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The Sequence of Radii of the Apollonian Packing 

By David W. Boyd 

Abstract. We consider the distribution function N(x) of the curvatures of the disks in the 
Apollonian packing of a curvilinear triangle. That is, N(x) counts the number of disks in the 
packing whose curvatures do not exceed x. We show that log N( x )/log x approaches the limit 
S as x tends to infinity, where S is the exponent of the packing. 

A numerical fit of a curve of the form y = Ans to the values of N-(1000n) for n 
1, 2,..., 6400 produces the estimate S 1.305636 which is consistent with the known bounds 
1.300197 < S < 1.314534. 

1. Introduction. Let T be a curvilinear triangle bounded by three mutually tangent 
circles. The Apollonian or osculatory packing of T is a sequence of disks (D,1,} all 
contained in T and such that, for each n, Dn has the largest radius of all disks 
contained in T \ (DI U ... U I)n- 1.) 

The exponent of the packing was defined by Melzak [7] to be 

(1) S = inf{t: Irn' < ox} sup{t: rn' = ) 

where rn denotes the radius of Dn. In [1], [2] we developed an algorithm which, for 

any real K > 0, produces bounds X(K) < S < [I(K) which converge to S as K -> 00. 

This produced the numerical bounds 1.300197 < S < 1.314534. In [3], the methods 
of [1] were used to show that S is the Hausdorff dimension of the residual set of the 
packing. 

In [8], Melzak described a computer experiment in which the first 19660 disks of 
the packing were generated. A curve of the form f(n) = Ans was fitted to the 
computed function Num(n) = Dk: rk > (1000n)-'}, giving s = 1.306951 as a 
heuristic estimate for S. This experiment has been repeated by the author on a 
number of occasions. In our most recent computation, we generated 41,694,859 disks 
obtaining the estimate S - 1.305636. This is described more fully in Section 7 of this 
paper. 

As Wilker [9] pointed out, the success of such experiments suggests that if 
N(x) = {n: r-1 < x}, then it may be true that 

(2) lim log N(x)/logx = S, 
X 0x 

or equivalently that 

(3) lim log rnllog n = -I1/S. 
n -oo 
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As is well known, this does not follow from (1). What does follow from (1), without 
using any geometrical facts, is that 

(4) lim sup log N(x)/log x = S 
x- Cc 

and 

(5) lim sup log rtjlog n = -1/S. 
fl -~ 00 

But, if r, is simply required to be a decreasing sequence of positive numbers, one can 
prescribe the lim inf of these expressions in an arbitrary way consistent with (4) or 
(5). Wilker [9, p. 122] gives such examples as well as an investigation of the 
relationships between the exponent and many other measures of the rate of conver- 
gence of numerical series. 

The purpose of this paper is to show how the methods of [1] can be used to prove 
(2) and (3). Thus, for any E > 0, we will show that there are constants A(E) and B(E) 
so that 

(6) A(E)xs-E < N(x) < B(E)xS+ 

We do not know whether or not N(x)x-S converges as x - oo. The experimental 
results described in Section 7 suggest that this may be false and that perhaps a 
relationship such as N(x) AxS(log(x/B))T might be more appropriate. It is not 
known, either, whether or not I rs = oo, and it does not appear that this can be 
answered by the methods of [1]. 

It is worth mentioning that my motivation for examining this question was a 
problem posed by Coxeter [5], which asks one to find the radius of the smallest circle 
into which disks of radius 1/n (n= 1, 2,...) can all be packed. A rather elegant 
proof that the answer is 3/2 would be to show that the disks in a certain Apollonian 
packing have radii satisfying rn' I< 3n. (See [4] for a more elementary solution.) The 
methods of this paper can be used to provide effective estimates of this sort, but the 
numerical details are considerable. 

2. A Result from the Theory of Numerical Series. Since we will be using (4) here, 
we give a proof. The result is also proved in [9]. The proof of (5) then follows by 
observing that n H-* l/rn and x H-* N(x) are essentially inverse functions. 

To prove (4), one observes that, if t > S, then I r,' = A(t) < oo. Thus 

x-tN(x) -< rt -A(t). 
n?N(x) 

Taking logarithms and letting x - oo and then t I S shows that 

lim sup log N(x)/log x < S. 

On the other hand, if the inequality were strict, then partial summation would show 
that I r,' converges for some t < S contrary to the definition of S. 

To prove (2) then, we need only prove that 

(7) liminf log N(x)/logx > S. 
x xC 

3. A Basic Inequality. We follow the notation of [1], [2], [3] to which we refer the 
reader for more details. As usual, if a disk D has radius r, then we call k = l/r the 
curvature of D. Let T(a, b, c) be the curvilinear triangle bounded by three mutually 
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externally tangent circles with curvatures a, b, c satisfying 0 < a < b < c and b > 0. 
The Apollonian packing of T(a, b, c) will be denoted by P(a, b, c). We can index 
these disks in a consistent way by a parameter a which is a vector of arbitrary length 
(including 0) with components 1, 2, or 3. We denote the curvature of the a th disk by 
k(a; a, b, c). The proof of Lemma 1 of [1] then gives 

(8) bk(a; 0,1,1) < k(a; a, b, c) < (a + c)k(a; 0,1,1). 

4. The Necklace Decomposition. As in [1], we decompose T(a, b, c) into the 
disjoint union of an infinite number of disks and curvilinear triangles. This decom- 
position appears to have been first used in [6] in a proof that the Apollonian packing 
is complete. 

Let AO, BO, CO denote the sides of T(a, b, c) and let Cn be the disk tangent to AO, 
Bo, Cn for n = 1,2,. Similarly, define An and B, (so A, = B1 = Cl). Let 

cn = gn(a, b, c) be the curvature of Cn, so that g(b, c, a) and gn(c, a, b) are the 
curvatures of An and Bn, respectively. 

For notational convenience, write 

, F(a, b, c) = F(a, b, c) + F(a, c, b) + F(b, a, c) + F(b, c, a) 

(9) S3 

+F(c, a, b) + F(c, b, a), 

and use a similar notation for unions. Then T(a, b, c) may be decomposed as 
follows: 

00 00 

(10) T(a, b, c) = C1 U U (An U Bn U Cn) U U U T(a, cn, Cn+ 
n=2 S3 n= I 

where, in the last term, it should be understood that cn denotes the function 

gn(a, b, c). 
In particular, then 

00 

(11) P(a, b, c) D U U P(a,Cn, Cn+1) 
S3 n=1 

Now, define 

(12) N(a, b, c; x) ? {k(a; a, b, c) < x}. 

Then (11) gives the inequality 

( 13) N( a, b , c; x ) > 2 E N( a, Cn C Cn+1I; x ) 
S3 n1= 

5. A Partial Iteration of (13). We shall use (13) together with (8) to extract 
information about N(x)- N(O, 1, 1; x). As (8) shows, it suffices to consider the 
particular choice (a, b, c) = (0, 1, 1) in order to prove (4) for all (a, b, c). 

From (8), we deduce that 

(14) N(a, b, c; x) > N(O, 1, 1; x/ (a + c)) = N(x/ (a + c)), 

since each a for which k(a; 0, 1, 1) < x/(a + c) has k(a; a, b, c) < x. 
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Introducing a parameter K > 0 as in [1], we deduce from (13) and (14) that 

(15) N(a, b, c; x) ,> :E ( E N(a, cn, c,,,; x) + E, N(x/ (a + c,?+l) 
S3 C., < K C,, 2 K 

We will now iterate (15) until we reach a level at which cn K for all n so that no 
terms of the form N(a, cw, cn+1; x) will appear. The most straightforward way to 
describe this is to introduce operators D(K; a, b, c) defined recursively by 

(16) D(K; a, b, c) = , , D(K; a, cn,c?n+1) + E :E E(a + Cn+0 
S3 C, < K S3 C, K 

where E(d) denotes the dilation operator defined by 

(17) (E(d)N)(x) = N(x/d). 
The argument of Lemma 4 of [1] shows that, after at most p steps, where 4 P 'b > K, 

the recursion (16) leads to an expression of D(K; a, b, c) as a sum of dilation 

operators. 

Let us denote D(K; 0, 1, 1) by D(K). Then, from (15), (16), and (17), we deduce 

that, for any K > 0, 

(18) N(x) > (D(K)N)(x). 

Since all of the terms in the series for D(K)N are positive, there is no problem with 

convergence. 

6. The Main Result. We now are in a position to prove the following 

THEOREM. Let N(x) denote the number of disks in the Apollonian packing of 
T(a, b, c) which have curvatures at most x. Let S be the exponent of the packing. Then 

(19) lim log N(x)/log x = S. 
x- 00 

Proof. We need only prove (19) for (a, b, c) = (0, 1, 1), as observed above. The 

operator D(K) of Section 5 may be explicitly expressed in terms of dilation operators 

as I 

(20) D(K) = E(dnl) 

say, where dn is a certain sequence of real numbers (actually integers) satisfying 

dni > 1 for all m. We may assume that {dm} has been arranged in nondecreasing 

order. 

Define 

(21) g(K; t) =Edm . 

By the results of [1], the series converges for t > 1/2 and defines the function 

gn,(K; 0, 1, 1, t) (for 8,A2 > K) referred to in Theorem 1 of [1]. Thus, there is a number 

X(K) satisfying 

(22) g(K; X(K)) 1 

and furthermore 

(23) lim X(K) S. 
K O 
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Now, let t < X(K) so that g(K; t) > 1, and let M be chosen so that 

(24) d d-t > 1. M= 

From (18) and (20), we have 
M 

(25) N(x) > , N(x/dm). 
"7= I 

We claim that there is a constant A = A(t) so that N(x) > Ax'. To prove this, we 
first remark that there is certainly an xo for which N(xo) > 0, since N(x) - oo. Let 

xI = dMxo, and define 

(26) A min N(x)x-m, 

so certainly N(x) > Ax' for xo < x < xl. Now define x = dnl-x for n = 2, 3,... 
Suppose that we have shown that N(x) > Ax' for xO < x < xn- _, for some n > 2. 
Let xn_ - x Xn. Then, for k 1,... ,M, we have x/dk > xI/dM= x0, while 
x/dk - xn/dll xn 1. Thus, applying (24) and (25), we have 

(27) N(x) :-> :E A(xldm)' > Axt if Xn- I t< x '< Xn. M= 

This completes an inductive proof that N(x) > Axt for all x > xo. 
From this, we deduce that 

(28) liminf logN(x)/logx > t. 
X - 00 

Since t < X(K) is arbitrary and since X(K) -- S as K Co, (7) follows from (28). 
Combined with (4), this proves the Theorem. 

7. Experimental Estimates of S. The method used by Melzak [8] to estimate S was 
to compute N(lOOOn) for n = 1,...,20 and to fit a curve of the form Ans to these 
values by least squares. The theorem of Section 6 lends some support to this 
technique but it does not rigorously justify it since the theorem is, after all, an 
asymptotic result. 

In our adaptation of the method of [8], we choose initial curvatures a, b, c so that 
all of a, b, c, and d = a + b + c + 2Vab + bc + ca are integers. (d is the curvature 
of the circle touching the sides of T(a, b, c).) Then all of the curvatures in the 
packing are integers and can be generated by linear recurrence relations, see, e.g., [2]. 
Thus no square roots need be taken, and we remain in the realm of integer 
arithmetic. 

We compute y(n) = N-(lOOOn) for n = 1,...,K, where N-(x) denotes #{n: 
I < x}. Clearly N -(x) has the same asymptotic behavior as N(x). For example, if 

K= 6400, the computation of these values took 6 minutes on an Amdahl 470 V/8 
computer. One can then fit a curve Ans to y(n) for n = 1,...,K, by a variety of 
methods. The next table shows the values of A and s obtained by fitting log y(n) to 
log(An') for n= 1,...,K, using linear least squares. The column "disks" gives 
N (1000K), the total number of disks generated. In all cases (a, b, c, d) = (0, 1, 4, 9). 
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TABLE 

K A s disks 

200 446.063 1.306194 451,730 
400 446.487 1.305935 1,116,800 
800 446.678 1.305841 2,759,717 

1600 446.769 1.305801 6,822,351 
3200 446.898 1.305749 16,867,636 
6400 446.992 1.305717 41,694,859 

This data suggests that S 1.3057. The fact that the fitted s decrease with K 
indicates that a curve of the form Axs(log(x/B))t might be more appropriate, where 
B = jab + bc + ca, say, is a factor included to preserve the scale invariance. 

Another reasonable criterion would be to choose A and s to minimize the sum 
(y(n) - Ans)2. This leads to a pair of equations linear in A and thus to a 

nonlinear equation for s. Solving numerically gives the values A = 447.285 and 
s = 1.305636. The fit of Ans to y(n) is better in a number of ways than that obtained 
by the method described above: the maximum difference I y(n) - Ans I is smaller 
and the sign of y(n) - Ans changes more often. For example, if A1 = 446.992 and 

SI = 1.3057169, theny(n) - A,nsi is negative for all n in the range 5652 < n < 6400, 
while if A2 = 447.285 and s2 = 1.305636, then y(n) - A2nS2 changes sign over 100 
times in this interval. 

If one fits log y(n) to log(Ans) using only the values of n which satisfy 3200 < n 
< 6400, then one obtains A = 447.622 and s = 1.305548, again suggesting that the 
values given in the above table overestimate S. 

In summary, it appears that S is roughly 1.3056, with the last digit being 
somewhat questionable. 
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