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A Finite Element Method 
for Solving Helmholtz Type Equations 

in Waveguides and Other Unbounded Domains* 

By Charles I. Goldstein 

Abstract. A finite element method is described for solving Helmholtz type boundary value 
problems in unbounded regions, including those with infinite boundaries. Typical examples 
include the propagation of acoustic or electromagnetic waves in waveguides. The radiation 
condition at infinity is based on separation of variables and differs from the classical 
Sommerfeld radiation condition. It is shown that the problem may be replaced by a boundary 
value problem on a fixed bounded domain. The behavior of the solution near infinity is 
incorporated in a nonlocal boundary condition. This problem is given a weak or variational 
formulation, and the finite element method is then applied. It is proved that optimal error 
estimates hold. 

1. Introduction. We shall describe and analyze a numerical procedure based on the 
finite element method for solving Helnmholtz type equations in unbounded regions S2 
with either finite or infinite boundary as2. When as2 is bounded (the "exterior 
problem"), the appropriate radiation condition at infinity that ensures well-posed- 
ness of the problem is the classical Sommerfeld radiation condition. There are, 
however, many important physical problems for which the Sommerfeld radiation 
condition is not the correct one. This occurs, for example, in connection with the 
propagation of acoustic or electromagnetic waves in a waveguide [1], as well as wave 
propagation problems arising in underwater acoustics [2]. In such cases the problem 
may be shown to be mathematically well-posed using a radiation condition obtained 
by separation of variables. See [3]-[5] for a proof of this for single waveguides with 
smooth boundaries. These results were extended in [6] to include more complicated 
waveguide geometries. 

In this paper we describe a method for approximately solving problems of the 
above type by employing the finite element method on a fixed bounded subset, 

OB C U. The behavior of the solution outside of 2B is incorporated in a nonlocal 
boundary condition of the form au/an = T(u) on F, where F is the outer boundary 
of 2B9 a/an denotes the outward normal derivative on F, and T is obtained from the 
radiation condition for the problem. We shall prove that optimal error estimates 
hold for the finite element method incorporating this nonlocal radiation boundary 
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condition. We shall carry out the analysis for the case of a single cylindrical 
waveguide in N-dimensions. In Section 4 we shall indicate other domains for which 
the method is applicable. 

The finite element has been employed by several authors to treat the exterior 
problem. See, e.g., [7]-[13] and other references cited there, where various formula- 
tions of the Sommerfeld radiation condition were employed to incorporate the 
behavior of the solution near infinity. We shall see in Section 4 that the exterior 
problem may be considered to be a special case of a conical waveguide. Hence our 
method yields an alternative approach for solving the exterior problem. 

The remainder of this paper may be outlined as follows. In Section 2 we give a 
precise formulation of our problem for the case of a single cylindrical waveguide in 
N-dimensions. A variational formulation is given for the solution of this problem. In 
Section 3 we employ the finite element to approximately solve the problem. 
Furthermore, we establish optimal error estimates. The main results of the paper are 
embodied in Theorems 3.1 and 3.2. In Section 4 we discuss more general domains 
and make some additional observations concerning this method. 

2. The Boundary Value Problem in a Cylindrical Waveguide. In this section we 
consider the Helmholtz equation in a perturbed semi-infinite cylindrical waveguide 
2 C RN, where RN denotes N-dimensional Euclidean space with N - 2. More 
general domains will be discussed in Section 4. We begin by introducing our 
notation. We then establish appropriate outgoing and incoming radiation conditions 
that ensure the well-posedness of the problem. Finally we shall formulate the 
radiation condition at infinity in terms of a nonlocal boundary condition on the 
outer boundary of a fixed bounded subset of S2 and give a weak or variational 
formulation of our problem. 

We employ the following standard notation for Sobolev spaces of complex-valued 
functions. Suppose that M is a nonnegative integer, p E [1, ox], B C RN and v is a 
complex-valued function defined on B. Set 

V IWM(B) = max IIDavI1LP(B) 

and 

IV WpM(B) max I V I Wp (B) 

Here Dav denotes the distributional or weak derivative of v. Thus 11 11 WM(B) defines a 
norm and WM(B) defines a seminorm. The Sobolev spaces are defined via 

Wp (B) = { V: 11 V 11 WPM(B) < X }, 

and the special case p = 2 is denoted by 

HM(B) W2m(B). 

Let HM(B) denote the closure of CO (B) in HM(B). For nonintegral s > 0, we may 
define Hs(B) and 11 11 Hs(B) in the sense of interpolation theory; see, e.g., [14]. We 
may also define the space Hs(A) and norm 11 11 HW(A) as in [14], where A denotes a 
sufficiently smooth subset of aB (the boundary of B). 

We denote an arbitrary point in RN by x X(, xN), where x (xl,.. . ,xNl) and 
XN E R1. We define an unperturbed semi-infinite cylinder SXo as follows, for some 
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xO - 0. Let / denote a bounded (N - 1)-dimensional domain. We define SXN to 
consist of all points x N(x, xN) such that XN - X0 and x E 1. (A two-dimensional 
example of such a domain is a semi-infinite strip: S0 {(xl, x2): 0< x s , 0 
x2}.) We now define our waveguide S2 as follows: 

S2 = S2? U SXN 

where S20 is a bounded set, and we assume that 

Q nl {x = (x, XN): XN > XN SI N 

We next consider the following boundary value problem in S2: 

(2.1) (-A - K2)u =f in 2, u= 0 on a2, and u is "outgoing" at infinity, 

where K is real, f and ai2 are smooth, f has bounded support contained in S2-SXN, 
and the "outgoing" radiation condition will be defined shortly. Let A, denote the 
(N - 1)-dimensional negative Laplacian acting in L2(1) and associated with the zero 
Dirichlet boundary condition on al. Denote the eigenvalues of A,, ordered increas- 
ingly, by {v}j and the corresponding orthonormal real-valued eigenfunctions by 
g',J) for each integer n > 1. (For example, in the case of the semi-infinite strip S0 

defined above, we see that vn = n 2.) 

Suppose that VM < K2 < PM+? for some positive integer M. The outgoing radia- 
tion condition for u(x) is given by 

M 00 

u(x) = cC(K)e' K2_nDXN '(x) + E Cn(K)e _V D-KXN(M ) 

n=1 n=M+1 

and 

(2.2) au(x) M 
- 2 xK) 

axN ' Cn(K)V K2 n ve'i"XN(R N n=1 
00 

- E cn(K)rpvn-K2evn-`2xNM(x) 
n =:M+ 1 

for each XN ' 4X. The incoming radiation condition is similar except that 

i K2 - vn is replaced by -iVK2 -vn for 1 < n < M. 

Remark 2.1. We may generalize problem (2.1) in various ways without essentially 
modifying our method or results. For example, the Dirichlet boundary condition 
may be replaced by a Neumann or Robin boundary condition. Furthermore, the 
differential operator may be perturbed by a variable coefficient second order 
differential operator with compact support in Q. Finally, the outgoing radiation 
condition in (2.1) may be replaced by the incoming radiation condition. 

Let A denote the differential operator acting in L2(i2) given by -A associated with 
the zero Dirichlet boundary condition on ag, and let {XJ denote the set of point 
eigenvalues of the operator A. The set {XAJ will be empty in many cases and will be 
at most countable with no finite accumulation points, [15], even though the continu- 
ous spectrum of A consists of the entire semi-infinite interval [ ", ox). Let A consist 
of those real numbers contained in ("i, ox) other than the sequences {vn} and {AXn 
The following theorem is a consequence of the results in [3] or [4]. 
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THEOREM 2.1. Suppose that K2 E A. Then there exists a unique solution u of (2.1). 
Furthermore, we have 

(2.3) 1u11HB SC(B, K)11IJ 11 HI-2(B 

for an arbitrary integer 1 2 2 and arbitrary subset B C S1, where the constant C(B, K) 
is independent of f. 

Note that we employ the notation C(B, K) to indicate that the constant C(B, K) 
depends on B and K. Furthermore, we shall often denote different constants by the 
same letter when there is no danger of confusion. We next replace problem (2.1) by a 
boundary value problem on the bounded domain 2xN c 92, where 

2 fn{x=(x, ):xN<xN} and xo < x? < Co, 

with x? fixed throughout the remainder of this paper. 

XN 

for arbitrary v E L2(Fx) and xo S X[ S X,, where 

rx, = Q n {x (x, XN): XN }XN. 

It follows readily from (2.2) and the orthonormality of the functions D,(x) that 

( Cn(K) = e' K2N ni(XN') for 1 n s M, 
(2.5) and 

tcn(K) = e nKXNun(xN) for M < n, 

where xo S x' < x?. It now follows from (2.2) and (2.5) that the solution u of (2.1) 
satisfies 

(-A-K2)u-f ingxN, u=O ona'QxN 

(2.6) and 

{au/axN=T(u) onFrx, 

where a'Q r = MaO nag and 
XN XN 

T(u)(x) = T,(u)(x) + T2(u)(x) 
M 

(2.7) = i K K2 -n M )Un(XN ) 
n= I 

00 

E- 2^n K ( ) for x EF 0 . 
n =M+ l 

Note that the boundary operators T, TI, and T2 defined by (2.7) are nonlocal in view 
of definition (2.4). 

Before proceeding further, we define Hilbert spaces HS( x) with s E [0, 1] and 
X& E [4, x ], as follows. Let 

Is(f)]=x v EL2(L x') llvlls(,rx)< r}, 
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where 

?? 1/2 

11 V 11 I ( Vn |t(X ) ) 12 

It follows from [16] (Lemma 2.2) that, for] = 0 and 1, the spaces HI(FX) coincide 
with the spaces HJ(1>) and the norm on HJ( xF) is equivalent to the norm on 
H'(Fx). (Note that H0(Fx,)=L2(FX,).) Since the spaces H's(fx) define a Hilbert 
scale connecting the spaces HI(fX, ) and H'(Fx ), it follows from interpolation 
theory (see, e.g., [14]) that for s E [0, 1], s 7& 4, the spaces Hs(FX) and Hs(FX,N) are 
identical and the corresponding norms are equivalent. We thus have the following 
useful estimate: 

?? 1/2 

(2.8) 

CN(s)Ii 

v 

II W(PXN) 

2 

(n |' v(xN) 2 C2(s) 1I v 1I Hs(rx,v) for each s E[0, ], s 2 , 

where C2(s) and C2(s) are independent of v E Hs(Fx, ). Since Vn - K2 for 
n > M, it follows readily from (2.7), (2.8) and the orthonormality of the functions 

U'0 that 

(2.9) 1T(V)1 2(rx,,,) < C( K ) 11V 11 Hi(rx.O) for each v E Hl (rX-O) . 
n n 

In order to approximate the solution of (2.6) by the finite element method, we 
obtain a variational formulation of this problem. We define 

HE {v: v E Hl(ux2 ) n H'(F x) and v = 0 on a'QxN}. 

It readily follows, using integration by parts, that the solution u of (2.6) satisfies 

(2.10) a(u,v)=(f,v)=f Jvdx, foreachvEHE, 
XN 

where a(,) is defined by 

(2.11) a(w, v) f (Vw P - K2wP) dx- T(w)vPdx. 
QXN rxN 

Note that a(w, v) is defined for w, v E HE since it follows from the Schwarz 
inequality and (2.9) that 

#T(w)v d| < iIT(w)Ii L2(rx.) liv i L2(rxP) < C(K)1Ii Wit Hl(rxP) 1V 1 
L2(rxP,) < oo. 

Remark 2.2. In order for the numerical method we are describing in this paper to 
be computationally feasible, it is necessary that the cross section / be simple enough 
that the eigenvalues {vjn, eigenfunctions {n(U )}, and integrations over / may be 
easily obtained. This is typically the case in most engineering and physical applica- 
tions; see, e.g., [17]. Another point worth noting at this time is that the last term in 
the definition (2.1 1) of the bilinear form a(,) requires the summation of an infinite 
series, in view of (2.7). We shall see in Theorem 3.2 that suitable error estimates hold 
even when this series is truncated. 
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3. The Finite Element Method. In this section we describe how to approximate the 
solution of (2.1) using the finite element method. We then establish the well-posedness 
of the approximate problem and optimal error estimates. 

Let {Sh: h E (0, 1]} denote a family of finite-dimensional subspaces of HE. We 
shall require the following approximation property of our subspaces Sh: 

inf - 
| XIlL2(UX0) + h I v -X H N) 

+ h' /211V - Xll L2(rx.) +h / 
Iv 

- 
XIH'(r)x) 

< Ch" 
11v11lHr(ax) N XNN 

for each v E H'(Ux.), h E (0, 1], and each integer 1' E [2, 1], where C is indepen- 
dent of h and v, and 1 is an integer greater than one. Estimate (3.1) is satisfied by the 
usual finite element spaces employed in practice. Typically, such subspaces are 
constructed by partitioning Ox. into simple subsets, th, of diameter 0(h) and letting 
Sh consist of sufficiently smooth functions, vh, vanishing on d'QxN and such that 
vh I th is a polynomial of degree less than 1. 

In view of (2.10), we define our finite element approximation Uh to the solution u 
of (2.1) by the equation 

(3.2) a(Uh, Vh) (f vh) for each vh E Sh 

Choosing a basis for the space sh, we obtain from (3.2) a finite system of linear 
equations to be solved for our desired approximation to the solution on Ox. For a 
comprehensive treatment of the finite element method in connection with elliptic 
boundary value problems, see [ 181. 

Remark 3.1. In general, it is not always possible to impose the Dirichlet boundary 
condition on functions in Sh. (This problem does not arise in the case of a Neumann 
or Robin boundary condition.) Various methods have been developed for modifying 
the finite element method so as to circumvent the difficulty associated with the 
Dirichlet boundary condition (see [18] and the references cited there). We also 
observe that, for the simple cross sections 1 employed in practical problems, this 
boundary condition can usually be imposed on functions in Sh everywhere in S2 
except in the bounded set S2o. For the sake of simplicity, we shall employ the finite 
element method as formulated above. 

Our first result establishes the well-posedness of problem (3.2) and optimal error 
estimates for u - uh when h is sufficiently small. 

THEOREM 3.1. Suppose that u satisfies (2.1) with K2 E A n (pM, VM+1) and our 
family offinite element spaces {Sh: h E (0, 1 ]) satisfies assumption (3.1). Then there is 
an ho(K) E (0, 1] such that there exists a unique solution uh of (3.2) provided 
h E (0, h0o(K)]. Furthermore, we have 

IIu - u IIL2(gx) + hlIu -u uIIHi(ux) < C(K)hNllUIIH/(Ox.) 

where C(K) is independent of h and u. 
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Proof. To begin with, let us assume that there exists a solution ub of (3.2). Set 
e h =u - uh and apply (2.7) and (2.1 1) to obtain 

(3.3) a(eh, eh) =e IH'(&s, ) - K II ehl(z L - 2 S (T1(eh) + T2(e ))ehdx. 

It follows readily from (2.4) (with v replaced by eh) and (2.7) that 

00 

9 T2(e^ hh djx =v-- K 2 K e(xo)J2 
XN n=M+l I 

(3.4) and 
I ~~~~~~~~~M2 

TI(e)ehd. = i K- Vnln N 
XN n=1 

Combining (3.3) and (3.4) and equating real parts of the resulting equation, we 
deduce 

00 2 

lile h 11 2 1 + vn - K 2 |eh (Xo ) | 

(3.5) N n=M+ 1 

= (K2 + 1)IIe hI11 2(Q W) + Re a(eh , e h), 
N 

where Re a(,) denotes the real part of a(,). 
In order to estimate the last term in (3.5), we apply (2.10), (2.11), (3.1), (3.2), the 

Schwarz inequality, and the arithmetic-geometric mean inequality to obtain a 

X C Sh such that 

Ia(e, eh) h=a(eh, U - X)I 

< Ch' lull IIH(x)( I ve h 
IH'(Ux2) + hK 2lleh L2(&2,j)) 

(3.6 ? #T(eh)(uX)diX 
(3 .6) XN 

2(1 , ) 11 U11 H(2XN ?1e 1 H 
(2X 

N N 

+ ThT(e )( uX ) d 

for arbitrary E E (0, 1]. It follows from (2.7), (3.1), the trace inequality (see, e.g., 
[14]), the Schwarz inequality, and the arithmetic-geometric mean inequality that 

T,(e u -X X T ( e h)II L2(rxo) II U X II L2(rxo,)N 

(3.7) < C(K)Ileh2(r 2)IIu XIIL2(rX) N N 

? C(K, e)h2(' Hlu ~(ax.,) + elle lHI (ax.,) 
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We may now employ (2.4), (2.7), (2.8), (3.1), the Schwarz inequality, and the 
arithmetic-geometric mean inequality to deduce 

00 

13T2(eh)( u -X )dn- K en N U - X)n(XN ) 
rXN n=M+ I 

00 ~~~~~~2 
< e z WP -K2 leh(Xoo)l2 

n=M+ I 
00 

+ C(e) 2 Vvn - K2 (U - x)n(xN ) (U X)n(XN ) 
n=M+ I 

(3.8) ?? -K2l h(XoN)|l + C(e) |uX (x)) 
n=M+ I n=M+l 

oo 2 1/2 
X 2 (vn -K2)1(U -X (?)l2 

n=M+ I 

00 2 
1vn -K2 leh(xo)l + C(c)IU - XIIL IIU -X N 

n=M+ I 
00 12 

~~ v,~-K2 h(OC) ~ + ()2(1'1)II1U2I,() 
n=M+ I N 

Finally, we combine (3.6)-(3.8) to conclude that, for arbitrary c C (0, 1], we have 

|a(e , eh)j < C(K, E)h 2(1 ) l| U || H( + 211 eh II 2 
N ~~~~N 

(3.9) 00 2 
Vvn - K2 leh(XN). 

n=M+ I 

Set c = in (3.9), and then combine this estimate with (3.5) to conclude that 

2 (i1ieh H (Q o) + 2 Vn - K len N 
(3.10) N n=M+ I 

< C(K) h2(1|1)Iu11I1(2o) + 1le II L2( J2o)) 

It thus suffices to estimate Ileh II L2(x. ). It follows from the definition of the L2 
norm that 

Nhup (eh,~ 

L 
N IIoOII) |L 2(g.) 

(3 . 1) = sup I (e h, (A - K2)(D)| 
N ~~~~N 

where D denotes the solution of (2.1) withf replaced by 4 and the outgoing radiation 
condition replaced by the incoming radiation condition. It is readily seen, using the 



METHOD FOR SOLVING HELMHOLTZ TYPE EQUATIONS 317 

arguments of Section 2, that 1 satisfies the following boundary value problem: 

(-A-K2)4(=D inQ2xN, D=0 on a QXN 

(3.12) {and 
laD =T*(D) T**(.(I) + T2(4D) on Px., 

where 

M 

(3.13) T, (D) = -i E FK - n(")Dn(x ). 

We now apply integration by parts, (2.7), (2.10), (2.11), (3.2), (3.12), and (3.13) to 
see that 

(3.14) (e h, ( - K 2)D)I (Ve v4D - K 2eh46) dx- #eh T*(4) dx|- 
N ~~~~~~~~~~N 

Ia(eh, D)I = ja(eh, 4 - x)j for each X E Sh.. 

Applying (2.7), (2.8), (2.11), (3.1), the Schwarz inequality, and the argument leading 
to (3.8), we obtain a X E Sh such that 

ja(eh,4 -x) I 

(3.15) < Ch 11 D11 H2(g,) (I eh ) + K2h hi eh II L2(g) + C(K)h1/ li e II L2(J'x.) 
NNN N 

+ ( v+ An - K2 hen(xo)|) )/2 
n=MJr I 

Since 4D is the incoming solution of (2.1) corresponding to data 4, it follows from [3] 
or [4] that 

(3.16) 1 1 (D 11 H2( X.) s C 11 4D11 L2(gX.) 

Combining (3.11) with (3.14)-(3.16) and the trace inequality, we deduce 

(3.17) lehIl 2(sOO) < C(K)h2 (lIeh II JI( ) + E - K2 he(xo)I). 
N l ~ N n_M?l1 

We may now combine (3.10) and (3.17) to obtain an ho(K) E (0, 1 ] such that, for 
h E (0, ho(K)], we have 

002 

(3.18) 1eh 11 ( ) + v - K2 1eh(Xoo)I S C(K)h2('-1) IIUI2 
N (a.N 

'U. 
N n=M+1 N 

Finally, we conclude from (3.17) and (3.18) that 

(3.19) IlehIIL2(gXO) + hlle 
h 

NHH(Rx.) < C(K)hN H,(Q x.). 
NNN 

We now complete the proof of the theorem as follows. In order to prove that 
problem (3.2) is well-posed for h(O, ho(K) ], it suffices to prove uniqueness since Sh 

is finite dimensional. Hence, suppose that uh satisfies (3.2) with f = 0. Since problem 
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(2.1) is well-posed by Theorem 2.1, it follows that u = 0. We thus see from (3.19) 
that uh = 0 for h E (0, ho(K) ], so that (3.2) is well-posed. The remainder of the 
theorem now follows immediately from (3.19). Q.E.D. 

Remark 3.2. It follows from the proof of Theorem 3.1 that ho(K) decreases as K 
increases. This is typical for numerical methods applied to Helmholtz type equations 
and is due to the oscillatory nature of the solution. 

In view of (2.7) and (2.11), it is necessary to sum an infinite series in order to 
compute the matrix equations resulting from (3.2). In the remainder of this section, 
we determine the effect on our error estimates of truncating this infinite series. To 
this end, we now replace the boundary operator T defined in (2.7) by the operator 
TJ defined as follows for J > M + 1 and for each v E H1(F,.) and X E F,. 

TJ(v)(x) = T1(v)(x) + Tjv(x) TN(v)(x) 

(3.20) - - 

n=M+ I 

where EJ 
- 

l is defined to be zero for J = M + 1. 
We define 

aJ(w, v) f (vw- Vv - K2wi7) dx 
XN 

(3.21) -# TJ(w)Vd-& for each w, v HE. 
XN 

In our next theorem we show that, for J sufficiently large (independent of h), the 
following problem has a unique solution uh: 

(3.22) aJ(Uh, vh) V(fvh), for each vh E S 

THEOREM 3.2. Suppose that u satisfies (2.1) with K2 E A n (PM, PM+1) and the 
family of spaces {Sh: h E (0, 1)]} satisfies (3.1). Then there exists an ho(K) E (0, 1] 
and an integer Jo(K) 2 M + 1, independent of h, such that, for h E (0, ho(K)], there 
exists a unique solution uh of (3.22) provided J 2 Jo(K). Furthermore, we have for an 
arbitrary integer p > 1 

|u uh H(52xo+( , + -K2 i(u hU(h 12\ 1/2 

IIuuJIH(~N 'n=M+ 1 uJf xN J 

(3.23) 
C(K)h'1IuII H/(x) + CepjK(xNxN)(P )/ lull H(ro) 

N N 

and 

IIu - UJIIL2(Ua.) < (C(K)h + C(c)v )EIu - UJIIH(0 ) 
N ~~~~~~~~~~~~~N 

J-l 2 1/2 
(3.24) + Ch V -K2 |(u - u)n(xh )) 

n=M+ I 

+ Ce ( N? N )j ( p1) /2IIu 11 HP (r0 
N 

for e > 0 arbitrarily small. 
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Proof. To begin with, we assume that uf satisfies (3.22) and set eh = u - Uh. As in 
the proof of Theorem 3.1, it follows from (3.20) and (3.21) that 

J-1 2 

phe 11 21Q O + jnK2 I(e )(X )l 
(3.25) N n=M+ I 

= (K + L)11eI L2(,. ) + Re aj(ej, eJ)- 
N 

To estimate the last term in (3.25), we observe from (2.7), (2.10), (2.11), and 
(3.20)-(3.22) that 

00 

aj(eh, eh) = aj(eJ, u-X)- - K2 U(x0 ) (x -uh 
(3.26) nJ 

N 
)nXNJ 

for eachx e Sh. 

Employing the same argument as in the proof of (3.9), we see that we may choose a 
X 

- 
Sh such that, for arbitrary e E (0, 1], we have 

Iaj(eu U-x) I' C(K, -)h 2( 
)IuIIIH(q0X) 

(3.27) J- I 2 

+ 2,- 11 eh 11 2}X 1 + S K 21( eJh X 
N n=M+I 

We next estimate the last term in (3.26). It follows from (2.8), the Schwarz 
inequality, and the triangle inequality that 

00 2_ - _ -- 

2 V Un- K2uN(XN) (X - J)n(XN) 
n=J 

(3.28) < (( n - K2 )Iun(exh) ) (IIeh IIL2(r ) + IIU-XllL2(L X)) 

In view of (2.2) and (2.5), we obtain 

M 

m=I 
00 

(3.29) t e r/vm-K2(X -XN)Dm(X)Um(X0) 

n=M+I 

It thus follows from the orthonormality of the 'm(5c) that, for n > M + 1, we have 

(3.30) ue(x -) = u(x, XN )D(Kx) dx- = e K(N X )Un(XN) 
XN 

We now employ (2.8), (3.1), (3.28), (3.30), the trace inequality, and the arithmetic- 
geometric mean inequality to deduce 
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Vn- Kun(XN) (X - N 
nJ 

-e Pj-K2(x-x0N)( v 2)Iu( 1)2) <; e =z(xN-x? 2 (vn - K ) | Un(XN) N N 

(3.31) hX l (1 1 2(rX.) + 11a X11L 2(Fxoo)) 

< Ce l ) |u| H (r o, + 11 eJ 11 H( x-) + h 11U1 H( )) 

Since vj increases with J, we now choose E = in (3.27) and vJ sufficiently large in 
(3.31) to conclude from (3.25) and (3.26) that 

4ll)IHI(a3Xw) + rv - 
KI(e)n(XN)I )l 

(3.32) < (K2 + l)II ehI22(, x) + C(K)h2('1)IIUII I(2o) 
NN 

+ Ce 
- J N N) 11 

- 
11 2 

N 

We next estimate hI eI L2(xw). It follows as in the proof of Theorem 3.1 that 

(3.3) leHlL2&lN) 11k1(g )1 L2(t,w) fEc N0N 

where + satisfies (3.12). It now follows from (2.7), (2.10), (2.11), and (3.20)-(3.22) 
that 

00 _ _ _ 

(3.34) a(e.L, 2) Sa(e.P, -x)- - sK2(uJ)n(XN) X(XN) 
n= 

for each Xe 3sh. Employing (2.8), (3.16), the argument leading to (3.15), and the 
trace inequality, we conclude that there exists a X E Sh such that 

|a(eh^, (D _X)j 

I || 1 H2(Eo) ( C(K )h 11 e1h 

+ (J~ vn K2/eJ(x )|I) 

(3.35) X~ ? (, - K2V - -f ( x)n(xN)I2) 
+ n I 1 / J1 2\1/ 

X IIkIIL2(So)| C(Kf)hIIeIIH( K2+ Ch( 0 -K2 |e (x0)I) 

+ C(s)hF/pns/2 II eJ Il HS(PXN)N) 

for eachs e[0,4). 
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We are thus left with estimating the last term in (3.34). Employing (2.8), the 
triangle inequality, and the Schwarz inequality, we obtain 

- Kn (uJ)n(xN) Xn(xN ) 
n=~J 

oo 1/2 
12 (pn- K2) I un(xN2) 1/2 11(- XIIL2(r.OO) + 1I IDIIL2(F.O)) 

+ ( i(eh) (xI) 2) (1 - XIIH'(rXO) + II(DIIH' (F,,)). 

We now combine (2.8), (3.1), (3.16), (3.30), and the trace inequality to deduce 

| pn - K2 (uJ)n(xN) Xn(XN ) n=J 
(3.36) < Ce vj-K2(x-) 1l U 1 Hl(l,xo) IL I 

+ C(S)vjs/2 1l eJ II Hs( x 2o) g Lx) 

for each s C [0, 2). Finally, we apply (2.8), (3.32)-(3.36), and the trace inequality 
and choose h sufficiently small in (3.35) and J sufficiently large (independent of h) 
in (3.36) to conclude that 

~ (K)h HIUIIHI ) +C K(XN XN)1 U111 J 11 
H1(Qx\x0J 

and 

IleIh L2(00) <(C(K)h + C(s)vis/ 2) IleIIHl(S) 

N ~~~~~~~~~N (3.38) + Ch ( /Vpn - K2 i(eh xx)2 
n =M+lI 

+ Ce ( N XN) |U| 

for eachs c [0,2) 
The well-posedness of problem (3.22) for h sufficiently small and J sufficiently 

large now follows from (3.37) and the finite dimensionality of Sh in the same manner 
as the analogous result in Theorem 3.1. Furthermore, it follows from (3.37) and 
(3.38) that the theorem is proved with p = 1. In order to prove (3.23) and (3.24) for 
p > 1, we use the following observation due to J. Pasciak. Since supp(f ) C S2 , we 
readily see, using (2.1) and (2.2), that u C C?(Fxo) and A'u = 0 on aFxo for each 
integer q > 0, where the operator A, was defined in Section 2 as the (N - 1)- 
dimensional negative Laplacian acting in L2(1). Hence it follows from [16] that 

oo 1/2 
(3.39) CI(p)I IuI U HP(Fxo) < ( np I Un(XNZ) 12 

<1 C2(P)1 N U HP(]xo_) 
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with Cj(p) < C2(p) < oo. We may now combine (3.39) with the proof of (3.31) and 

(3.36) to obtain (3.23) and (3.24). Q.E.D. 

4. Additional Comments. In this section we indicate how the theory presented in 

Sections 2 and 3 may be extended in various ways. We intend to investigate many of 

these extensions in detail in future publications. To begin with, we observe from 

(2.2) that only the first M modes of the solution u of (2.1) are propagating out to 

infinity, while all of the remaining terms in (2.2) are exponentially decaying. (This is 

in contrast to some of the other waveguides we shall discuss below, such as conical 

waveguides, for which there are no exponentially decaying modes.) Hence it seems 

reasonable that a good approximation to the solution of (2.1) may be obtained by 

employing a boundary operator on F,. that is exact for solutions containing only the 

first M terms in series (2.2). 
Such a boundary operator is given by the operator T1 defined in (2.7) for 

K E A n (PM, PM+1)by 

M 
T1u(x) = i I VK2 - n(j)# u(X', x0)"%(T') dx'- 

n =1 rxN 

Another boundary operator that is exact for the first M terms of series (2.2) is given 

by 

(4.1) BMu(x) i ( K )(x). 

The well-posedness of these approximate boundary value problems, as well as a 

finite element analysis of these problems and the proof of a suitable error estimate 

for the difference between the solution of the exact and approximate problems, will 

be considered elsewhere. Note that BM is a local operator, and hence the resulting 
matrix equations will be sparse. Since BM is a differential operator of order M, the 

smoothness requirements of our finite element subspaces on the outer boundary 
must be increased as M increases. A sequence of local, higher order differential 

boundary operators for approximately solving the exterior problem was investigated 
in [7]. 

There are various other problems for which all but a finite number of modes are 

exponentially decaying. This is true, for example, in the case of a compound 

cylindrical waveguide consisting of a finite union of semi-infinite cylinders, as well 

as wave propagation problems in underwater acoustics (see [2]). There are, however, 

a great many domains for which none of the modes are exponentially decaying. We 

shall illustrate this for the case of a perturbed two-dimensional cone. 
Let 

2 = 20 U Sro 

where ro > 0, S2 is a smooth, bounded set, Sro {x = (r, 0): ro < r, 0 < 0 < val, 
(r, 0) denotes the polar coordinates of a point x in R2, and 0 < a < 2. We again 

consider problem (2.1) with respect to this domain. It was proved in [5] that this 
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problem is well-posed for any real K # 0 with the outgoing radiation condition 
defined by 

00 

u(x) = cn(K)H(V)a(Kr)sin - 
n=1 ~~~a 

(4.2) and 

L (x) / Cn(K)dHa( Kr)sin -a 

where Hn/)(Kr) denotes the Hankel function of the first kind. The incoming 
radiation condition is defined similarly with Hn(l) replaced by Hn,2? (the Hankel 
function of the second kind). Proceeding as in Section 2, we obtain the following 
boundary value problem: 

(-A -K2)u=f inO2r, u=O onB'U2r and a- T(u) onFr, 

where r. >ro, Qr =Q 0 {x=(r,O): r<r. }, a' =ar = n aQ = Qr n 
{x = (r, 0): r = r.} and 

(4.3) T(u)(r., 0) = (,ra)- 
I 

2 nX / un(r.)sin 
n 

n1 H,II)a (Kro) 

with 
ra ~~n 

(4.4) un(r.) = u(rO., )sinOdO. 

Introducing a family of finite element spaces Sh as in Section 3, we obtain in an 
analogous fashion the following equation for the finite element approximation 
uh E Sh of the solution u: 

a(uh,vh)= (Vuh Vvh K2uh vh )dx 

-# T(uh)v d (f,v h) foreachvh Sh. 

It is readily seen, using (4.3) and (4.4), that 

(4.5) T(uh)vh do = (Ta)l' (1) ( un(r)v(r). 

As in Section 3, it may be seen that it suffices to take a finite number of terms in the 
infinite series (4.5). In this case, however, the higher order terms in (4.2) are not 
exponentially decaying, so that a larger number of terms will be required in general 
than for cases in which all but a finite number of terms decay exponentially. 

Observe that the exterior problem in R2 is a special case of the present problem 
with a = 2. Hence our method yields an alternative approach to solving the exterior 
scattering problem. The nonlocal boundary condition on Fr is obtained without 
having to invert an integral operator. In addition, variable coefficients may be 
treated since the Green's function need not be known. 
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The well-posedness results of [3]-[5] were extended in [6] to a large class of 
waveguides in three dimensions, including compound waveguides consisting of a 
finite union of single waveguides of (possibly) different geometries. The results in [6] 
also included waveguides with discontinuities. It may be seen that the finite element 
method proposed here can be readily extended to these more general geometries 
(providing, of course, that appropriate modifications are made when discontinuities 
are present). 
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