer pseudoprimes 
with parameters L, Q. Some new tests for primality are also given. 

1. First we recall the definitions of Euler pseudoprimes, which have been intro- 
duced (see Pomerance, Selfridge, Wagstaff [5]) because they are rarer than ordinary 
pseudoprimes. 

An odd composite number n is an Euler pseudoprime to base c (or epsp(c)) if 
(c, n) = 1 and 

(1) ~ ~ ~ ~ ~~~~n-1/2 (l) C(n-1)/2~~~c- -(mod n), 

where (cln) is the Jacobi symbol (see also Lehmer [4]). An odd composite n is a 
strong pseudoprime for the base c (or spsp(c)) if, with n - 1 = d 2, d odd, we have 

(2) cd-1 (mod n) or Cd2_ -1 (mod n) for some r with 0 < r < s. 

Any prime p with (p, c) = 1 satisfies one or the other term of this alternative. 
Pomerance, Selfridge and Wagstaff [5] show that a strong pseudoprime is always an 
Euler pseudoprime, but not vice versa, so criterion (2) is indeed stronger than (1). 
Rotkiewicz [ 10], [ 11 ] proved that every arithmetic progression ax + b (x = 0, 1, 2 . ..) 
where (a, b) = 1, contains infinitely many ordinary pseudoprimes (that is to say, 
pseudoprimes for the base 2). 
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It was shown by van der Poorten and Rotkiewicz [6] that every arithmetic 
progression ax + b (x = 0, 1, 2,.. . ), where a, b are relatively prime integers, contains 
an infinite number of odd (composite) strong pseudoprimes for each base c 2 2. 

Baillie and Wagstaff [1] define several types of pseudoprimes with respect to 
Lucas sequences and prove the analogs of various theorems about ordinary pseudo- 
primes. 

Let D, P, Q be integers such that D = p2 - 4Q =# 0 and P > 0. Let UO = 0, 
U1 = 1, VO = 2, VI = P. 

The Lucas sequences Uk and Vk are defined recursively for k > 2 by 

Uk = PUkI I - QUk-2, Vk PVk-I QVk-2. 

We will write Uk(P, Q) for Uk when it is necessary to show the dependence on P and 
Q. For k 0 0, we also have 

Uk= (a 
k 

)/ (a - ), V = ak + k, 

where a and P3 are distinct roots of x2 - Px + Q = 0. 

For odd positive integers n, let e(n) denote the Jacobi symbol (Dln), and let 
8(n) = n - (n). If n is prime and if (n, Q) = 1, then 

(3) U8(n) 0 (mod n). 

If n is composite, but (3) still holds, then we call n a Lucas pseudoprime with 
parameters P and Q (or lpsp(P, Q)). A proper generalization of epsp(c) and spsp(c) 
for Lucas pseudoprimes is the following: 

An odd composite number n is an Euler Lucas pseudoprime with parameters P, Q 
(elpsp(P, Q)) if (n, QD) = 1 and 

U(n-L-(n))/2 0 (mod n) if (Qln) 1, or 

V(n-e(n))2 -0 (mod n) if (Qln) 
- 

-1. 

An odd composite number n is a strong Lucas pseudoprime with parameters P, Q 
(or slpsp(P, Q)) if (n, D) = 1 and, with 8(n) = d 25, d odd, we have either 

(i) Ud- 0 (mod n), or 
(ii) 0 0 (mod n), for some r with 0 < r < s. 

Every prime n satisfies the conditions of these four definitions (with the word 
"composite" omitted), provided (n, 2QD) = 1. 

Much more general sequences than Lucas sequences are Lehmer sequences. 
Let D, L, Q be integers such that D = L - 4Q # 0 and L > 0. Let UO = 0, 

U1 = 1, VO = 2, VI = 1. The Lehmer sequences Uk and Vk are defined recursively for 
k 2 by 

Uk = LUk I - QUk-2 fork odd, 

Uk = Uk-I - QUk-2 for k even, 

Vk = LVk-I - QVk-2 for k even, and 

Vk = Vk - QVk-2 for k odd. 

For k > 0, we also have 

{(ak 83k) (a- - ) if 21 n, 
k 

1 o(ak _Pk)I (a 2 - /2) if 21 n, 
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and 

(ak + 8k)l (a + 3) for 21 n, 
k lofk + /k if 21 n, 

where a and /3 are the distinct roots of z2 - VTZ + Q = 0. 
If L = p2, from Lehmer numbers we get Lucas numbers. In the case of Lehmer 

numbers we can assume without any essential loss of generality that (L, Q) = 1. 
This is not true for Lucas numbers. 

Rotkiewicz [12] gave a proper generalization of ordinary pseudoprimes for Lehmer 
numbers. 

A composite n is a pseudoprime with parameters L, Q (or for the bases a and /3) 
(or lepsp(L, Q)) if (n, DL) = 1 and 

Un-e(n)-0 (mod n), where -(n) = (LD/n). 

Rotkiewicz [12] proved that if (L, Q) = 1, L > 0, D = L - 4Q > 0, then every 
arithmetic progression ax + b (x = 0, 1,2,. ..), where a, b are relatively prime, 
contains an infinite number of odd (composite) pseudoprimes with parameters L, Q 
(that is to say, pseudoprimes for the bases a and /3). 

Now we shall give the definitions for Euler Lehmer pseudoprimes and strong 
Lehmer pseudoprimes. 

An odd composite n is an Euler Lehmer pseudoprime with parameters L, Q (or for 
the bases a and /3) (or elepsp(L, Q)), if (n, QD) = 1 and 

U(n-e-(n))120 (mod n) if (QLln) = 1, or 

V(n-e-(n))120 (mod n) if (QLln) = -1, where c(n) = (DL/n). 
An odd composite number n is a strong Lehmer pseudoprime with parameters L, Q 
(for the bases a and /3) (or slepsp(L, Q)) if (n, DQ) = 1, and with 8(n) = n - 

(DL/n) d 2s, d odd, we have either 

(j) Ud 0 (mod n), or 
(jj) Vd.2r- 0(mod n), for some r with 0 < r <s. 
Every prime n satisfies the conditions of each of these four definitions (with the 

word "composite" omitted), provided (n, 2QD) = 1. The following theorem holds. 

THEOREM 1. If n is a slepsp(L, Q), then n is an elepsp(L, Q). 

The proof is analogous to the proof of Theorem 3 from the paper of Baillie and 
Wagstaff [1] on slpsp(L, Q) and may be omitted. In the present paper we shall prove 
the following 

THEOREM 2. Let D = L - 4Q > 0, L > 0. Then every arithmetical progression 
ax + b (x = 0, 1, 2,...), where a, b are relatively prime integers contains an infinite 
number of odd strong Lehmer pseudoprimes with parameters L, Q (that is to say, slepsp 
for the bases a and /3). 

2. For each positive integer n we denote by 4on(a, /) = 4n(L, Q) the nth cyclo- 
tomic polynomial 

On(L, Q) = Oja /3) f= (a - ;mfl) = g (ad - /3d<n/d 
(m, n) =1 dln 
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where i;n is a primitive nth root of unity and the product is over the 4(n) integers m 
with 1 < m < n and (m, n) = 1; y is the M6bius function. 

It will be convenient to write 

0(ax, fl; n) = On(a, # 

It is easy to see that q4(a, /3; n) > 1 for D > 0, n > 2. Indeed, since 4)n(a, /) is 
symmetrical in a and /3, we may assume that 

a 2 1, 3 2 2 

hence for n>2, /3>0, we have 4O(a,/3; n)>I a-/3 D VJJ 1, and if n>2, 
,8 < 0, then O(a, /; n) > I a + 8 =FLV X> 1. 

A prime factor p of Ub is called a primitive prime factor of Un if p j Un but 
p DLU3 * - Un-l. 

The following result is well known. 

LEMMA 1. Denote by r = r(n) the largest prime factor of n. If rj (4a, /; n), then 
every prime p dividing O( a, /3; n) is a primitive prime p divisor of Un and is -(DL/p) 
(mod n). 

If rk 11 4(a, /3; n), k 2 1 (which is to say rk I O(a, /; n) but rk? l O 4(a, /3; n)), then 
r is a primitive prime divisor of Un/rk. 

The number Un for n > no(a, /3) = no(L, Q) has a primitive prime divisor. The 
number no(a, 8) can be effectively computed. If D > 0, then nO = 12. 

Proof. The first part of this lemma follows from Theorems 3.2, 3.3, and 3.4 of 
Lehmer [2]; the second part about existence of primitive prime factors follows from 
the theorems of SchinZel [13] and Ward [14]. 

LEMMA 2 (ROTKIEWICZ [12, LEMMA 5]). Let 4i(pllBp2 ... p'k) 2p Cilp22 ... 

pCk( p,2 
- 

1)( pl - 1) * 
. 

-P 1). 

If q is a prime such that q2 11 n and a is a natural number such that a+(a) I q - 1, 
then 4(a, /3; n) -1 (mod a). 

3. Proof of Theorem 2. If for each pair of relatively prime integers a, b there is at 
least one strong pseudoprime with parameters L, Q of the shape ax + b, where x is a 
natural number, then there are infinitely many such pseudoprimes. To see this just 
notice that we then have such pseudoprimes of the shape adx + b for every natural d 
with (d, b) = 1, and we may choose d as large as we wish. This said, we may also 
suppose without loss of generality that a is even and b is odd and that 4DL I a, since 
if b1 is a prime > 4DL of the form at + b, then every term of the progression 
4DLax + b, (x = 1,2,...) is b (mod a), its difference is 4DLa and (4DLa, b1) = 
1. 

Thus, we prove the theorem if we can produce a strong pseudoprime n with 
parameters L, Q with n -b (mod a). 

Given a and b as described, with 2A11 b - (DL/b), X : 1, we commence our 
construction by choosing three distinct odd primes p 1, P2, p3 that are relatively prime 
to a. Furthermore,we introduce two further primes p and q, with q > pi (i = 1, 2, 3), 
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which are to satisfy certain conditions detailed below. Firstly, we require that 

(a) 2xpIp2p3q2 II p - c(p) and (LQD, p) = 1. 

Since p is prime, it satisfies the condition Ud 0 (mod p) or V20d = O (mod p) for 
some r, 0 r < X withp-e(p) = 2xd, (2, d) = 1, e(p) = (DL/p). 

This holds because ?-1 are the only square roots of 1 in a finite field and 

UpE(P) =0 (mod p), where e(p) = (DL/p). So either 

(4) U 0 (mod p) or P(p))/2--O(modp) 

for some ji, 0 < i < A. Slightly different proofs will be required to deal with the two 
terms of the alternative. However, in either case we will construct q and p so that the 
number 

n p =P p(a, ; (p - c(p))12'pj) or p(a, /3; (p - -(p))12l-p ) 

(i= 1,2,3) 

is our required strong pseudoprime with parameters L, Q; here we take the first 
choice for n1 if the first term of the alternative (4) applies, and the second, with the 
appropriate ji, in the event the second term of the alternative (4) applies. 

It will be convenient to write 

mi= nlp (i =1,2,3) 

and to denote the integers (p - E(p))12'p1 and (p - c(p))121-'p1, respectively, by 

S, (i = 1, 2, 3). We can assume that s, > no = 12. Hence if p divided more than one 
of the mlI, then by Lemma 1 we would have p as a primitive prime factor of both Us 
and Us which is absurd if si # sj. So we may suppose that p divides neither m I nor 
m2, say. Now let r be the greatest prime factor of p - c(p). By (a) we have r 

- 
q so 

r > p, P2' and thus r is the greatest prime divisor of both s, and S2. Again by 
Lemma 1, if r were to divide both ml and M2, then r would be a primitive prime 
factor of both (/ 7k and US217k, where rk 1 p - c(p). But this is absurd, so without 
loss of generality r does not divide ml. Then Lemma 1 implies that every prime 
factor t of ml is congruent to (DL/t) mod s . Since D > 0, we have that ml n= np 

is positive. So 

(S) ml l(DLIml ) (mod sl) . 

Certainly q2 1I sI. So if we insist that a+(a) J q - 1, then by Lemma 2 we have 

mI = 1 (mod a). 
Since 4DL I a, we have m,1 (mod 4DL). So (DLm i1) (DL14DLg + 1) 1 

for some positive g, and from (5) it follows that 

(6) ml1 (mods,). 

Further, if we insist that 

(b) 2pl(p72-1)lq-1, 

then by Lemma 2 (recall that 4(p) 2p( p2 - 1)) we have 

(7) ml1 (mod p). 

In the same spirit, the requirement on q that 

(c) 3 22X+? qI 1 
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implies by Lemma 2 (recall that 4(2X?+ ') = 2 * 2X+ 13 = 2x+23) that 

(8) ml 1 (mod 2x?+)* 

Recalling that, by (a), both pil P -c( p) and 2A p - c( p), we can conclude from 

(6), (7) and (8) that 

ml _1 (mod2(p -(p)))9 

which is to say that 

(9) n1 = pml = p(2(p - c(p))x + 1) = (p - -(p))(2px + 1) + -(p), 

for some positive x; x is positive because, with D > 0 and s1 > 2, certainly 
4)(a, /; sl) > 1. 

We have 

,-(nl) = (DL/pml) = (DL/p) * (DLm l) = (DL/p) = p (p) ) 

Now suppose that the first term of the alternative (4) applies. By (9) we have 

2A- -(nI)- - (p) - p - c(p) * (2px + 1), 

so (mi, p) = and 

ml = 0j(a, /; (P - -(p))12xpI) I U(p-E(p))/2Ap,, P I U(p-E(p))121 

n pl =P (a, /; (p - -(p))12xpI) I U(p-I(p))12 I U(nl-e(nl))12 \ 

where (nI - c(n ))/2x is odd. Hence nI is a slepsp with parameters L, Q. If the 
second term of the alternative (4) applies, we have, as before, 

nl- (n1) - - 6(P) * (2px + 1), 
2 2 

and we note that 2px + 1 is odd. Hence we have 

ml = .(a, /; (p - c(p))12''p1 ) I V(p-E(p))12Ipj I P V(p-E(p))12" 

which imply that 

n1 = po(a, /; (p - 1)/2''pl ) I V(p-e(p))/2I1 VJnle(nl))/2M, 

so also in this case n I is a slepsp with parameters L, Q. It remains for us to show that 
conditions (a), (b), (c) can be satisfied and that nI lies in the appropriate arithmetic 
progression. We apply Dirichlet's theorem on primes in arithmetic progression to 
select a prime q with 

2p1P2P3(p2 - 1)(P2 - 1)(p - 1)I q - 1, 3 * 22xa4(a) I q -1 

This gives (b) and (c) and automatically yields q > p1 (1 1, 2, 3). Since (a, b) = 1, 
4DLI a, wehave(DL/b) #P 0. 

By the Chinese Remainder Theorem there exists a natural number m such that 

( 10) m _ (DL/b) + p P2 p3q2 (modp 2pp2q3), m_b(mod2A+la). 

From (10) it follows that (m, 2ap2 p2 2q2) =1 and,by Dirichlet's theorem, there 
exists a positive x such that 2X lap1P2 p3q + is a prime. Since 4DL I a, we 
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have p m (mod 4DL), m -b (mod 4DL), hence c(p) = (DL/p) = (DL/m) 

(DL/b). Thus 2Xpi p2 p3q2 11 p - (p), (DLQ, p) = 1. This gives (a). These remarks 
conclude our proof for we have a+(a) q - 1, q2 1 p - _(p), so Lemma 2 yields 

mI =1I (mod a). Hence 

n1 = pm b (mod a) 

as required. 
Test for Primality. Let Un be the nth Lehmer number. The generalization of the 

Euler theorem for Lehmer numbers is the following (cf. Lehmer [2]). 
If p is odd prime and (p, DLQ) = 1, then 

ap/2-(DL/p)/2 -(LQp )/p/2-(DL/p)/2 (mod p) 

or, using Un and Vn, 

U(p_e(p))12 0 (mod p) if (LQ/p) = 1 

and 

V(p_(p))12--0 (mod p) if (LQ/p)= -1, 

where -(p) = (DL/p). 
According to Proth's theorem if N = h 2n + 1, where 0 < h < 2n and (a/N) 

-1, then N is prime if and only if an-112 =-1 (mod N). For the proof see Robinson 
[9, Theorem 9]. 

The following generalization of Proth's theorem holds. 

THEOREM 3. Let N =h *2n 1, where 0 <h <2n, n - 2, a and /3 be roots of 
the trinomial f(z)= z2-F z + Q, where L > 0, D= L - 4Q #X 0, (L, Q)= 1, 
KL, Q)=/= K1, 1), <2,1), <3, 1) (i.e.,a/3g is not a root of unity). Let (DLQ, N) = 1, 

(DLIN) + 1, (LQIN) -1. Then N is prime if and only if 

N I ah2 + Ah 

Proof of Theorem 3. If N is prime, then aN/2(DL/N)/2 (LQIN)/3N/2(DL/N)/2 
(mod N), and since (DLIN) 1, N = 2nh ? 1, (LQIN) -1, we have 

o(2nh 4- 1)/2-(-4+ 1)/2 _ _p(2nh +1)/2-( + 1)/2 ( a ~ ~ ~~/('hI)2?)2(mod N) 

and 

N a2'h + /32''h 

Suppose now that N is not prime and N I a2n'-lh + /32n-'h Let p be the least prime 
factor of N. Since a/3 is not a root of unity, we have 

p _-41 (mod22n). 

From (LQIN) -1 it follows that N is not a square, and a factorization of N 
would yield 

N = p q p(p + 2) > (2 n - 1)(2 n + 1) = 2 2n- - 1 > h - 2n - 1= N 

a contradiction; this completes the proof of Theorem 3. From Theorem 3 we deduce 
the following generalization of the Lucas-Lehmer criterion. 
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THEOREM 3'. Let N = h * 2n + 1, where 0 < h < 2', n ? 2, a and /3 be roots of the 
trinomialf(z) = z2-- z + Q andL > O, D = L-4Q O, (L, Q) 1, (L, Q)=# 
(1, 1), (2, 1), (3, 1). Let (DLQ, N) = 1, (DL/N) 1, (LQ/N) -1. Then N is 
prime if and only if 

Vn-2 _0 (mod N), 

where v = I - 2Q2h with vo = a2k + f32h i - 1,2. 

Proof. Let iv, = ah 21+ + phf 2'. It follows from Theorem 3 that it is enough to 
prove that vl =- for i > 0. This is true for i = 0. Suppose that v-, = v. We have 

-2 2Q21+1h (a21h + /3211h) - 2(a3)2 

- a2'+2h + A3 +2h 

This proves Theorem 3'. We can calculate the number vo = a2h + /2h = ah by using 
the recurrence relation aO - 2, a, = a2 + 32 = L - 2Q, ai = alai, - Q2a,-2. 

If we put in Theorem 3' Q ? + 1, we get the following 

COROLLARY 1. Let N = h 2n + 1, O <h <2n, n 2 2, a and /3 be roots of the 
trinomialf(z) - Z2-Jiz ? 1, L > 0, (L, ?1)# (1, 1), (2,1), (3, 1), (DL/N) - 

? 1, (?-LIN) = -1. Then a necessary and sufficient condition that N shall be prime is 
that 

Vn-2 =0 (mod N), 

where v V2l - 2 vo = a2h + 32h 

For h = 1, L = 2, f(z) - Z 2- Z - 1, we have v = a2 + /2 (a + /)2 - 

2a/3 = 2 + 2 - 4, and from Corollary 1 we obtain the Lucas-Lehmer theorem on 
the Mersenne numbers (see Lehmer [31). Lehmer numbers with respect to the 
trinomial z2 - vfLz 1 correspond to Lucas numbers with respect to the trinomial 
Z2- Lz + L,and it is easy to see that Corollary 1 for N = h * 2n - 1 corresponds to 
Theorem 5 of Riesel (see [8]). Riesel [8] considered the case in which h is a multiple 
of 3. If h = 3, the value u = 5778 will fit for n 0, 3 (mod 4) (Lehmer [2]), and if 
h = 6a + 1 and 31 N, the value uo = (2 + Th)h + (2 - F)h will fit for all n (Riesel 
[7]). 

Riesel [8] used his technique to find all primes N 3A * 2n - 1 for all odd 
A < 35 and all n < 1000. 

Theorem 3 implies immediately the following 

COROLLARY 2. Let N = h - 2n + 1, where 0 < h < 2n, n > 2, a and /3 be roots of 
the trinomial f(z) = Z2- lz -4+ Q, where L > 0, D L - 4Q 7# 0, (L, Q) - 1, 
(L, Q)=# (1, 1), (2, 1), (3, 1). Let (DLQ, N) = 1, (DL/N) = + 1, (LQ/N) = -1. 
Then N = h - 2n + 1 cannot be elepsp with parameters L, Q (that is to say, elepsp for 
the bases a and /3). 
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